Advertisement

Mind as Space

Toward the Automatic Discovery of a Universal Human Semantic-affective Hyperspace – A Possible Subcognitive Foundation of a Computer Program Able to Pass the Turing Test
  • Chris Mckinstry

Abstract

The present article describes a possible method for the automatic discovery of a universal human semantic-affective hyperspatial approximation of the human subcognitive substrate – the associative network which French (1990) asserts is the ultimate foundation of the human ability to pass the Turing Test – that does not require a machine to have direct human experience or a physical human body. This method involves automatic programming – such as Koza’s genetic programming (1992) – guided in the discovery of the proposed universal hypergeometry by feedback from a Minimum Intelligent Signal Test or MIST (McKinstry, 1997) constructed from a very large number of human validated probabilistic propositions collected from a large population of Internet users. It will be argued that though a lifetime of human experience is required to pass a rigorous Turing Test, a probabilistic propositional approximation of this experience can be constructed via public participation on the Internet, and then used as a fitness function to direct the artificial evolution of a universal hypergeometry capable of classifying arbitrary propositions. A model of this hypergeometry will be presented; it predicts Miller’s “Magical Number Seven” (1956) as the size of human short-term memory from fundamental hypergeometric properties. A system that can lead to the generation of novel propositions or “artificial thoughts” will also be described.

Keywords

Affective body consciousness corpus fitness test genetic programming geometric models Internet lexical decision lexical priming measurement Mindpixel Minimum Intelligent Signal Test proposition robot semantic subcognition tagging Turing Test World Wide Web 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bengio, Y., Ducharme, R., and Vincent, P., 2000, A neural probabilistic language model, NIPS, pp. 932–938.Google Scholar
  2. Bullinaria, J. A., 1995, Modeling lexical decision: who needs a lexicon? in: J.G. Keating, Neural Computing Research and Applications III, St. Patrick’s College, Maynooth, Ireland, pp. 62–69.Google Scholar
  3. Dawkins, R., 1986, The Blind Watchmaker, Penguin, London.Google Scholar
  4. Fleischmann, R. D., Adams, M. D., White, O., Clayton, R. A., Kirkness, E. F., Kerlavage, A. R., Bult, C. J., Tomb, J.-F., Dougherty, B. A., Merrick, J. M., McKenney, K., Sutton, G., FitzHugh, W., Fields, C., Gocayne, J. D., Scott, J., Shirley, R., Liu, L.-I., Glodek, A., Kelley, J. M., Weidman, J. F., Phillips, C. A., Spriggs, T., Hedblom, E., Cotton, M. D., Utterback, T. R., Hanna, M. C., Nguyen, D. T., Saudek, D. M., Brandon, R. C., Fine, L. D., Fritchman, J. L., Fuhrmann, J. L., Geoghagen, N. S. M., Gnehm, C. L., McDonald, L. A., Small, K. V., Fraser, C. M., Smith, H. O., and Venter, J. C., 1995, Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269: 496–512CrossRefGoogle Scholar
  5. French, R. M., 1990, Subcognition and the limits of the Turing Test, Mind 99(393): 53–65.CrossRefMathSciNetGoogle Scholar
  6. French, R. M., 2000, Peeking behind the screen: the unsuspected power of the standard Turing Test, Journal of Experimental and Theoretical Artificial Intelligence 12: 331–340.zbMATHCrossRefGoogle Scholar
  7. Koza, J. R., 1992, Genetic Programming: On Programming of Computers by Natural Selection, MIT Press, Cambridge, MA.zbMATHGoogle Scholar
  8. Koza, J. R., 1999, Human-competitive Machine Intelligence by Means of Genetic Algorithms, Festschrift in honor of John H. Holland.Google Scholar
  9. Lazarus, R. S., 1991, Emotion and Adaptation, Oxford University Press, New York, pp. 63–64.Google Scholar
  10. Le Lionnais, F., 1983, Les Nombres Remarquables, Hermann, Paris, p. 58.Google Scholar
  11. Lenat, D., Prakash, M., and Shepherd, M., Winter, 1986, CYC: using common sense knowledge to overcome brittleness and knowledge acquistion bottlenecks, AI Magazine 6(4): 65–85.Google Scholar
  12. Lund, K., Burgess, C., and Atchley, R. A., 1995, Semantic and associative priming in highdimensional semantic space, Proceedings of the Cognitive Science Society, pp. 660–665.Google Scholar
  13. MacKay, D. M., 1951, In search of basic symbols, Cybernetics(Eighth Conference, 1951) 8: 222.Google Scholar
  14. McKinstry, K. C., 1997, Minimum intelligent signal test: an objective Turing Test, Canadian Artificial IntelligenceSpring/Summer, pp. 17–18.Google Scholar
  15. Mehrabian, A., 1980, Basic Dimensions for a General Psychological Theory, Oelgeschlager, Gunn, & Hain, Cambridge, MA.Google Scholar
  16. Meyer, D. E. and Schvaneveldt R. W., 1971, Facilitation in recognizing pairs of words: evidence of a dependence between retrieval operations, Journal of Experimental Psychology 90: 227–234.CrossRefGoogle Scholar
  17. Miller, G. A., 1956, The magical number seven, plus or minus two: some limits on our capacity for processing information, The Psychological Review 63: 81–97.CrossRefGoogle Scholar
  18. Morgan, R. and Heise, D. R., 1988, Structure of emotions, Social Psychology Quarterly 51: 19–31.CrossRefGoogle Scholar
  19. Roberts, L., 2001, Controversial from the start, Science 291(5507): 1182–1188.CrossRefGoogle Scholar
  20. Shaver, P., Schwartz, J., Kirson, D., and O’Connor, C., 1987, Emotion knowledge: further exploration of a prototype approach, Journal of Personality and Social Psychology 52: 1061–86.CrossRefGoogle Scholar
  21. Shannon, C. E., 1948, A mathematical theory of communication, Bell System Technical Journal 27(July and October): 379–423 and 623–656.Google Scholar
  22. Thomson, W., 1891, Electrical units of measurement Constitution of Matter (Nature Series Popular Lectures and Addresses vol 1) (London: Macmillan) pp. 80–134.Google Scholar
  23. Turing, A. M., 1950, Computing machinery and intelligence, Mind 59(236): 433–560.CrossRefMathSciNetGoogle Scholar
  24. Wells, D., 1986, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, Middlesex, England.Google Scholar
  25. Wundt, W. M., 1897, Outlines of Psychology, Translated by C. H. Judd, Wilhelm Engelmann, Leipzig, Germany, 180.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Chris Mckinstry
    • 1
  1. 1.Mindpixel Digital Mind Modeling Project  

Personalised recommendations