Advertisement

Dynamical Changes in the Arctic and Antarctic Stratosphere During Spring

  • U. Langematz
  • M. Kunze
  • U. Langematz
  • M. Kunze
Part of the Advances in Global Change Research book series (AGLO, volume 33)

Abstract

Short- and long-term changes in the intensity and persistence of the Arctic and Antarctic stratospheric polar vortices during spring have been analyzed, using NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research) reanalyses. For the Arctic the results confirm the existence of low frequency variability in the winter stratosphere. During the 1980s and early to mid-1990s the northern hemisphere (NH) polar vortex was intensified in spring and broke up late. Since the late 1990s however, major stratospheric warmings occurred more frequently, so that the polar vortex in spring still intensified in March but with a smaller magnitude. As some of the major warmings occurred early in winter, the polar vortex was able to recover leading to late breakup dates in spite of the dynamical disturbances. In the long-term, there is no statistically significant change in Arctic vortex intensity or lifetime. In the Antarctic, the significant intensification of the polar vortex found in the 1980s and 1990s has been considerably reduced due to an unexpected enhancement of dynamical activity in southern hemisphere (SH) winter since 2000, masking the significant increase in polar vortex persistence found for the period 1979–1999. Still on the long-term, the Antarctic vortex shows a significant deepening and shift towards later spring transitions.

Keywords

Geopotential Height Polar Vortex Stratospheric Ozone Depletion Stratospheric Polar Vortex Breakup Date 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brownlee, K. A., 1965: Statistical Theory and Methodology in Science and Engineering. Wiley, New York, 334–346.Google Scholar
  2. Coy, L., E. R. Nash, and P. A. Newman, 1997: Meteorology of the polar vortex: spring 1997. Geophys. Res. Lett., 24, 2693–2696.CrossRefGoogle Scholar
  3. Jones, A. E. and J. D. Shanklin, 1995: Continued decline of total ozone over Halley, Antarctica since 1985. Nature, 376, 409–411.CrossRefGoogle Scholar
  4. Kalnay, E. et al., 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc., 77, 437–471.CrossRefGoogle Scholar
  5. Kodera, K. and H. Koide, 1997: Spatial and seasonal characteristics of recent decadal trends in the northern hemispheric troposphere and stratosphere. J. Geophys. Res., 102, 19433–19447.CrossRefGoogle Scholar
  6. Labitzke, K. et al., 2002: The Berlin Stratospheric Data Series. CD from Institut für Meteorologie, Freie Universität Berlin.Google Scholar
  7. Labitzke, K., M. Kunze, and S. Brönnimann, 2006: Sunspots, the QBO, and the stratosphere in the north polar region – 20 years later. Meteorol. Z., 15, 355–363.CrossRefGoogle Scholar
  8. Langematz, U. and M. Kunze, 2006: An update on dynamical changes in the Arctic and Antarctic stratospheric polar vortices. Clim. Dynam., 27, 647–660, DOI 10.1007/s00382–006-0156–2.CrossRefGoogle Scholar
  9. Langematz, U., M. Kunze, K. Krüger, K. Labitzke, and G. L. Roff, 2003: Thermal and dynamical changes of the stratosphere since 1979 and their link to ozone and CO2 changes. J. Geophys. Res., 108, 4027, doi:10.1029/2002JD002069.CrossRefGoogle Scholar
  10. Manney, G. L., K. Krüger, J. L. Sabutis, S. A. Sena, and S. Pawson, 2005: The remarkable 2003–2004 winter and other recent warm winters in the Arctic stratosphere since the late 1990s. J. Geophys. Res., 110, D04107, doi:10.1029/2004JD005367.CrossRefGoogle Scholar
  11. Naujokat, B. and H. K. Roscoe, 2005: Evidence against an Antarctic stratospheric vortex split during the periods of pre-IGY temperature measurements. J. Atmos. Sci., 62, 885–889.CrossRefGoogle Scholar
  12. Newman, P. A., E. R. Nash, and J. E. Rosenfield, 2001: What controls the temperature of the Arctic stratosphere during the spring? J. Geophys. Res., 106, 19999–2010.CrossRefGoogle Scholar
  13. Pawson, S. and B. Naujokat, 1997: Trends in daily wintertime temperatures in the northern stratosphere. Geophys. Res. Lett., 24, 575–578.CrossRefGoogle Scholar
  14. Ramaswamy, V., M. L. Chanin, J. Angell, J. Barnett, D. Gaffen, M. Gelman, P. Keckhut, Y. Koshelkov, K. Labitzke, J. J. R. Lin, A. O’Neill, J. Nash, W. Randel, R. Rood, K. Shine, M. Shiotani, and R. Swinbank, 2001: Stratospheric temperature trends: observations and model simulations. Rev. Geophys., 39, 71–122.CrossRefGoogle Scholar
  15. Randel, W. J. and F. Wu, 1999: Cooling of the Arctic and Antarctic polar stratospheres due to ozone depletion. J. Climate, 12, 1467–1479.CrossRefGoogle Scholar
  16. Rex, M., R. J. Salawitch, P. von der Gathen, N. R. P. Harris, M. P. Chipperfield, and B. Naujokat, 2004: Arctic ozone loss and climate change. Geophys. Res. Lett., 31, L04116, doi:10.1029/2003GL018844.CrossRefGoogle Scholar
  17. Shine, K. P., 1986: On the modeled thermal response of the Antarctic stratosphere to a depletion of ozone. Geophys. Res. Lett., 13, 1331–1334.CrossRefGoogle Scholar
  18. Waugh, D. W., W. J. Randel, S. Pawson, P. A. Newman, and E. R. Nash, 1999: Persistence of lower stratospheric polar vortices. J. Geophys. Res., 104, 27191–27201.CrossRefGoogle Scholar
  19. Zhou, S., M. E. Gelman, A. J. Miller, and J. P. Mc Cormack, 2000: An inter-hemisphere comparison of the persistent stratospheric polar vortex. Geophys. Res. Lett., 27, 1123–1126.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • U. Langematz
  • M. Kunze
  • U. Langematz
    • 1
  • M. Kunze
    • 1
  1. 1.Institut für MeteorologieFreie Universität BerlinGermany

Personalised recommendations