Aerosol Effects on Precipitation Locally and Globally

  • U. Lohmann
Part of the Advances in Global Change Research book series (AGLO, volume 33)


The question of whether anthropogenic emissions of aerosols or their precursors can contribute to droughts and heavy precipitation events is still an open one. While there is a microphysical link between an increase in aerosols and an increase in cloud albedo, a direct link to surface precipitation is less straight forward because it involves interactions between cloud microphysics and dynamics. Locally it has been suggested that in some instances increases in aerosols can increase heavy precipitation because less precipitation is formed in the lower parts of convective clouds so that more latent heat is released when the cloud glaciates. Globally the dominant effect of aerosols on precipitation is that aerosols cool the surface due to the increased aerosol and cloud optical depth, which then reduces evaporation and, hence, precipitation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackerman, A. S., M. P. Kirkpatrick, D. E. Stevens, and O. B. Toon, 2004: The impact of humidity above stratiform clouds on indirect climate forcing. Nature, 432, 1014–1017.CrossRefGoogle Scholar
  2. Cheng, Y. J., U. Lohmann, and J. H. Zhang, 2005: Contribution of changes in sea surface temperature and aerosol loading to the decreasing precipitation trend in Southern China. J. Climate, 18, 1381–1390.CrossRefGoogle Scholar
  3. Coakley Jr. J. A. and C. D. Walsh, 2002: Limits to the aerosol indirect radiative forcing derived from observations of ship tracks. J. Atmos. Sci., 59, 668–680.CrossRefGoogle Scholar
  4. Cui, Z. Q., K. S. Carslaw, Y. Yin, and S. Davies, 2006: A numerical study of aerosol effects on the dynamics and microphysics of a deep convective cloud in a continental environment. J. Geophys. Res.-Atmos., 111.Google Scholar
  5. Easter, R. C., S. J. Ghan, Y. Zhang, R. D. Saylor, E. G. Chapman, N. S. Laulainen, H. Abdul-Razzak, L. R. Leung, X. Bian, and R. A. Zaveri, 2004: MIRAGE: model description and evaluation of aerosols and trace gases. J. Geophys. Res., 109:doi:10.1029/2004JD004571.Google Scholar
  6. Feichter, J., E. Roeckner, U. Lohmann, and B. Liepert, 2004: Nonlinear aspects of the climate response to greenhouse gas and aerosol forcing. J. Climate, 17, 2384–2398.CrossRefGoogle Scholar
  7. Feingold, G., H. L. Jiang, and J. Y. Harrington, 2005: On smoke suppression of clouds in Amazonia. Geophys. Res. Lett., 32.Google Scholar
  8. Grassl, H. 1975: Albedo reduction and radiative heating of clouds by absorbing aerosol particles. Contrib. Atmos. Phys., 48, 199–210.Google Scholar
  9. Hansen, J., M. Sato, and R. Ruedy, 1997: Radiative forcing and climate response. J. Geophys. Res., 102, 6831–6864.CrossRefGoogle Scholar
  10. Hansen, J., M. Sato, R. Ruedy, L. Nazarenko, A. Lacis, G. A. Schmidt, G. Russell, I. Aleinov, M. Bauer, S. Bauer, N. Bell, B. Cairns, V. Canuto, M. Chandler, Y. Cheng, A. Del Genio, G. Faluvegi, E. Fleming, A. Friend, T. Hall, C. Jackman, M. Kelley, N. Kiang, D. Koch, J. Lean, J. Lerner, K. Lo, S. Menon, R. Miller, P. Minnis, T. Novakov, V. Oinas, J. Perlwitz, J. Perlwitz, D. Rind, A. Romanou, D. Shindell, P. Stone, S. Sun, N. Tausnev, D. Thresher, B. Wielicki, T. Wong, M. Yao, and S. Zhang, 2005: Efficacy of climate forcings. J. Geophys. Res.-Atmos., 110.Google Scholar
  11. Jacobson, M. Z., 2006: Effects of externally-through-internally-mixed soot inclusions within clouds and precipitation on global climate. J. Phys. Chem., 110, 6860–6873.Google Scholar
  12. Jiang, H. L., H. W. Xue, A. Teller, G. Feingold, and Z. Levin, 2006: Aerosol effects on the lifetime of shallow cumulus. Geophys. Res. Lett., 33.Google Scholar
  13. Johns, T. C., C. F. Durman, H. T. Banks, M. J. Roberts, A. J. McLaren, J. K. Ridley, C. A. Senior, K. D. Williams, A. Jones, G. J. Rickard, S. Cusack, W. J. Ingram, M. Crucifix, D. M. H. Sexton, M. M. Joshi, B. W. Dong, H. Spencer, R. S. R. Hill, J. M. Gregory, A. B. Keen, A. K. Pardaens, J. A. Lowe, A. Bodas-Salcedo, S. Stark, and Y. Searl, 2006: The new Hadley Centre Climate Model (HadGEM1): evaluation of coupled simulations. J. Climate, 19, 1327–1353.CrossRefGoogle Scholar
  14. Khain, A., A. Pokrovsky, M. Pinsky, A. Seifert, and V. Phillips, 2004: Simulation of effects of atmospheric aerosols on deep turbulent convective using a spectral microphysics mixed-phase cumulus cloud model. Part I: model description and possible applications. J. Aerosol Sci., 61, 2963–2982.Google Scholar
  15. Khain, A., D. Rosenfeld, and A. Pokrovsky, 2005: Aerosol impact on the dynamics and microphysics of deep convective clouds. Q. J. Roy. Meteorol. Soc., 131, 2639–2663.CrossRefGoogle Scholar
  16. Koren, I., Y. J. Kaufman, D. Rosenfeld, L. A. Remer, and Y. Rudich, 2005: Aerosol invigoration and restructuring of Atlantic convective clouds. Geophys. Res. Lett., 32.Google Scholar
  17. Kristjansson, J. E., T. Iversen, A. Kirkevag, O. Seland, and J. Debernard, 2005: Response of the climate system to aerosol direct and indirect forcing: role of cloud feedbacks. J. Geophys. Res.-Atmos., 110.Google Scholar
  18. Liepert, B. G., J. Feichter, U. Lohmann, and E. Roeckner, 2004: Can aerosols spin down the water cycle in a warmer and moister world. Geophys. Res. Lett., 31, doi:10.1029/2003GL019060.Google Scholar
  19. Lohmann, U., 2002: Possible aerosol effects on ice clouds via contact nucleation. J. Atmos. Sci., 59, 647–656.CrossRefGoogle Scholar
  20. Lohmann, U. and K. Diehl, 2006: Sensitivity studies of the importance of dust ice nuclei for the indirect aerosol effect on stratiform mixed-phase clouds. J. Atmos. Sci., 63, 968–982.CrossRefGoogle Scholar
  21. Lohmann, U. and J. Feichter, 2001: Can the direct and semi-direct aerosol effect compete with the indirect effect on a global scale? Geophys. Res. Lett., 28, 159–161.CrossRefGoogle Scholar
  22. Lohmann, U. and J. Feichter, 2005: Global indirect aerosol effects: a review. Atmos. Chem. Phys., 5, 715–737.CrossRefGoogle Scholar
  23. Menon, S. and A. D Genio, 2007: Evaluating the impacts of carbonaceous aerosols on clouds and climate. In: Human induced climate change: an interdisciplinary assessment. Ed: M. F. Schlesinger, Cambridge University Press.Google Scholar
  24. Menon, S., J. Hansen, L. Nazarenko, and Y. Luo, 2002: Climate effects of black carbon aerosols in China and India. Science, 297, 2250–2252.CrossRefGoogle Scholar
  25. Menon, S. and L. Rotstayn, 2006: The radiative influence of aerosol effects on liquid-phase cumulus and stratiform clouds based on sensitivity studies with two climate models. Clim. Dyn., 27, 345–356.CrossRefGoogle Scholar
  26. Ming, Y., V. Ramaswamy, P. A. Ginoux, L. W. Horowitz, and L. M. Russell, 2005: Geophysical fluid dynamics laboratory general circulation model investigation of the indirect radiative effects of anthropogenic sulfate aerosol. J. Geophys. Res.-Atmos., 110.Google Scholar
  27. Nober, F. J., H.-F. Graf, and D. Rosenfeld, 2003: Sensitivity of the global circulation to the suppression of precipitation by anthropogenic aerosols. Global and Planetary Change, 37, 57–80.CrossRefGoogle Scholar
  28. Paeth, H., 2007: Human activity and climate change in Africa, this volume.Google Scholar
  29. Paeth, H. and J. Feichter, 2006: Greenhouse-gas versus aerosol forcing and African climate response. Clim. Dyn., 26, 35–54.CrossRefGoogle Scholar
  30. Platnick, S., P. A. Durkee, K. Nielsen, J. P. Taylor, S.-C. Tsay, M. D. King, R. J. Ferek, P. V. Hobbs, and J. W. Rottman, 2000: The role of background cloud microphysics in the radiative formation of ship tracks. J. Atmos. Sci., 57, 2607–2624.CrossRefGoogle Scholar
  31. Quaas, J. and O. Boucher, 2005: Constraining the first aerosol indirect radiative forcing in the LMDZ GCM using POLDER and MODIS satellite data. Geophys. Res. Lett., 32.Google Scholar
  32. Quaas, J., O. Boucher, and F. M. Breon, 2004: Aerosol indirect effects in POLDER satellite data and the Laboratoire de Meteorologie Dynamique-Zoom (LMDZ) general circulation model. J. Geophys. Res.-Atmos., 109.Google Scholar
  33. Ramanathan, V., P. J. Crutzen, J. Lelieveld, A. P. Mitra, D. Althausen, J. Anderson, M. O. Andreae, W. Cantrell, G. R. Cass, C. E. Chung, A. D. Clarke, J. A. Coakley, W. D. Collins, W. C. Conant, F. Dulac, J. Heintzenberg, A. J. Heymsfield, B. Holben, S. Howell, J. Hudson, A. Jayaraman, J. T. Kiehl, T. N. Krishnamurti, D. Lubin, G. McFarquhar, T. Novakov, J. A. Ogren, I. A. Podgorny, K. Prather, K. Priestley, J. M. Prospero, P. K. Quinn, K. Rajeev, P. Rasch, S. Rupert, R. Sadourny, S. K. Satheesh, G. E. Shaw, P. Sheridan, and F. P. J. Valero, 2001: Indian Ocean experiment: an integrated analysis of the climate forcing and effects of the great Indo-Asian haze. J. Geophys. Res.-Atmos., 106, 28371–28398.CrossRefGoogle Scholar
  34. Ramanathan, V., C. Chung, D. Kim, T. Bettge, L. Buja, J. T. Kiehl, W. M. Washington, Q. Fu, D. R. Sikka, and M. Wild, 2005: Atmospheric brown clouds: impacts on South Asian climate and hydrological cycle. Proc. of the National Academy of Sciences of the United States of America, 102, 5326–5333.CrossRefGoogle Scholar
  35. Roeckner, E., P. Stier, J. Feichter, S. Kloster, M. Esch, and I. Fischer-Bruns, 2006: Impact of carbonaceous aerosol emissions on regional climate change. Clim. Dyn., 27, 553–571.CrossRefGoogle Scholar
  36. Rosenfeld, D., 1999: TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys. Res. Lett., 26, 3105–3108.CrossRefGoogle Scholar
  37. Rosenfeld, D. and W. L. Woodley, 2000: Deep convective clouds with sustained supercooled liquid water down to-37.5 degrees C. Nature, 405, 440–442.CrossRefGoogle Scholar
  38. Rotstayn, L. D. and Y. Liu, 2005: A smaller global estimate of the second indirect aerosol effect. Geophys. Res. Lett., 32, doi:10.1029/2004GL021922.Google Scholar
  39. Rotstayn, L. D. and U. Lohmann, 2002: Simulations of the tropospheric sulfur cycle in a global model with a physically based cloud scheme. J. Geophys. Res., 108, doi:10.1029/2002JD002128.Google Scholar
  40. Seifert, A. and K. D. Beheng, 2006: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 2: maritime vs. continental deep convective storms. Meteorol. Atmos. Phys., 92, 67–82.CrossRefGoogle Scholar
  41. Storelvmo, T., J. E. Kristjansson, S. J. Ghan, A. Kirkevag, and O. Seland, 2006: Predicting cloud droplet number concentration in CAM-Oslo. J. Geophys. Res., 111(D24), D24208, doi:10.1029/2005JD006300.CrossRefGoogle Scholar
  42. Takemura, T., T. Nozawa, S. Emori, T. Y. Nakajima, and T. Nakajima, 2005: Simulation of climate response to aerosol direct and indirect effects with aerosol transport-radiation model. J. Geophys. Res.-Atmos., 110.Google Scholar
  43. Van den Heever, S. C., G. G. Carrio, W. R. Cotton, P. J. DeMott, and A. J. Prenni, 2006: Impacts of nucleating aerosol on Florida convection. Part I: mesoscale simulations. J. Aerosol. Sci., 63, 1752–1775.Google Scholar
  44. Wang, C., 2004: A modelling study on the climate impacts of black carbon aerosols. J. Geophys. Res., 109, doi:10.1029/2003JD004084.Google Scholar
  45. Xu, Q., 2001: Abrupt change of the mid-summer climate in central east China by the influence of atmospheric pollution. Atmos. Environ., 35, 5029–5040.CrossRefGoogle Scholar
  46. Zhang, J. H., U. Lohmann, and P. Stier, 2005: A microphysical parameterization for convective clouds in the ECHAM5 climate model: single-column model results evaluated at the Oklahoma Atmospheric Radiation Measurement Program site. J. Geophys. Res.-Atmos., 110.Google Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • U. Lohmann
    • 1
  1. 1.Institute of Atmospheric and Climate ScienceZurichSwitzerland

Personalised recommendations