Sunspots, the QBO, and the Stratosphere in the North Polar Region: An Update

  • K. Labitzke
  • M. Kunze
  • S. Brönnimann
  • K. Labitzke
  • M. Kunze
  • S. Brönnimann
Part of the Advances in Global Change Research book series (AGLO, volume 33)

Abstract

The 11-year sunspot cycle (SSC) strongly affects the lower stratosphere. However, in order to detect the solar signal it is necessary to group the data according to the phase of the Quasi-Biennial Oscillation (QBO). Although this is valid throughout the year the effect of the SSC and the QBO on the stratosphere was largest during the northern winters (January/February). As the stratosphere can affect weather at the ground, the SSC effect on the lower stratosphere might provide a mechanism for solar-climate links. Here we analyse an extended, 65-year long data set of solar variability, QBO, and lower stratospheric dynamics. The results fully confirm earlier findings and suggest a significant effect of the SSC on the strength of the stratospheric polar vortex and on the mean meridional circulation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldwin, M. P. and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581–584.CrossRefGoogle Scholar
  2. Baldwin, M. P. et al., 2001: The quasi-biennial oscillation. Rev. Geophys. 39, 179–229.CrossRefGoogle Scholar
  3. Brönnimann, S., J. Luterbacher, J. Staehelin, and T. Svendby, 2004: An extreme anomaly in stratospheric ozone over Europe in 1940–1942. Geophys. Res. Lett., 31, L08101, doi:10.1029/2004GL19611.CrossRefGoogle Scholar
  4. Brönnimann, S., T. Ewen, T. Griesser, and R. Jenne, 2007a: Multidecadal signal of solar variability in the upper troposphere during the 20th century. Space Sci. Rev., 125, 305–317.CrossRefGoogle Scholar
  5. Brönnimann, S., J. Annis, C. Vogler, and P. D. Jones, 2007b: Reconstructing the Quasi-Biennial Oscillation back to the early 1900s. Geophys. Res. Lett., in press, doi:10.1029/2007GL O31354.Google Scholar
  6. Crooks, S. A. and L. J. Gray, 2005: Characterization of the 11-year solar signal using a multiple regression analysis of the ERA-40 dataset. J. Climate, 18, 996–1015.CrossRefGoogle Scholar
  7. Hood, L. L., 2003: Thermal response of the tropical tropopause region to solar ultraviolet variations. Geophys. Res. Lett., 30, 2215, doi:10.1029/2003 GL018364.CrossRefGoogle Scholar
  8. Kalnay, E. et al., 1996: The NCEP/NCAR 40-year re-analysis project. Bull. Am. Meteorol Soc., 77, 437–471.CrossRefGoogle Scholar
  9. Kodera, K. and Y. Kuroda, 2002: Dynamical response to the solar cycle. J. Geophys. Res., 107, 4749, doi:10.1029/2002JD002224.CrossRefGoogle Scholar
  10. Labitzke, K., 1982: On the interannual variability of the middle stratosphere during the northern winters. J. Met. Soc. Jp., 60, 124–139.Google Scholar
  11. Labitzke, K., 1987: Sunspots, the QBO, and the stratospheric temperature in the north polar region. Geophys. Res. Lett., 14, 535–537.CrossRefGoogle Scholar
  12. Labitzke, K., 2002: The solar signal of the 11-year sunspot cycle in the stratosphere: differences between the northern and southern summers. J. Met. Soc. Jp., 80, 963–971.CrossRefGoogle Scholar
  13. Labitzke, K., 2005: On the solar cycle - QBO relationship: a summary. J. Atm. Sol-Terr. Phys., 67, 45–54.CrossRefGoogle Scholar
  14. Labitzke, K. et al., 2002: The Berlin Stratospheric Data Series; CD from Meteorological Institute, Free University Berlin.Google Scholar
  15. Labitzke, K. and K. Kunze, 2005: Stratospheric temperatures over the Arctic: comparison of three data sets. Meteorol Z, 14, 65–74.CrossRefGoogle Scholar
  16. Labitzke, K. and H. van Loon, 1988: Associations between the 11-year solar cycle, the QBO and the atmosphere. Part I: the troposphere and stratosphere in the northern hemisphere winter. J. Atmos. Terr. Phys., 50, 197–206.CrossRefGoogle Scholar
  17. Labitzke, K. and H. van Loon, 1990: Associations between the 11-year solar cycle, the Quasi-Biennial Oscillation and the atmosphere: a summary of recent work. Phil. Trans. R. Soc. Lond A, 330, 577–589.CrossRefGoogle Scholar
  18. Labitzke, K. and H. van Loon, 1999: The Stratosphere (Phenomena, History, and Relevance). Springer, Berlin, Heidelberg, New York, 179 pp.Google Scholar
  19. Labitzke, K., M. Kunze, and S. Brönnimann, 2006: Sunspots, the QBO, and the stratosphere in the north polar region – 20 years later. Meteorol Z, 15, 355–363.CrossRefGoogle Scholar
  20. Matthes, K., Y. Kuroda, K. Kodera, and U. Langematz, 2006: The transfer of the solar signal from the stratosphere to the troposphere: northern winter. J. Geophys. Res., 111, D06108, doi:10.1029/2005JD006283.CrossRefGoogle Scholar
  21. Naujokat, B., 1986: An update of the observed Quasi-Biennial Oscillation of the stratospheric winds over the tropics. J. Atmos. Sci., 43, 1873–1877.CrossRefGoogle Scholar
  22. Salby, M. L. and P. Callaghan, 2004: Evidence of the solar cycle in the general circulation of the stratosphere. J. Climate, 17, 34–46.CrossRefGoogle Scholar
  23. Salby, M. L. and P. F. Callaghan, 2006: Relationship of the Quasi-Biennial Oscillation to the stratospheric signature of the solar cycle. J. Geophys. Res., 111, DO6110, doi:10.1029/2005JD006012.Google Scholar
  24. Schove, D. J., 1969: The bienniel oscillation, tree rings, and sunspots. Weather, 24, 390–397.Google Scholar
  25. Thompson, D. W. J. and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 297–300.CrossRefGoogle Scholar
  26. van Loon, H. and K. Labitzke, 2000: The influence of the 11-year solar cycle on the stratosphere below 30km: a review. Space Sci. Rev., 94, 259–278.CrossRefGoogle Scholar
  27. van Loon, H., G. A. Meehl, and D. J. Shea, 2007: Coupled air-sea response to solar forcing in the Pacific region during northern winter. J. Geophys. Res., 112, doi:10.1029/2006JD007378.Google Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • K. Labitzke
  • M. Kunze
  • S. Brönnimann
  • K. Labitzke
    • 1
  • M. Kunze
    • 2
  • S. Brönnimann
    • 2
  1. 1.Institute for MeteorologyFree University of BerlinGermany
  2. 2.Institute for Atmospheric and Climate ScienceETH ZürichSwitzerland

Personalised recommendations