Sea Ice Parameters from Microwave Radiometry

  • S. Kern
  • L. Kaleschke
  • G. Spreen
  • R. Ezraty
  • F. Girard-Ardhuin
  • G. Heygster
  • S. Andersen
  • R. Tonboe

Microwave (MW) radiometry has been playing a key role for the observation of sea ice parameters at global scale for more than three decades now. Among these parameters are sea ice concentration, drift, and type. Recent advances in satellite technology and algorithm development enable to further expand the parameter range, to refine the spatial resolution, and to apply MW radiometry also at regional scale. The present paper informs about some key physical properties of sea ice. It informs briefly about data acquisition and about the most common retrieval techniques and gives examples of their application to MW data.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen S, Tonboe RT, Kaleschke L, Heygster G, Toudal Pedersen L (2007) Inter-comparison of passive microwave sea ice concentration retrievals over the high concentration Arctic sea ice. J Geophys Res 112: co8004, doi:10.1029/ 2006JC003543CrossRefGoogle Scholar
  2. Bennartz A (1999) On the use of SSM/I measurements in coastal regions. Journal of Atmospheric and Oceanic Technology 16: 417- 431CrossRefGoogle Scholar
  3. Carsey FD (1992) Microwave Remote Sensing of Sea Ice. Geographical Monograph 68, American Geophysical Union, Washington, DCGoogle Scholar
  4. Cavalieri DJ (1994) A microwave technique for mapping thin sea ice. J Geophys Res 99 (C6): 12561-12572CrossRefGoogle Scholar
  5. Cavalieri DJ, Gloersen P, Campbell WJ (1984) Determination of sea ice parameters with the NIMBUS-7 SMMR. J Geophys Res 89: 5355-5369CrossRefGoogle Scholar
  6. Cavalieri DJ, Parkinson CL, Vinnikov KY (2003) 30-year satellite record reveals contrasting Arctic and Antarctic decadal sea ice variability. Geophys Res Lett 30 (18): 1970, doi:10.1029/2003GL018031CrossRefGoogle Scholar
  7. Colony R, Thorndike S (1984) An estimate of the mean field of Arctic sea ice motion. J Geophys Res 89 (C6): 10623-10629CrossRefGoogle Scholar
  8. Comiso JC (1986) Characteristics of Arctic winter sea ice from satellite multispectral microwave observations. J Geophys Res 91: 975-994CrossRefGoogle Scholar
  9. Comiso JC, Cavalieri DJ, Markus T (2003) Sea ice concentration, ice temperature, and snow depth using AMSR-E data, IEEE Trans Geosci Rem Sens 41 (2): 243-252CrossRefGoogle Scholar
  10. Ezraty R, Girard-Ardhuin F, Poille JF (2007a) Sea ice drift in the central Arctic combining QuikSCAT and SSM/I sea ice drift data. User’s manual, version 2.0, 2006. Available at IFREMER/CERSAT: http://www.ifremer.fr/cersat/
  11. Ezraty R, Girard-Ardhuin F, Croize-Fillon D (2007b) Sea ice drift in the central Arctic using the 89 GHz brightness temperatures of the Advanced Microwave Scanning Radiometer. User’s manual, version 2.0, April 2006. Available at IFREMER/CERSAT: http://www.ifremer.fr/cersat/
  12. Fetterer F, Knowles K (2002, updated 2006) Sea ice index. Boulder, CO: National Snow and Ice Data Center. Digital media.Google Scholar
  13. Kaleschke L, Heygster G, Lüpkes C, Bochert A, Hartmann J, Haarpaintner J, Vihma T (2001) SSM/I sea ice remote sensing for mesoscale ocean-atmosphere interaction analysis. Canadian J Rem Sens 27 (5): 526-537Google Scholar
  14. Kern S (2004) A new method for medium-resolution sea ice analysis using weather-influence corrected Special Sensor Microwave/Imager 85 GHz data. Int J Rem Sens 25 (21): 4555-4582CrossRefGoogle Scholar
  15. Kern S, Harms I, Bakan S, Chen Y (2005) A Comprehensive View of Kara Sea Polynya Dynamics, Sea ice Compactness and Export from Model and Remote Sensing Data. Geophys Res Lett 32 (15): L15501, doi: 10.1029/2005GL023532CrossRefGoogle Scholar
  16. Kouraev AV, Papa F, Mognard NM, Buharizin PI, Cazenave A, Cretaux J-F, Dozortseva J, Remy F (2004) Synergy of active and passive satellite microwave data for the study of first-year sea ice in the Caspian and Aral Seas. IEEE Trans Geosci Rem Sens 42 (10): 2170-2176CrossRefGoogle Scholar
  17. Kurvonen L, Hallikainen M (1996) Classification of Baltic Sea Ice types by air-borne multifrequency microwave radiometer. IEEE Trans Geosci Rem Sens 34: 1292-1299CrossRefGoogle Scholar
  18. Kwok R, Curlander JC, McConnell R, Pang SS (1990) An ice motion tracking system at the Alaska SAR Facility. IEEE J Oceanic Eng 15 (1): 44-54CrossRefGoogle Scholar
  19. Kwok R, Schweiger A, Rothrock DA, Pang SS, Kottmeier C (1998) Sea ice motion from satellite passive microwave imagery assessed with ERS SAR and buoy motions. J Geophys Res 103 (C4): 8191-8214CrossRefGoogle Scholar
  20. Liu AK, Cavalieri DJ (1998) On sea ice drift from the wavelet analysis of the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave Imager (SSM/I) data. Int J Rem Sens 19 (7): 1415-1423CrossRefGoogle Scholar
  21. Lubin D, Massom R (2006) Polar Remote Sensing - Volume I: Atmosphere and Oceans. Praxis Publishing Ltd, Chichester, UKGoogle Scholar
  22. Mäkynen M, Hallikainen M (2005) Passive microwave signature observations of the Baltic Sea ice. Int J Rem Sens 26 (10): 2081-2106CrossRefGoogle Scholar
  23. Markus T, Burns BA (1995) A method to estimate subpixel-scale coastal polynyas with satellite microwave data. J Geophys Res 100 (C3): 4473-4487CrossRefGoogle Scholar
  24. Markus T, Cavalieri DJ (2000) An enhancement of the NASA Team sea ice algorithm. IEEE Trans Geosci Rem Sens 38 (3): 1387-398CrossRefGoogle Scholar
  25. Onstott RG, Grenfell TC, Mätzler C, Luther CA, Svendsen EA (1987) Evolution of microwave sea ice signatures during early summer and midsummer in the marginal ice zone. J Geophys Res 92 (C7): 6825-6835CrossRefGoogle Scholar
  26. Pedersen LT (1998) Development of new satellite ice data products. In: Sandven S., et al., (Eds) IMSI Report No. 8, NERSC Technical Report 145, Nansen Environmental and Remote Sensing Center, Bergen, NorwayGoogle Scholar
  27. Perovich DK, Tucker III WB, Ligett KA (2002) Aerial observations of the evolution of ice surface conditions during summer. J Geophys Res 107 (C10): 8048, doi:10.1029/2000JC000449CrossRefGoogle Scholar
  28. Smith DM (1996) Extraction of winter sea ice concentration in the Greenland and Barents Seas from SSM/I data. Int J Rem Sens 17 (13): 2625-2646CrossRefGoogle Scholar
  29. Spreen G, Kaleschke L, Heygster G (2007) Sea Ice Remote Sensing Using AMSR-E 89 GHz Channels. J Geophys Res (in press)Google Scholar
  30. Svendsen EA, Kloster K, Farrelly B, Johannessen OM, Johannessen JA, Cmpbell WJ, Gloersen P, Cavalieri DJ, Mätzler C (1983) Norwegian Remote Sensing Experiment: Evaluation of the Nimbus 7 scanning multichannel microwave radiometer for sea ice research. J Geophys Res 88: 2781-2791CrossRefGoogle Scholar
  31. Svendsen EA, Mätzler C, Grenfell TC (1987) A model for retrieving total sea ice concentration from a spaceborne dual-polarized passive microwave instrument operating near 90 GHz. Int J Rem Sens 8 (19): 1479-1487CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V 2008

Authors and Affiliations

  • S. Kern
    • 1
  • L. Kaleschke
    • 1
  • G. Spreen
    • 1
  • R. Ezraty
    • 2
  • F. Girard-Ardhuin
    • 2
  • G. Heygster
    • 3
  • S. Andersen
    • 4
  • R. Tonboe
    • 4
  1. 1.Institute of OceanographyUniversiy of HamburgGermany
  2. 2.Space Oceanography LaboratoryFrench Research Institute for Exploitation of the SeaFrance
  3. 3.Institute of Environmental PhysicsUniversity of BremenGermany
  4. 4.Danish Meteorological InstituteDenmark

Personalised recommendations