A Focus on Climate During the Past 100 Years

  • S. Brönnimann
  • T. Ewen
  • J. Luterbacher
  • H. F. Diaz
  • R. S. Stolarski
  • U. Neu
Part of the Advances in Global Change Research book series (AGLO, volume 33)


The past 100 years are a key period for understanding climate variability and climate change as it marks the changeover from a climate system dominated by natural influences to one significantly dominated by anthropogenic activities. This volume is a compilation of contributions to a workshop dealing with different aspects of climate change, variability, and extremes during the past 100 years. The individual contributions cover a broad range of topics, from the re-evaluation of historical marine data to the effect of solar variability on the stratosphere. In this introductory chapter we provide an overview of the book in the context of recent research.


Heat Wave Total Ozone Stratospheric Ozone Polar Vortex Anthropogenic Forcings 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allan, R. and T. Ansell, 2006: A new globally complete monthly historical gridded mean sea level pressure data set (HadSLP2): 1850–2003. J. Climate, 19, 5816–5842.CrossRefGoogle Scholar
  2. Allen, M. R. et al., 2006: Quantifying anthropogenic influence on recent near-surface temperature change. Surv. Geophys., 27, 491–544.CrossRefGoogle Scholar
  3. Andrae, U., N. Sokka, and K. Onogi, 2004: The radiosonde temperature bias correction in ERA-40. ECMWF ERA-40 Project Rep. Series 15, 34 pp.Google Scholar
  4. Ansell, T. J. et al., 2006: Daily mean sea level pressure reconstruction for the European-North Atlantic region for the period 1850–2003. J. Climate, 19, 2717–2742.CrossRefGoogle Scholar
  5. Baldwin, M. and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581–584.CrossRefGoogle Scholar
  6. Baldwin, M., M. Dameris, and T. G. Shepherd, 2007: How will the stratosphere affect climate change? Science, 316, 576–577.CrossRefGoogle Scholar
  7. Bengtsson, L., V. A. Semenov, and O. Johanessen, 2004: The early century warming in the Arctic – a possible mechanism. J. Climate, 17, 4045–4057.CrossRefGoogle Scholar
  8. Beniston, M., 2004: The 2003 heat wave in Europe: a shape of things to come? Geohpys. Res. Lett., 31, 2022–2026.Google Scholar
  9. Black, E. and R. Sutton, 2007: The influence of oceanic conditions on the hot European summer of 2003. Clim. Dynam., 28, 53–66.CrossRefGoogle Scholar
  10. Brasseur, G. P., 2007: Creating knowledge from the confrontation of observations and models: the case of stratospheric ozone (this volume).Google Scholar
  11. Brönnimann, S., 2007: The impact of El Niño/Southern Oscillation on European climate. Rev. Geophys, 45, RG3003, doi:10.1029/2006 RG000199.CrossRefGoogle Scholar
  12. Brönnimann, S., G. P. Compo, P. D. Sardeshmukh, R. Jenne, and A. Sterin, 2005: New approaches for extending the 20th century climate record. Eos, 86, 2–7.CrossRefGoogle Scholar
  13. Brönnimann, S., C. Vogler, J. Staehelin, R. Stolarski, and G. Hansen, 2007: Total ozone observations during the past 80 years (this volume).Google Scholar
  14. Calisesi, Y., R. M. Bonnet, L. Gray, J. Langen, and M. Lockwood, eds., 2007: Solar variability and planetary climates. Space Sciences Series of ISSI, vol. 23, Springer, New York.Google Scholar
  15. Chapin III, F. S. et al. 2005: Role of land-surface changes in Arctic summer warming. Science, 310, 627–628.CrossRefGoogle Scholar
  16. Chen, D., M. A. Cane, A. Kaplan, S. E. Zebiak, and D. J. Huang, 2004: Predictability of El Niño over the past 148 years. Nature, 428, 733–736.CrossRefGoogle Scholar
  17. Church, J. A., N. J. White, J. M. Arblaster, 2005: Significant decadal-scale impact of volcanic eruptions on sea level and ocean heat content. Nature, 438, 74–77.CrossRefGoogle Scholar
  18. Compo, G. P., J. S. Whitaker, and P. D. Sardeshmukh, 2006: Feasibility of a 100-year reanalysis using only surface pressure data. Bull. Am. Meteorol Soc., 87, 175–190.CrossRefGoogle Scholar
  19. Crowley, T. J., 2000: Causes of climate change over the past 1, 000 years. IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series #2000–045. NOAA/NGDC Paleoclimatology Program, Boulder, CO.Google Scholar
  20. Dameris, M. and R. Deckert, 2007: Simulation of long-term evolution of stratospheric dynamics and chemistry – role of natural and anthropogenic forcings (this volume).Google Scholar
  21. Della-Marta, P. M. and H. Wanner, 2006: A method of homogenizing the extremes and mean of daily temperature measurements. J. Climate, 19, 4179–4197.CrossRefGoogle Scholar
  22. Delworth, T. L. and M. E. Mann, 2000: Observed and simulated multidecadal variability in the northern hemisphere. Clim. Dynam., 16, 661–676.CrossRefGoogle Scholar
  23. Diaz, H. F. and R. S. Bradley, eds., 2004: The Hadley Circulation: present, past and future. Advances in Global Change Research 21.Google Scholar
  24. Diaz, H. and V. Markgraf, eds., 2000: El Niño and the Southern Oscillation: Multiscale Variability and Global and Regional Impacts. Cambridge University Press, Cambridge.Google Scholar
  25. Diaz, H. F., M. P. Hoerling, and J. K. Eischeid, 2001: ENSO variability, teleconnections, and climate change. Int. J. Climatol., 21, 1845–1862.CrossRefGoogle Scholar
  26. Evan, A. T., A. K. Heidinger, and D. J. Vimont, 2007: Arguments against a physical long-term trend in global ISCCP cloud amounts. Geophys. Res. Lett., 34, L04701, doi:10.1029/2006 GL028083.CrossRefGoogle Scholar
  27. Eyring, V. et al. (2006) Assessment of temperature, trace species, and ozone in chemistry-climate model simulations of the recent past. J. Geophys. Res., 111, D22308, doi:10.1029/2006 JD007327.CrossRefGoogle Scholar
  28. Fischer, E., J. Luterbacher, E. Zorita, S. F. B. Tett, C. Casty, and H. Wanner, 2007: European climate response to major volcanic eruptions for the last half millennium. Geophys. Res. Lett., 34, L06707, doi:10.1029/2006GL029068.CrossRefGoogle Scholar
  29. Free, M. and Seidel DJ (2005) Causes of differing temperature trends in radiosonde upper air data sets. J. Geophys. Res., 110, D07101, doi:10.1029/2004JD005481.CrossRefGoogle Scholar
  30. Forster, P. et al., 2007: Changes in atmospheric constituents and in radiative forcing. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge.Google Scholar
  31. Garrett, T. J. and C. Zhao, 2006: Increased Arctic cloud longwave emissivity associated with pollution from mid-latitudes. Nature, 440, 787–789.CrossRefGoogle Scholar
  32. Giannini, A., R. Saravanan, and P. Chang, 2003: Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science, 302, 1027–1030.CrossRefGoogle Scholar
  33. Gillett, N. P. and D. W. J. Thompson, 2003: Simulation of recent southern hemisphere climate change. Science, 302, 273–275.CrossRefGoogle Scholar
  34. Haimberger, L., 2007: Homogenization of radiosonde temperature time series using innovation statistics. J. Climate., 20, 1377–1403.CrossRefGoogle Scholar
  35. Hegerl, G. C. et al., 2006: Climate change detection and attribution: beyond mean temperature signals. J. Climate., 19, 5058–5077.CrossRefGoogle Scholar
  36. Hegerl, G. C., F. W. Zwiers, P. Braconnot, N. P. Gillett, Y. Luo, J. A. Marengo, J. A. Orsini, N. Nicholls, J. E. Penner, and P. A. Stott, 2007: Understanding and attributing climate Change. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.Google Scholar
  37. Hoerling, M. and A. Kumar, 2003: The perfect ocean for drought. Science, 299, 691–694.CrossRefGoogle Scholar
  38. Holland, M. M. and C. M. Bitz, 2003: Polar amplification of climate change in coupled models. Clim. Dynam., 21, 221–232.CrossRefGoogle Scholar
  39. Holland, M. M., C. M. Bitz, and B. Tremblay, 2006: Future abrupt transitions in the summer Arctic sea ice. Geophys. Res. Lett., 33, L23503, doi:10.1029/2006GL028024.CrossRefGoogle Scholar
  40. Holton, J. R., P. H. Haynes, M. E. McIntyre, A. R. Douglass, R. B. Rood, and L. Pfister, 1995: Stratosphere-troposphere exchange. Rev. Geophys., 33, 403–439.CrossRefGoogle Scholar
  41. Hurrell, J., Y. Kushnir, G. Ottersen, and M. Visbeck, eds., 2003: The North Atlantic Oscillation: climatic significance and environmental impact. AGU, Geophysical Monograph Series 134. Washington, DC.Google Scholar
  42. IPCC, 2007: Summary for Policymakers. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva.Google Scholar
  43. Jones, P. D. and A. Moberg, 2003: Hemispheric and large-scale surface air temperature variations: an extensive revision and update to 2001. J. Climate, 16, 206–223.CrossRefGoogle Scholar
  44. Jones, P. D., M. New, D. E. Parker, S. Martin, and I. G. Rigor, 1999: Surface air temperature and its change over the past 150 years. Rev. Geophys., 37, 173–200.CrossRefGoogle Scholar
  45. Katz, R. W. and B. G. Brown, 1992: Extreme events in a changing climate: variability is more important than averages. Clim. Change, 21, 289–302.CrossRefGoogle Scholar
  46. Kistler, R. et al., 2001: The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull. Am Meteorol Soc., 82, 247–268.CrossRefGoogle Scholar
  47. Klein Tank, A. et al., 2002: Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. Int. J. Climatol., 22, 1441–1453.CrossRefGoogle Scholar
  48. Knight, J. R., R. J. Allan, C. Folland, M. Vellinga, and M. E. Mann, 2005: A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett., 32, L20708, doi:10.1029/2005GL024233.CrossRefGoogle Scholar
  49. Kodera, K. and Y. Kuroda 2002: Dynamical response to the solar cycle. J. Geophys. Res., 107, 4749, doi:10.1029/2002JD002224.CrossRefGoogle Scholar
  50. Lau, K. M., M. K. Kim, and K. M. Kim, 2006: Asian monsoon anomalies induced by aerosol direct effects. Clim. Dynam., 26, 855–864.CrossRefGoogle Scholar
  51. Law, K. S. and A. Stohl, 2007: Arctic air pollution: origins and impacts. Science, 16, 1537–1540.CrossRefGoogle Scholar
  52. Lean, J., 2004: Solar irradiance reconstruction. IGBP PAGES/World Data Center for Paleoclimatology, Data Contribution Series # 2004–035. NOAA/NGDC Paleoclimatology Program, Boulder, CO.Google Scholar
  53. Limpasuvan, V., D. W. J. Thompson, and D. L. Hartmann, 2004: On the life cycle of northern hemisphere stratospheric sudden warming. J. Climate, 17, 2584–2596.CrossRefGoogle Scholar
  54. Lubin, D. and A. M. Vogelmann, 2006: A climatologically significant aerosol longwave indirect effect in the Arctic. Nature, 439, 453–456.CrossRefGoogle Scholar
  55. Luterbacher, J., M. A. Liniger, A. Menzel, N. Estrella, P. M. Della-Marta, C. Pfister, T. Rutishauser, and E. Xoplaki, 2007: The exceptional European warmth of Autumn 2006 and Winter 2007: historical context, the underlying dynamics and its phenological impacts. Geophys. Res. Lett., 34, L12704 doi:10.1029/2007GL029951.CrossRefGoogle Scholar
  56. McCabe, G. J., M. A. Palecki, and J. L. Betancourt, 2004: Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. P Natl. Acad. Sci. USA, 101, 4136–4141.CrossRefGoogle Scholar
  57. McPhaden, M. J., S. E. Zebiak, and M. H. Glantz, 2006: ENSO as an intergrating concept in Earth science. Science, 314, 1740–1745.CrossRefGoogle Scholar
  58. Mears, C. A. and F. J. Wentz, 2005: The effect of diurnal correction on satellite-derived lower tropospheric temperature. Science, 309, 1548–1551.CrossRefGoogle Scholar
  59. Meehl, C. A., W. M. Washington, T. M. L. Wigley, J. M. Arblaster, and A. Dai, 2002: Solar and greenhouse gas forcing and climate response in the twentieth century. J. Climate, 16, 426–444.CrossRefGoogle Scholar
  60. Moberg, A. et al., 2006: Indices for daily temperature and precipitation extremes in Europe analysed for the period 1901–2000. J. Geophys. Res., 111, D22106.CrossRefGoogle Scholar
  61. Nicholls, N., D. Collins, B. Trewin, and P. Hope, 2006: Historical instrumental climate data for Australia – quality and utility for palaeoclimatic studies. J. Quat. Sci., 21, 681–688.CrossRefGoogle Scholar
  62. Ohmura, A. and H. Lang, 1989: Secular variation of global radiationover Europe. In: Current Problems in Atmospheric Radiation, J. Lenoble and J. F. Geleyn, ed., A. Deepak, Hampton, VA, 98–301.Google Scholar
  63. Overland, J. E. and M. Wang, 2005: The third Arctic climate pattern: 1930s and early 2000s. Geophys. Res. Lett., 32, L23808, doi:10.1029/2005GL024254.CrossRefGoogle Scholar
  64. Philander, S. G., 1989: El Niño, La Nina, and the Southern Oscillation, Academic Press, San Diego, CA.Google Scholar
  65. Polyakov, I. V., R. V. Bekryaev, G. V. Alekseev, U. Bhatt, R. L. Colony, M. A. Johnson, A. P. Makshtas, and D. Walsh, 2003: Variability and trends of air temperature and pressure in the maritime Arctic, 1875–2000. J. Climate, 16, 2067–2077.CrossRefGoogle Scholar
  66. Robock, A., 2000: Volcanic eruptions and climate. Rev. Geophys., 38, 191–219.CrossRefGoogle Scholar
  67. Ramaswamy, V. et al., 2001: Rev. Geophys., 39, 71–122.CrossRefGoogle Scholar
  68. Ramaswamy, V., M. D. Schwarzkopf, W. J. Randel, B. D. Santer, B. J. Soden, and G. L. Stenchikov, 2006: Anthropogenic and natural influences in the evolution of lower stratospheric cooling. Science, 311, 1138–1141.CrossRefGoogle Scholar
  69. Rotstayn, L. D. and U. Lohmann, 2002: Tropical rainfall trends and the indirect aerosol effect. J. Climate, 15, 2103–2116.CrossRefGoogle Scholar
  70. Santer, B. et al., 2003: Contributions of anthropogenic and natural forcing to recent tropopause height changes. Science, 301, 479–483.CrossRefGoogle Scholar
  71. Schär, C., P. L. Vidale, D. Lüthi, C. Frei, C. Häberli, M. Liniger, and C. Appenzeller, 2004: The role of increasing temperature variability for European summer heat waves. Nature, 427, 332–336.CrossRefGoogle Scholar
  72. Schubert, S. D., M. J. Suarez, P. J. Pegion, R. D. Koster, and J. T. Bacmeister, 2004: On the Cause of the 1930s Dust Bowl. Science, 303, 1855–1859.CrossRefGoogle Scholar
  73. Seneviratne, S. I., D. Lüthi, M. Litschi, and C. Schär, 2006: Land-atmosphere coupling and climate change in Europe. Nature, 443, 205–209.CrossRefGoogle Scholar
  74. Serreze, M. C., M. M. Holland, and J. Stroeve, 2007: Perspectives on the Arctic’s shrinking sea-ice cover. Science, 16, 1533–1536.CrossRefGoogle Scholar
  75. Sherwood, S. C., J. R. Lanzante, and C. L. Meyer, 2005: Radiosonde daytime biases and late-20th century warming. Science, 309, 1556–1559.CrossRefGoogle Scholar
  76. Shindell, D., D. Rind, N. Balachandran, J. Lean, and P. Lonergran, 1999: Solar cycle variability, ozone, and climate. Science, 284, 305–308.CrossRefGoogle Scholar
  77. Solomon, S., 1999: Stratospheric ozone depletion: a review of concepts and history. Rev. Geophys., 37, 275–316.CrossRefGoogle Scholar
  78. Staehelin, J., N. R. P. Harris, C. Appenzeller, and J. Eberhard, 2001: Ozone trends: a review. Rev. Geophys., 39, 231–290.CrossRefGoogle Scholar
  79. Stenchikov, G., K. Hamilton, A. Robock, V. Ramaswamy, and M. D. Schwarzkopf, 2004: Arctic Oscillation response to the 1991 Pinatubo Eruption in the SKYHI GCM with a realistic Quasi-Biennial Oscillation. J. Geophys. Res., 109, D03112, doi:10.1029/2003JD003699.CrossRefGoogle Scholar
  80. Sutton, R. T. and L. R. Hodson, 2005: Atlantic forcing of North American and European summer climate. Science, 309, 115–118.CrossRefGoogle Scholar
  81. Thompson, D. W. J. and S. Solomon, 2002: Interpretation of recent southern hemisphere climate change. Science, 296, 895–899.CrossRefGoogle Scholar
  82. Trenberth, K. E., P. D. Jones, P. Ambenje, R. Bojariu, D. Easterling, A. Klein Tank, D. Parker, F. Rahimzadeh, J. A. Renwick, M. Rusticucci, B. Soden, and P. Zhai, 2007: Observations: surface and atmospheric climate change. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.Google Scholar
  83. Uppala, S. M. et al., 2005: The ERA-40 reanalysis. Q. J. Roy. Meteorol Soc., 131, 2961–3012.CrossRefGoogle Scholar
  84. Wang, M., J. Overland, V. Kattsov, J. Walsh, X. Zhang, and T. Pavlova, 2007: Intrinsic versus forced variation in coupled climate model simulations over the Arctic during the 20th century. J. Climate, 20, 1084–1098.Google Scholar
  85. Wanner, H., S. Brönnimann, C. Casty, D. Gyalistras, J. Luterbacher, C. Schmutz, D. Stephenson, and E. Xoplaki, 2001: North Atlantic Oscillation – concept and studies. Surv. Geophys., 22, 321–381.CrossRefGoogle Scholar
  86. White, W. B., J. Lean, D. R. Cayan, and M. Dettinger, 1997: A response of global upper ocean temperature to changing solar irradiance. J. Geophys. Res., 102, 3255–3266.CrossRefGoogle Scholar
  87. Wild, M. et al., 2005: From dimming to brightening: decadal changes in solar radiation at the Earth’s surface. Science, 308, 847–850.CrossRefGoogle Scholar
  88. WMO, 2007: Scientific Assessment of Ozone Depletion: 2006. WMO Global Ozone Research and Monitoring Project – Report No. 50.Google Scholar
  89. Xoplaki, E., J. F. Gonzalez-Rouco, J. Luterbacher, and H. Wanner, 2004: Wet season Mediterranean precipitation variability: influence of large-scale dynamics and trends. Clim. Dynam., 23, 63–78.Google Scholar
  90. Zhang, R., T. L. Delworth, and I. M. Held, 2007: Can the Atlantic Ocean drive the observed multidecadal variability in northern hemisphere mean temperature? Geophys. Res. Lett., 34, L02709, doi:10.1029/2006GL028683.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • S. Brönnimann
    • 1
  • T. Ewen
    • 2
  • J. Luterbacher
    • 3
  • H. F. Diaz
    • 4
  • R. S. Stolarski
    • 5
  • U. Neu
    • 5
  1. 1.Institute for Atmospheric and Climate ScienceETH ZürichSwitzerland
  2. 2.NCCR Climate and Oeschger Centre for Climate Change Research and Institute of GeographyUniversity of BernSwitzerland
  3. 3.NOAA-ESRLBoulderUSA
  4. 4.NASA Goddard Space Flight CenterGreenbeltUSA
  5. 5.ProClimBernSwitzerland

Personalised recommendations