Long-term Tropospheric Ozone Trends: A Critical Review

  • J. Staehelin
  • C. Schnadt Poberaj
  • J. Staehelin
  • C. Schnadt Poberaj
Part of the Advances in Global Change Research book series (AGLO, volume 33)


In this review we attempt to critically evaluate the availability of reliable tropospheric ozone measurements suitable for long-term trend analysis. The focus is on large-scale changes deduced from measurements, which are used for comparison with numerical simulations of the tropospheric ozone cycle. These are required to quantify the influence of anthropogenic ozone precursor emission changes on climate. Long-term tropospheric ozone measurements show that ozone over Europe has increased by more than a factor of two between World War II and the early 1990s which is consistent with the large increase in anthropogenic ozone precursor emissions in the industrialized world. However, the further increase in background ozone over Europe and North America since the early 1990s cannot be solely explained by regional ozone precursor changes because anthropogenic ozone precursor emissions decreased in the industrialized countries as consequence of air pollution legislation. Measurements also indicate large increases in ozone in the planetary boundary layer over the tropical Atlantic since the late 1970s, which have been attributed to large increases in fossil fuel related emissions. Measurements at southern midlatitudes, which are limited in number, show a moderate increase in tropospheric ozone since the middle of the 1990s.


Planetary Boundary Layer Tropospheric Ozone Surface Ozone Free Troposphere Ozone Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brönnimann, S., B. Buchmann, and H. Wanner, 2002: Trends in near surface ozone concentrations in Switzerland. Atmos. Environ., 36, 2841–2853.CrossRefGoogle Scholar
  2. Bortz, S. E., M. J. Prather, J.-P. Cammas, V. Thouret, and H. Smit, 2006: Ozone, water vapor, and temperature in the upper tropical troposphere: variations over a decade of MOZAIC measurements. J. Geophys. Res., 111, DO5305, doi:10.1029/2005JD006512.CrossRefGoogle Scholar
  3. Creilson, J. K., J. Fishman, and A. E. Wozniak, 2003: Intercontinental transport of tropospheric ozone: a study of its seasonal variability across the North Atlantic utilizing tropospheric residuals and its relationship to North Atlantic Oscillation. Atmos. Chem. Phys., 3, 2053–2066.Google Scholar
  4. Creilson, J. K., J. Fishman, and A. E. Wozniak, 2005: Arctic Oscillation-induced variability in satellite-derived tropospheric ozone. Geophys. Res. Lett., 32, L14822, doi:10.1029/2005GRL023016.CrossRefGoogle Scholar
  5. Haagen-Smith A. J., 1952: Chemistry and physiology of Los-Angeles Smog. Ind. Eng. Chem., 44, 1342–1346.CrossRefGoogle Scholar
  6. Harris, J. M., S. J. Oltmans, P. P. Tans, R. D. Evnas, D. L. Quincy, 2001: A new method for describing long-term changes in total ozone. Geophys. Res. Lett., 28, 4535–4538.CrossRefGoogle Scholar
  7. IPCC, 2001: Climate Change: The Scientific Basis, Report from the working group I, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. J. T. Houghton et al., eds., Cambridge University Press.Google Scholar
  8. Klausen, J., C. Zellweger, B. Buchmann, and P. Hofer, 2003: Uncertainty and bias of surface ozone measurements at selected Global Atmosphere Watch sites. J. Geophys. Res., 108, doi:10.1029/2003JD003710.Google Scholar
  9. Lelieveld, J., J. van Aardenne, H. Fischer, M. de Reus, J. Williams, and P. Winkler, 2004: Increasing ozone over the Atlantic Ocean. Science, 304, 1483–1486.CrossRefGoogle Scholar
  10. Logan, J. et al., 1999: Trends in vertical distribution of ozone: a comparison of two analyses of ozone sonde data. J. Geophys. Res., 104, 26373–26399.CrossRefGoogle Scholar
  11. Marenco, A. et al., 1998: Measurement of ozone and water vapour by Airbus inservice aircraft: the MOZAIC program, an overview. J. Geophys. Res., 103, 25631–25642.CrossRefGoogle Scholar
  12. Naja, M. and H. Akimoto, 2004: Contribution of regional pollution and long-range transport to the Asian-Pacific region: analysis of log-term ozone sonde data over Japan. J. Geophys. Res., 109, doi:10.1029/2004JD004687.Google Scholar
  13. Nastrom, G. D., 1979: Ozone in the upper troposphere from the GASP measurements. J. Geophys. Res., 84, 6383–6388.CrossRefGoogle Scholar
  14. Ordóñez, C., 2006: Trend analysis of ozone and evaluation of nitrogen dioxide satellite data in the troposphere over Europe, Doctoral thesis, 16544, ETHZ.Google Scholar
  15. Ordóñez, C., D. Brunner, J. Staehelin, P. Hadjinicolaou, J. A. Pyle, M. Jonas, H. Wernli, and A. S. H. Prévôt, 2007: Strong influence of lowermost stratospheric ozone on lower free tropospheric ozone changes over Europe. Geophys. Res. Lett., 34, L07805, doi:10.1029/2006GL029113.CrossRefGoogle Scholar
  16. Oltmans, S. et al., 1998: Trends of ozone in the troposphere. Geophys. Res. Lett., 25, 139–142.CrossRefGoogle Scholar
  17. Oltmans, S. et al., 2004: Trends in tropospheric ozone. In: Proc. Quadr. Ozone Symp., Kos, Greece, Atehns, Greece, vol. 1, Zerefos CD, ed., 199–200.Google Scholar
  18. Oltmans, S. et al., 2006: Long-term changes in tropospheric ozone. Atmos. Environ., 40, 3156–3173.CrossRefGoogle Scholar
  19. Pulles, T., M. van het Bolscher, R. Brand, and A. Visschedijk, 2007: Assessment of global emissions from fuel combustion in the final decades of the 20th century, Application of the Emission Inventory Model TEAM, TNO Built Environment and Geosciences, TNO report 2007-A-R0132/B.Google Scholar
  20. Schönbein, C. F., 1844: Abhandlungen der Bayrischen Akademie der Wissenschaften Naturwissen-schaftlich- mathematische Klasse, München 1844, 257.Google Scholar
  21. Schnadt Poberaj, C., J. Staehelin, D. Brunner, V. Thouret, and V. Mohnen, 2007:A UT/LS ozone climatology of the nineteen seventies deduced from the GASP aircraft measurement program. Atmos. Chem. Phys. Discuss, 7, 3451–3517.Google Scholar
  22. Simmonds, P. G., A. J. Manning, R. G. Derwent, P. Ciais, M. Ramonet, V. Kazan, and D. Ryall, 2005: A burning question. Can recent growth rate anomalies in the greenhouse gases be attributed to large-scale biomass burning events. Atmos. Environ., 39, 2513–2517.CrossRefGoogle Scholar
  23. Staehelin, J., 2002: Ozone measurements and trends (Troposphere). In: Encyclopedia of Physical Sciences and Technology, 3rd edn., vol. 11, Academic Press.Google Scholar
  24. Staehelin, J., A. S. H. Prévôt, and J. Barnes, 2000: Photochemie der Troposphäre. In: Handbuch der Umweltveränderungen und Ökotoxikologie, Band IA: Atmosphäre, Guderian R, ed., Springer Verlag, 207–341.Google Scholar
  25. Staehelin, J., J. Thudium, R. Bühler, A. Volz-Thomas, and W. Graber, 1994: Surface ozone trends at Arosa (Switzerland), Atmos. Environ., 28, 75–87.CrossRefGoogle Scholar
  26. Stevenson, D. S. et al., 2006: Multimodel ensemble simulations of present-day and near future tropophsheric ozone. J. Geophys. Res., 111, D08301, doi:10.1029/2005JD006338.CrossRefGoogle Scholar
  27. Tarasick, D. W., V. E. Fioletov, D. I. Wardle, J. B. Kerr, and J. Davies 2005: Changes in the vertical distribution of ozone over Canada from ozonesondes: 1980–2001. J. Geophys. Res., 110, doi:10.1029/2004JD004643.Google Scholar
  28. Thouret, V., J.-P. Cammas, B. Sauvage, B. Athier, R. M. Zbinden, P. Nédélec, P. Simmon, and F. Karcher, 2006: Tropopause referenced ozone climatology and inter-annual variability (1994–2003) from MOZAIC programme. Atmos. Chem. Phys., 6, 1033–1051.CrossRefGoogle Scholar
  29. Volz, A. and D. Kley, 1988: Evaluation of the Montsouris series of ozone measurements made in the nineteenth century. Nature, 332, 240–242.CrossRefGoogle Scholar
  30. Zbinden, R. M., J.-P. Cammas, V. Thouret, P. Nédélec, F. Karcher, and P. Simmon, 2006: Mid-latitude tropopheric ozone columns from the MOZAIC program: climatology and interannual variability. Atmos. Chem. Phys., 6, 1053–1073.CrossRefGoogle Scholar
  31. Zellweger, C., J. Forrer, P. Hoer, S. Nyeki, B. Schwarzenbach, E. Weingartner, A. Ammann, and U. Baltensperger, 2003: Partitioning of reactive nitrogen (NOy) and depenedence on meteorological conditions in the lower free troposphere. Atmos. Chem. Phys., 3, 779–796.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • J. Staehelin
  • C. Schnadt Poberaj
  • J. Staehelin
    • 1
  • C. Schnadt Poberaj
    • 1
  1. 1.Institute for Atmospheric and Climate ScienceETH ZentrumZürichSwitzerland

Personalised recommendations