Magnesium Chemical Rescue to Cobalt-Poisoned Cells from Rhodobacter sphaeroides

  • Livia Giotta
  • Francesca Italiano
  • Alessandro Buccolieri
  • Angela Agostiano
  • Francesco Milano
  • Massimo Trotta

Abstract

Rhodobacter sphaeroides is able to tolerate high cobaltous ion concentrations, notwithstanding the detrimental effects on growth parameters and bacteriochlorophyll content (Giotta et al. 2006). In order to study the influence of magnesium concentration on cobalt toxiCity, growth experiments were performed with variable magnesium and cobalt concentrations. At high cobalt concentration the increase of Mg2+ in the growth medium results in a significant increase in growth rate and population size reached at the stationary phase, contrasting cobalt toxic effect. Moreover cobalt-exposed bacteria showed a reduced Mg content with respect to control cells. These results demonstrate the existence of an interrelationship in the metabolism of magnesium and cobalt.

Keywords

Rhodobacter sphaeroides magnesium cobalt phototrophic growth 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abelson PH, Aldous E (1950) Ion antagonisms in microor-ganisms; interference of normal magnesium metabolism by nickel, cobalt, cadmium, zinc, and manganese. J Bacteriol 60:401-413.PubMedGoogle Scholar
  2. Buccolieri A, Italiano F, Dell’Atti A, et al. (2006) Testing the photosynthetic bacterium Rhodobacter sphaeroides as heavy metal removal tool. Ann Chim 96:195-203.PubMedCrossRefGoogle Scholar
  3. Giotta L, Agostiano A, Italiano F, et al. (2006) Heavy metal ion influence on the photosynthetic growth of Rhodobacter sphaeroides. Chemosphere 62: 1490-1499.PubMedCrossRefGoogle Scholar
  4. Jasper P, Silver S (1978) Divalent cation transport sys-tems of Rhodopseudomonas capsulata. J Bacteriol 133:1323-1328.PubMedGoogle Scholar
  5. Jennette KW (1981) The role of metals in carcinogen-esis: Biochemistry and metabolism. Environ Health Perspect 40:233-252.PubMedCrossRefGoogle Scholar
  6. Joho M, Tarumi K, Inouhe M, et al. (1991) Co2+ and Ni2+ resistance in Saccharomyces cerevisiae associated with a reduction in the accumulation of Mg2+. Microbios 67:177-86.PubMedGoogle Scholar
  7. Kobayashi M, Shimizu S (1999) Cobalt proteins. Eur J Biochem 261:1-9.PubMedCrossRefGoogle Scholar
  8. Leonard S, Gannett PM, Rojanasakul Y, et al. (1998) Cobalt-mediated generation of reactive oxygen species and its possible mechanism. J Inorg Biochem 70:239-244.PubMedCrossRefGoogle Scholar
  9. MacDiarmind CW, Gardner RC (1998) Overexpression of the Saccharomyces cerevisiae magnesium transport system confers resistance to aluminium ion. J Biol Chem 273:1727-1732.CrossRefGoogle Scholar
  10. Smith RL, Maguire ME (1995) Distribution of the CorA Mg2+ transport system in Gram-negative bacteria. Bacteriol 177:1638-1640.Google Scholar
  11. Smith RL, Maguire ME (1998) Microbial magnesium trans-port: Unusual transporters searching for identity. Mol Microbiol 28:217-226.PubMedCrossRefGoogle Scholar
  12. Venkateswerlu G, Sastry KS (1970) The mechanism of uptake of cobalt ions by Neurospora crassa. Biochem J 118:497-503.PubMedGoogle Scholar
  13. Webb M (1970) The mechanism of acquired resistance to Co2+ and Ni2+ in Gram-positive and Gram-negative bacteria. Biochim Biophys Acta 222:440-446.PubMedCrossRefGoogle Scholar
  14. Wu LF, Navarro C, de Pina K, et al. (1994) Antagonistic effect of nickel on the fermentative growth of Escherichia coli K-12 and comparison of nickel and cobalt toxicity on the aerobic and anaerobic growth.Environ Health Perspect 102 (Suppl 3):297-300.PubMedCrossRefGoogle Scholar
  15. Zwietering MH, Jongenburger I, Rombouts FM, et al. (1990) Modeling of the bacterial growth curve. Appl Environ Microbiol 56:1875-1881.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, B.V. 2008

Authors and Affiliations

  • Livia Giotta
    • 1
  • Francesca Italiano
    • 2
  • Alessandro Buccolieri
    • 1
  • Angela Agostiano
    • 2
    • 3
  • Francesco Milano
    • 2
  • Massimo Trotta
    • 2
  1. 1.Dipartimento di Scienza dei MaterialiUniversità del SalentoSalentoItaly
  2. 2.Istituto per i Processi Chimico Fisici (CNR)Sezione di BariBariItaly
  3. 3.Dipartimento di ChimicaUniversità di BariBariItaly

Personalised recommendations