Functional Cytotoxicity of T Cells in the Tumor Microenvironment

  • Michal Lotem
  • Arthur Machlenkin
  • Shoshana Frankenburg
  • Tamar Peretz
Part of the The Tumor Microenvironment book series (TTME, volume 1)

Cytotoxic T cells (CTLs) take a central part in tumor cell destruction. Initially, naïve CD8+ T cells are primed by antigen presenting cells in lymphoid tissue or, alternatively, by antigen processing tumor cells at the tumor microenvironment. The contact region of CTLs with antigen bearing cells, the immune synapse, consists of clusters of T cell receptors and adhesion molecules with reorientation of the cytoskeleton to direct secretion of cytotoxic molecules to a specific location. Membrane fragments carrying surface peptide-MHC complexes are captured by tumor responsive CTLs. The incorporation of tumor membrane exposes CTLs to fratricide killing, or turns them to secondary APCs. Activated CTLs release cytotoxins including perforin and Granzyme B, which activate several pathways leading to apoptosis and target cell death. Membrane bound proteins of the tumor necrosis factor receptor family induce cell damage, and do not necessitate perforin activation. Interferon-γ is an important cytokine secreted by activated CTLs essential for tumor regression through its paracrine effect on other immune cells and generation of inflammation.

With the advent of gene transfer to T lymphocytes, the major goal in the future will be to increase the tumor destructive properties of CTLs and amplify immune response.


Cytotoxic T Cells trogocytosis functional cytotoxicity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boon T, Coulie PG, Van den Eynde BJ, van der Bruggen P (2006) Human T cell responses against melanoma. Annu Rev Immunol 24: 175–208.CrossRefPubMedGoogle Scholar
  2. 2.
    Overwijk WW, Theoret MR, Finkelstein SE, Surman DR, de Jong LA, Vyth-Dreese FA, Dellemijn TA, Antony PA, Spiess PJ, Palmer DC, Heimann DM, Klebanoff CA, Yu Z, Hwang LN, Feigenbaum L, Kruisbeek AM, Rosenberg SA, Restifo NP (2003) Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J Exp Med 198: 569–580.CrossRefPubMedGoogle Scholar
  3. 3.
    Lee PP, Yee C, Savage PA, Fong L, Brockstedt D, Weber JS, Johnson D, Swetter S, Thompson J, Greenberg PD, Roederer M, Davis MM (1999) Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nat Med 5: 677–685.CrossRefPubMedGoogle Scholar
  4. 4.
    Nelson DJ, Mukherjee S, Bundell C, Fisher S, van Hagen D, Robinson B (2001) Tumor progression despite efficient tumor antigen cross-presentation and effective “arming” of tumor antigen-specific CTL. J Immunol 166: 5557–5566.PubMedGoogle Scholar
  5. 5.
    Ochsenbein AF, Klenerman P, Karrer U, Ludewig B, Pericin M, Hengartner H, Zinkernagel RM (1999) Immune surveillance against a solid tumor fails because of immunological ignorance. Proc Natl Acad Sci USA 96: 2233–2238.CrossRefPubMedGoogle Scholar
  6. 6.
    Khong HT, Restifo NP (2002) Natural selection of tumor variants in the generation of “tumor escape” phenotypes. Nat Immunol 3: 999–1005.CrossRefPubMedGoogle Scholar
  7. 7.
    Wang Z, Cao Y, Albino AP, Zeff RA, Houghton A, Ferrone S (1993) Lack of HLA class I antigen expression by melanoma cells SK-MEL-33 caused by a reading frameshift in beta 2-microglobulin messenger RNA. J Clin Invest 91: 684–692.CrossRefPubMedGoogle Scholar
  8. 8.
    Blank C, Gajewski TF, Mackensen A (2005) Interaction of PD-L1 on tumor cells with PD-1 on tumor-specific T cells as a mechanism of immune evasion: implications for tumor immunotherapy. Cancer Immunol Immunother 54: 307–314.CrossRefPubMedGoogle Scholar
  9. 9.
    Perez VL, Van Parijs L, Biuckians A, Zheng XX, Strom TB, Abbas AK (1997) Induction of peripheral T cell tolerance in vivo requires CTLA-4 engagement. Immunity 6: 411–417.CrossRefPubMedGoogle Scholar
  10. 10.
    Sotomayor EM, Borrello I, Rattis FM, Cuenca AG, Abrams J, Staveley-O’Carroll K, Levitsky HI (2001) Cross-presentation of tumor antigens by bone marrow-derived antigen-presenting cells is the dominant mechanism in the induction of T-cell tolerance during B-cell lymphoma progression. Blood 98: 1070–1077.CrossRefPubMedGoogle Scholar
  11. 11.
    Steinman RM, Hawiger D, Nussenzweig MC (2003) Tolerogenic dendritic cells. Annu Rev Immunol 21: 685–711.CrossRefPubMedGoogle Scholar
  12. 12.
    Antony PA, Piccirillo CA, Akpinarli A, Finkelstein SE, Speiss PJ, Surman DR, Palmer DC, Chan CC, Klebanoff CA, Overwijk WW, Rosenberg SA, Restifo NP (2005) CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells. J Immunol 174: 2591–2601.PubMedGoogle Scholar
  13. 13.
    Terabe M, Matsui S, Noben-Trauth N, Chen H, Watson C, Donaldson DD, Carbone DP, Paul WE, Berzofsky JA (2000) NKT cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4R-STAT6 pathway. Nat Immunol 1: 515–520.CrossRefPubMedGoogle Scholar
  14. 14.
    Schmitz I, Krueger A, Baumann S, Schulze-Bergkamen H, Krammer PH, Kirchhoff S (2003) An IL-2-dependent switch between CD95 signaling pathways sensitizes primary human T cells toward CD95-mediated activation-induced cell death. J Immunol 171: 2930–2936.PubMedGoogle Scholar
  15. 15.
    Chiodoni C, Paglia P, Stoppacciaro A, Rodolfo M, Parenza M, Colombo MP (1999) Dendritic cells infiltrating tumors cotransduced with granulocyte/macrophage colony-stimulating factor (GM-CSF) and CD40 ligand genes take up and present endogenous tumor-associated antigens, and prime naive mice for a cytotoxic T lymphocyte response. J Exp Med 190: 125–133.CrossRefPubMedGoogle Scholar
  16. 16.
    Marzo AL, Lake RA, Lo D, Sherman L, McWilliam A, Nelson D, Robinson BW, Scott B (1999) Tumor antigens are constitutively presented in the draining lymph nodes. J Immunol 162: 5838–5845.PubMedGoogle Scholar
  17. 17.
    Preynat-Seauve O, Schuler P, Contassot E, Beermann F, Huard B, French LE (2006) Tumor-infiltrating dendritic cells are potent antigen-presenting cells able to activate T cells and mediate tumor rejection. J Immunol 176: 61–67.PubMedGoogle Scholar
  18. 18.
    Bonnevier JL, Mueller DL (2002) Cutting edge: B7/CD28 interactions regulate cell cycle progression independent of the strength of TCR signaling. J Immunol 169: 6659–6663.PubMedGoogle Scholar
  19. 19.
    Uno T, Takeda K, Kojima Y, Yoshizawa H, Akiba H, Mittler RS, Gejyo F, Okumura K, Yagita H, Smyth MJ (2006) Eradication of established tumors in mice by a combination antibody-based therapy. Nat Med 12: 693–698.CrossRefPubMedGoogle Scholar
  20. 20.
    Van Gool SW, Vermeiren J, Rafiq K, Lorr K, de Boer M, Ceuppens JL (1999) Blocking CD40 - CD154 and CD80/CD86 - CD28 interactions during primary allogeneic stimulation results in T cell anergy and high IL-10 production. Eur J Immunol 29: 2367–2375.CrossRefPubMedGoogle Scholar
  21. 21.
    von Bergwelt-Baildon MS, Popov A, Saric T, Chemnitz J, Classen S, Stoffel MS, Fiore F, Roth U, Beyer M, Debey S, Wickenhauser C, Hanisch FG, Schultze JL (2006) CD25 and indoleamine 2, 3-dioxygenase are up-regulated by prostaglandin E2 and expressed by tumor-associated dendritic cells in vivo: additional mechanisms of T-cell inhibition. Blood 108: 228–237.CrossRefGoogle Scholar
  22. 22.
    Mellor AL, Baban B, Chandler P, Marshall B, Jhaver K, Hansen A, Koni PA, Iwashima M, Munn DH (2003) Cutting edge: induced indoleamine 2, 3 dioxygenase expression in dendritic cell subsets suppresses T cell clonal expansion. J Immunol 171: 1652–1655.PubMedGoogle Scholar
  23. 23.
    Anderson MJ, Shafer-Weaver K, Greenberg NM, Hurwitz AA (2007) Tolerization of tumor-specific T cells despite efficient initial priming in a primary murine model of prostate cancer. J Immunol 178: 1268–1276.PubMedGoogle Scholar
  24. 24.
    Kageshita T, Ishihara T, Campoli M, Ferrone S (2005) Selective monomorphic and polymorphic HLA class I antigenic determinant loss in surgically removed melanoma lesions. Tissue Antigens 65: 419–428.CrossRefPubMedGoogle Scholar
  25. 25.
    Ochsenbein AF, Sierro S, Odermatt B, Pericin M, Karrer U, Hermans J, Hemmi S, Hengartner H, Zinkernagel RM (2001) Roles of tumour localization, second signals and cross priming in cytotoxic T-cell induction. Nature 411: 1058–1064.CrossRefPubMedGoogle Scholar
  26. 26.
    Anichini A, Mortarini R, Nonaka D, Molla A, Vegetti C, Montaldi E, Wang X, Ferrone S (2006) Association of antigen-processing machinery and HLA antigen phenotype of melanoma cells with survival in American Joint Committee on Cancer stage III and IV melanoma patients. Cancer Res 66: 6405–6411.CrossRefPubMedGoogle Scholar
  27. 27.
    Jenkinson SR, Williams NA, Morgan DJ (2005) The role of intercellular adhesion molecule-1/LFA-1 interactions in the generation of tumor-specific CD8+ T cell responses. J Immunol 174: 3401–3407.PubMedGoogle Scholar
  28. 28.
    Yu P, Lee Y, Liu W, Chin RK, Wang J, Wang Y, Schietinger A, Philip M, Schreiber H, Fu YX (2004) Priming of naive T cells inside tumors leads to eradication of established tumors. Nat Immunol 5: 141–149.CrossRefPubMedGoogle Scholar
  29. 29.
    Schuler T, Blankenstein T (2003) Cutting edge: CD8+ effector T cells reject tumors by direct antigen recognition but indirect action on host cells. J Immunol 170: 4427–4431.PubMedGoogle Scholar
  30. 30.
    Xia D, Hao S, Xiang J (2006) CD8+ cytotoxic T-APC stimulate central memory CD8+ T cell responses via acquired peptide-MHC class I complexes and CD80 costimulation, and IL-2 secretion. J Immunol 177: 2976–2984.PubMedGoogle Scholar
  31. 31.
    Blattman JN, Antia R, Sourdive DJ, Wang X, Kaech SM, Murali-Krishna K, Altman JD, Ahmed R (2002) Estimating the precursor frequency of naive antigen-specific CD8 T cells. J Exp Med 195: 657–664.CrossRefPubMedGoogle Scholar
  32. 32.
    Grover A, Kim GJ, Lizee G, Tschoi M, Wang G, Wunderlich JR, Rosenberg SA, Hwang ST, Hwu P (2006) Intralymphatic dendritic cell vaccination induces tumor antigen-specific, skin-homing T lymphocytes. Clin Cancer Res 12: 5801–5808.CrossRefPubMedGoogle Scholar
  33. 33.
    Mora JR, Cheng G, Picarella D, Briskin M, Buchanan N, von Andrian UH (2005) Reciprocal and dynamic control of CD8 T cell homing by dendritic cells from skin- and gut-associated lymphoid tissues. J Exp Med 201: 303–316.CrossRefPubMedGoogle Scholar
  34. 34.
    Dudda JC, Simon JC, Martin S (2004) Dendritic cell immunization route determines CD8+ T cell trafficking to inflamed skin: role for tissue microenvironment and dendritic cells in establishment of T cell-homing subsets. J Immunol 172: 857–863.PubMedGoogle Scholar
  35. 35.
    Delon J, Germain RN (2000) Information transfer at the immunological synapse. Curr Biol 10: R923–R933.CrossRefPubMedGoogle Scholar
  36. 36.
    Kupfer A, Swain SL, Singer SJ (1987) The specific direct interaction of helper T cells and antigen-presenting B cells. II. Reorientation of the microtubule organizing center and reorganization of the membrane-associated cytoskeleton inside the bound helper T cells. J Exp Med 165: 1565–1580.CrossRefPubMedGoogle Scholar
  37. 37.
    Anton van der Merwe P, Davis SJ, Shaw AS, Dustin ML (2000) Cytoskeletal polarization and redistribution of cell-surface molecules during T cell antigen recognition. Semin Immunol 12: 5–21.CrossRefPubMedGoogle Scholar
  38. 38.
    Chen X, Trivedi PP, Ge B, Krzewski K, Strominger JL (2007) Many NK cell receptors activate ERK2 and JNK1 to trigger microtubule organizing center and granule polarization and cytotoxicity. Proc Natl Acad Sci USA 104: 6329–6334.CrossRefPubMedGoogle Scholar
  39. 39.
    Dustin ML (2005) A dynamic view of the immunological synapse. Semin Immunol 17: 400–410.CrossRefPubMedGoogle Scholar
  40. 40.
    Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML (1999) The immunological synapse: a molecular machine controlling T cell activation. Science 285: 221–227.CrossRefPubMedGoogle Scholar
  41. 41.
    Kupfer A, Mosmann TR, Kupfer H (1991) Polarized expression of cytokines in cell conjugates of helper T cells and splenic B cells. Proc Natl Acad Sci USA 88: 775–779.CrossRefPubMedGoogle Scholar
  42. 42.
    Monks CR, Kupfer H, Tamir I, Barlow A, Kupfer A (1997) Selective modulation of protein kinase C-theta during T-cell activation. Nature 385: 83–86.CrossRefPubMedGoogle Scholar
  43. 43.
    Monks CR, Freiberg BA, Kupfer H, Sciaky N, Kupfer A (1998) Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395: 82–86.CrossRefPubMedGoogle Scholar
  44. 44.
    Lee KH, Holdorf AD, Dustin ML, Chan AC, Allen PM, Shaw AS (2002) T cell receptor signaling precedes immunological synapse formation. Science 295: 1539–1542.CrossRefPubMedGoogle Scholar
  45. 45.
    Parameswaran N, Suresh R, Bal V, Rath S, George A (2005) Lack of ICAM-1 on APCs during T cell priming leads to poor generation of central memory cells. J Immunol 175: 2201–2211.PubMedGoogle Scholar
  46. 46.
    Friedman RS, Jacobelli J, Krummel MF (2006) Surface-bound chemokines capture and prime T cells for synapse formation. Nat Immunol 7: 1101–1108.CrossRefPubMedGoogle Scholar
  47. 47.
    Dustin ML, Springer TA (1989) T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1. Nature 341: 619–624.CrossRefPubMedGoogle Scholar
  48. 48.
    Mueller KL, Daniels MA, Felthauser A, Kao C, Jameson SC, Shimizu Y (2004) Cutting edge: LFA-1 integrin-dependent T cell adhesion is regulated by both ag specificity and sensitivity. J Immunol 173: 2222–2226.PubMedGoogle Scholar
  49. 49.
    Wulfing C, Sumen C, Sjaastad MD, Wu LC, Dustin ML, Davis MM (2002) Costimulation and endogenous MHC ligands contribute to T cell recognition. Nat Immunol 3: 42–47.CrossRefPubMedGoogle Scholar
  50. 50.
    Vianello F, Papeta N, Chen T, Kraft P, White N, Hart WK, Kircher MF, Swart E, Rhee S, Palu G, Irimia D, Toner M, Weissleder R, Poznansky MC (2006) Murine B16 melanomas expressing high levels of the chemokine stromal-derived factor-1/CXCL12 induce tumor-specific T cell chemorepulsion and escape from immune control. J Immunol 176: 2902–2914.PubMedGoogle Scholar
  51. 51.
    Davis MM, Krogsgaard M, Huse M, Huppa J, Lillemeier BF, Li QJ (2007) T Cells as a Self-Referential, Sensory Organ. Annu Rev Immunol 25: 681–695.CrossRefPubMedGoogle Scholar
  52. 52.
    Purbhoo MA, Irvine DJ, Huppa JB, Davis MM (2004) T cell killing does not require the formation of a stable mature immunological synapse. Nat Immunol 5: 524–530.CrossRefPubMedGoogle Scholar
  53. 53.
    Li QJ, Chau J, Ebert PJ, Sylvester G, Min H, Liu G, Braich R, Manoharan M, Soutschek J, Skare P, Klein LO, Davis MM, Chen CZ (2007) miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 129: 147–161.CrossRefPubMedGoogle Scholar
  54. 54.
    Huang TT, Zong Y, Dalwadi H, Chung C, Miceli MC, Spicher K, Birnbaumer L, Braun J, Aranda R (2003) TCR-mediated hyper-responsiveness of autoimmune Galphai2(-/-) mice is an intrinsic naive CD4(+) T cell disorder selective for the Galphai2 subunit. Int Immunol 15: 1359–1367.CrossRefPubMedGoogle Scholar
  55. 55.
    Hudrisier D, Riond J, Mazarguil H, Gairin JE, Joly E (2001) Cutting edge: CTLs rapidly capture membrane fragments from target cells in a TCR signaling-dependent manner. J Immunol 166: 3645–3649.PubMedGoogle Scholar
  56. 56.
    Tomaru U, Yamano Y, Nagai M, Maric D, Kaumaya PT, Biddison W, Jacobson S (2003) Detection of virus-specific T cells and CD8+ T-cell epitopes by acquisition of peptide-HLA-GFP complexes: analysis of T-cell phenotype and function in chronic viral infections. Nat Med 9: 469–476.CrossRefPubMedGoogle Scholar
  57. 57.
    Hudrisier D, Aucher A, Puaux AL, Bordier C, Joly E (2007) Capture of target cell membrane components via trogocytosis is triggered by a selected set of surface molecules on T or B cells. J Immunol 178: 3637–3647.PubMedGoogle Scholar
  58. 58.
    Joly E, Hudrisier D (2003) What is trogocytosis and what is its purpose? Nat Immunol 4: 815.CrossRefPubMedGoogle Scholar
  59. 59.
    Beadling C, Slifka MK (2006) Quantifying viable virus-specific T cells without a priori knowledge of fine epitope specificity. Nat Med 12: 1208–1212.CrossRefPubMedGoogle Scholar
  60. 60.
    Harshyne LA, Watkins SC, Gambotto A, Barratt-Boyes SM (2001) Dendritic cells acquire antigens from live cells for cross-presentation to CTL. J Immunol 166: 3717–3723.PubMedGoogle Scholar
  61. 61.
    Machlenkin A, Uzana R, Frankenburg S, Pitcovsky Y, Peretz T, Lotem M (2007) Membrane capture by tumor reactive T-cells: an innovative concept of selection and isolation of tumor reactive functionally cytotoxic lymphocytes (Abstract # 225) Keystone Symposium: The New Potent anti-cancer Immunotherapies. Banff, Canada.Google Scholar
  62. 62.
    Adamopoulou E, Diekmann J, Tolosa E, Kuntz G, Einsele H, Rammensee HG, Topp MS (2007) Human CD4+ T Cells Displaying Viral Epitopes Elicit a Functional Virus-Specific Memory CD8+ T Cell Response. J Immunol 178: 5465–5472.PubMedGoogle Scholar
  63. 63.
    Su MW, Pyarajan S, Chang JH, Yu CL, Jin YJ, Stierhof YD, Walden P, Burakoff SJ (2004) Fratricide of CD8+ cytotoxic T lymphocytes is dependent on cellular activation and perforin-mediated killing. Eur J Immunol 34: 2459–2470.CrossRefPubMedGoogle Scholar
  64. 64.
    Peters PJ, Borst J, Oorschot V, Fukuda M, Krahenbuhl O, Tschopp J, Slot JW, Geuze HJ (1991) Cytotoxic T lymphocyte granules are secretory lysosomes, containing both perforin and granzymes. J Exp Med 173: 1099–1109.CrossRefPubMedGoogle Scholar
  65. 65.
    Smyth MJ, Trapani JA (1995) Granzymes: exogenous proteinases that induce target cell apoptosis. Immunol Today 16: 202–206.CrossRefPubMedGoogle Scholar
  66. 66.
    Motyka B, Korbutt G, Pinkoski MJ, Heibein JA, Caputo A, Hobman M, Barry M, Shostak I, Sawchuk T, Holmes CF, Gauldie J, Bleackley RC (2000) Mannose 6-phosphate/insulin-like growth factor II receptor is a death receptor for granzyme B during cytotoxic T cell-induced apoptosis. Cell 103: 491–500.CrossRefPubMedGoogle Scholar
  67. 67.
    Waterhouse NJ, Sedelies KA, Browne KA, Wowk ME, Newbold A, Sutton VR, Clarke CJ, Oliaro J, Lindemann RK, Bird PI, Johnstone RW, Trapani JA (2005) A central role for Bid in granzyme B-induced apoptosis. J Biol Chem 280: 4476–4482.CrossRefPubMedGoogle Scholar
  68. 68.
    Waterhouse NJ, Clarke CJ, Sedelies KA, Teng MW, Trapani JA (2004) Cytotoxic lymphocytes; instigators of dramatic target cell death. Biochem Pharmacol 68: 1033–1040.CrossRefPubMedGoogle Scholar
  69. 69.
    Pinkoski MJ, Hobman M, Heibein JA, Tomaselli K, Li F, Seth P, Froelich CJ, Bleackley RC (1998) Entry and trafficking of granzyme B in target cells during granzyme B-perforin-mediated apoptosis. Blood 92: 1044–1054.PubMedGoogle Scholar
  70. 70.
    Froelich CJ, Orth K, Turbov J, Seth P, Gottlieb R, Babior B, Shah GM, Bleackley RC, Dixit VM, Hanna W (1996) New paradigm for lymphocyte granule-mediated cytotoxicity. Target cells bind and internalize granzyme B, but an endosomolytic agent is necessary for cytosolic delivery and subsequent apoptosis. J Biol Chem 271: 29073–29079.CrossRefPubMedGoogle Scholar
  71. 71.
    Huse M, Lillemeier BF, Kuhns MS, Chen DS, Davis MM (2006) T cells use two directionally distinct pathways for cytokine secretion. Nat Immunol 7: 247–255.CrossRefPubMedGoogle Scholar
  72. 72.
    Barth RJ, Jr, Mule JJ, Spiess PJ, Rosenberg SA (1991) Interferon gamma and tumor necrosis factor have a role in tumor regressions mediated by murine CD8+ tumor-infiltrating lymphocytes. J Exp Med 173: 647–658.CrossRefPubMedGoogle Scholar
  73. 73.
    Poehlein CH, Hu HM, Yamada J, Assmann I, Alvord WG, Urba WJ, Fox BA (2003) TNF plays an essential role in tumor regression after adoptive transfer of perforin/IFN-gamma double knockout effector T cells. J Immunol 170: 2004–2013.PubMedGoogle Scholar
  74. 74.
    Seki N, Brooks AD, Carter CR, Back TC, Parsoneault EM, Smyth MJ, Wiltrout RH, Sayers TJ (2002) Tumor-specific CTL kill murine renal cancer cells using both perforin and Fas ligand-mediated lysis in vitro, but cause tumor regression in vivo in the absence of perforin. J Immunol 168: 3484–3492.PubMedGoogle Scholar
  75. 75.
    Itoh N, Nagata S (1993) A novel protein domain required for apoptosis. Mutational analysis of human Fas antigen. J Biol Chem 268: 10932–10937.PubMedGoogle Scholar
  76. 76.
    Peter ME, Krammer PH (1998) Mechanisms of CD95 (APO-1/Fas)-mediated apoptosis. Curr Opin Immunol 10: 545–551.CrossRefPubMedGoogle Scholar
  77. 77.
    Greil R, Egle A, Villunger A (1998) On the role and significance of Fas (Apo-1/CD95) ligand (FasL) expression in immune privileged tissues and cancer cells using multiple myeloma as a model. Leuk Lymphoma 31: 477–490.PubMedGoogle Scholar
  78. 78.
    Sun M, Ames KT, Suzuki I, Fink PJ (2006) The cytoplasmic domain of Fas ligand costimulates TCR signals. J Immunol 177: 1481–1491.PubMedGoogle Scholar
  79. 79.
    Dudley ME, Wunderlich JR, Yang JC, Sherry RM, Topalian SL, Restifo NP, Royal RE, Kammula U, White DE, Mavroukakis SA, Rogers LJ, Gracia GJ, Jones SA, Mangiameli DP, Pelletier MM, Gea-Banacloche J, Robinson MR, Berman DM, Filie AC, Abati A, Rosenberg SA (2005) Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 23: 2346–2357.CrossRefPubMedGoogle Scholar
  80. 80.
    Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, Royal RE, Topalian SL, Kammula US, Restifo NP, Zheng Z, Nahvi A, de Vries CR, Rogers-Freezer LJ, Mavroukakis SA, Rosenberg SA (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314: 126–129.CrossRefPubMedGoogle Scholar
  81. 81.
    Koneru M, Schaer D, Monu N, Ayala A, Frey AB (2005) Defective proximal TCR signaling inhibits CD8+ tumor-infiltrating lymphocyte lytic function. J Immunol 174: 1830–4180.PubMedGoogle Scholar
  82. 82.
    Charo J, Finkelstein SE, Grewal N, Restifo NP, Robbins PF, Rosenberg SA (2005) Bcl-2 overexpression enhances tumor-specific T-cell survival. Cancer Res 65: 2001–2008.CrossRefPubMedGoogle Scholar
  83. 83.
    Phan GQ, Yang JC, Sherry RM, Hwu P, Topalian SL, Schwartzentruber DJ, Restifo NP, Haworth LR, Seipp CA, Freezer LJ, Morton KE, Mavroukakis SA, Duray PH, Steinberg SM, Allison JP, Davis TA, Rosenberg SA (2003) Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci USA 100: 8372–8377.CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Michal Lotem
    • 1
  • Arthur Machlenkin
    • 1
  • Shoshana Frankenburg
    • 1
  • Tamar Peretz
    • 1
  1. 1.Sharett Institute of OncologyHadassah Hebrew University HospitalJerusalemIsrael

Personalised recommendations