Advertisement

Technology-Enhanced Learning Environments to Support Students' Argumentation

  • Douglas B. Clark
  • Karsten Stegmann
  • Armin Weinberger
  • Muhsin Menekse
  • Gijsbert Erkens
Part of the Science & Technology Education Library book series (CTISE, volume 35)

Technology-enhanced learning environments offer a range of features to facilitate active learning through evidence-based argumentation (e.g., Fabos & Young, 1999; Kollar et al., 2005; Marttunen & Laurinen, 2001; Pea, 1994; Roschelle & Pea, 1999; Schellens & Valcke, 2006). This chapter examines the affordances of these environments, the research behind their development, and the expected benefit of technology-enhanced argumentation. We discuss environments specifically developed for science education as well as other environments that have strong relevance for argumentation in science education. We organize our discussion around two main categories of support for argumentation: facilitating collaborative argumentation and facilitating the construction of individual arguments and contributions. After discussing representative features for supporting argumentation within online environments, we discuss the integration of subsets of these features within four environments in alignment with the specific pedagogical goals and theoretical commitments of their developers. Finally, we discuss future directions for research on argumentation and learning in technology-enhanced environments.

Keywords

Collaborative Learning Computer Support Collaborative Learn Online Learning Environment Asynchronous Mode Computer Support Collaborative Learn 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, M. (2003). Computer-mediated argumentative interactions for the co-elaboration of scientific notions. In J. Andriessen, M. Baker, & D. Suthers (Eds.), Arguing to learn: Confronting cognitions in computer-supported collaborative learning environments (pp. 47–78). Dordrecht, The Netherlands: Kluwer Academic.Google Scholar
  2. Barron, B. (2003). When smart groups fail. The Journal of the Learning Science, 12, 307–359.CrossRefGoogle Scholar
  3. Bell, P. (1997). Using argument representations to make thinking visible for individuals and groups. In R. Hall, N. Miyake, & N. Enyedy (Eds.), Proceedings of the Second International Conference on Computer Support for Collaborative Learning (CSCL 1997) (pp. 10–19). Toronto, Canada: Toronto University Press.Google Scholar
  4. Bell, P. (2004). Promoting students’ argument construction and collaborative debate in the science classroom. In M. C. Linn, E. A. Davis, & P. Bell (Eds.), Internet environments for science education (pp. 115–143). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  5. Bell, P., & Linn, M. C. (2000). Scientific arguments as learning artifacts: Designing for learning from the web with KIE. International Journal of Science Education, 22(8), 797–817.CrossRefGoogle Scholar
  6. Bransford, J. D., Brown, A. L., & Cocking, R. R. (2000). How people learn: Brain, mind, experience, and school. Washington: National Academic Press.Google Scholar
  7. Broeken, M. (2006, May). VCRI: Using shared visualisations for collaboration. Paper presented at the 6th European Tcl/Tk Users Meeting, Bergisch Gladbach, Germany.Google Scholar
  8. Carter, L. (2003). Argument in hypertext: Writing strategies and the problem of order in a nonsequential world. Computers and Composition, 20, 3–22.CrossRefGoogle Scholar
  9. Cavalli-Sforza, V., Lesgold, A., & Weiner, A. (1992). Strategies for contributing to collaborative arguments. Proceedings of the Fourteenth annual conference of the Cognitive Science Society, 755–760. Hillsdale, NJ. Lawrence Erlbaum.Google Scholar
  10. Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5(2), 121–152.CrossRefGoogle Scholar
  11. Chi, M. T., Glaser, R., & Rees, E. (1982). Expertise in problem solving. In E. Sternberg (Ed.), Advances in the psychology of human intelligence (pp. 7–75). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  12. Clark, D. B., & Sampson, V. D. (2007). Personally seeded discussions to scaffold online argumentation. International Journal of Science Education, 29(3), 253–277.CrossRefGoogle Scholar
  13. Clark, D. B. (2004). Hands-on investigation in Internet environments: Teaching thermal equilibrium. In M. C. Linn, E. A. Davis., & P. Bell (Eds.), Internet Environments for Science Education. Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  14. Clark, D. B., & Sampson, V. (2005). Analyzing the quality of argumentation supported by personally seeded discussions. Paper presented at the annual meeting of the Computer Supported Collaborative Learning (CSCL) Conference, Taipei, Taiwan, June.Google Scholar
  15. Clark, D. B., & Sampson, V. (in press). Assessing dialogic argumentation in online environments to relate structure, grounds, and conceptual quality. Journal of Research in Science Teaching.Google Scholar
  16. Clough, E. E., & Driver, R. (1985). Secondary students’ conceptions of the conduction of heat: Bringing together scientific and personal views. The Physical Educator, 20, 176–182.CrossRefGoogle Scholar
  17. Cognition and Technology Group at Vanderbilt. (1997). The Jasper Project: Lessons in curriculum, instruction, assessment, and professional development. Mahwah: Lawrence Erlbaum.Google Scholar
  18. Cohen, E. G. (1994). Restructuring the classroom: Conditions for productive small groups. Review of Educational Research, 64, 1–35.Google Scholar
  19. de Vries, E., Lund, K., & Baker, M. (2002). Computer-mediated epistemic dialogue: Explanation and argumentation as vehicles for understanding scientific notions. The Journal of the Learning Sciences, 11(1), 63–103.CrossRefGoogle Scholar
  20. Dillenbourg, P. (2002). Over-scripting CSCL: The risks of blending collaborative learning with instructional design. In P. A. Kirschner (Ed.), Three worlds of CSCL: Can we support CSCL? (pp. 61–91). Heerlen, NL: Open University of the Netherlands.Google Scholar
  21. Dönmez, P., Rosé, C. P., Stegmann, K., Weinberger, A., & Fischer, F. (2005). Supporting CSCL with automatic corpus analysis technology. In T. Koschmann, D. Suthers, & T. W. Chan (Eds.), Proceedings of the International Conference on Computer Supported Collaborative Learning—CSCL 2005 (pp. 125–134). Taipei, Taiwan: Lawrence Erlbaum.Google Scholar
  22. Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84(3), 287–313.CrossRefGoogle Scholar
  23. Erickson, G., & Tiberghien, A. (1985). Heat and temperature. In R. Driver, E. Guesne, & A. Tiberghien (Eds.), Children’s ideas in science (pp. 52–83). Philadelphia, PA: Open University Press.Google Scholar
  24. Erkens, G., & Janssen, J. (2006). Automatic coding of communication in collaboration protocols. Proceedings of the 7th International Conference of the Learning Sciences (ICLS 2006), Bloomington, IN.Google Scholar
  25. Erkens, G., Kanselaar, G., Prangsma, M., & Jaspers, J. (2003). Computer support for collaborative and argumentative writing. In E. De Corte, L. Verschaffel, N. Entwistle, & J. van Merriënboer (Eds.), Powerful learning environments: Unraveling basic components and dimensions (pp. 157–176). Amsterdam: Pergamon, Elsevier Science.Google Scholar
  26. Fabos, B., & Young, M. D. (1999). Telecommunication in the classroom: Rhetoric versus reality. Review of Educational Research, 69(3), 217–259.Google Scholar
  27. Fischer, F. (2001). Gemeinsame Wissenskonstruktion. Analyse und Förderung in computerunterstützten Kooperationsszenarien [Collaborative knowledge construction. Analysis and facilitation in computer-supported collaborative scenarios]. München, Germany: Ludwig-Maximilians-Universität München.Google Scholar
  28. Fischer, F., Bruhn, J., Gräsel, C., & Mandl, H. (2002). Fostering collaborative knowledge construction with visualization tools. Learning and Instruction, 12, 213–232.CrossRefGoogle Scholar
  29. Fischer, F., Kollar, I., Mandl, H., & Haake, J. (Eds.) (2007). Scripting computer-supported collaborative learning. New York: Springer.Google Scholar
  30. Fisher, C., & Larkin, J. H. (1986). Diagrams as working memory for scientific problem solving (Technical report). Pittsburgh, PA: Carnegie-Mellon University Department of Psychology.Google Scholar
  31. Harrison, A. G., Grayson, D. J., & Treagust, D. F. (1999). Investigating a Grade 11 student’s evolving conceptions of heat and temperature. Journal of Research in Science Teaching, 36(1), 55–87.CrossRefGoogle Scholar
  32. Hegel, G. W. F. (1965). Wissenschaft der Logik. Stuttgart, Germany: Frommann/Holzboog.Google Scholar
  33. Hesse, F. (2007). Being told to do something or just being aware of something? An alternative approach to scripting in CSCL. In F. Fischer, I. Kollar, H. Mandl, J., & Haake (Eds.), Scripting computer-supported communication of knowledge - cognitive, computational and educational perspectives (pp. 91–98). New York: Springer.Google Scholar
  34. Hoadley, C. (1999). Scaffolding scientific discussion using socially relevant representations in networked multimedia. Unpublished doctoral dissertation, University of California, Berkeley, CA.Google Scholar
  35. Hoadley, C., & Linn, M. C. (2000). Teaching science through on-line peer discussions: SpeakEasy in the knowledge integration environment. International Journal of Science Education, 22(8), 839–857.CrossRefGoogle Scholar
  36. Hsi, S., & Hoadley, C. M. (1997). Productive discussion in science: Gender equity through electronic discourse. Journal of Science Education and Technology, 6(1), 23–36.CrossRefGoogle Scholar
  37. Hutchins, E. (1995). Cognition in the wild. Cambridge, MA: MIT Press.Google Scholar
  38. Janssen, J., Broeken, M., Jaspers, J., Erkens, G., Kanselaar, G., & Kirschner, P. (2004). Computerized representation of coordination in collaborative learning. Retrieved April 28, 2007, from http://www.fss.uu.nl/edsci/index.php?option=com_content&task=view&id=92&Itemid=42FirefoxHTML/Shell/Open/Command
  39. Janssen, J., Erkens, G., Jaspers, J., & Broeken, M. (2006, June). Visualization of agreement and discussion processes during online collaborative learning. Paper presented at the 2nd Special Interest Meeting of EARLI SIGs Instructional Design & Learning and Instruction with Computers, Leuven, Belgium.Google Scholar
  40. Janssen, J., Erkens, G., Jaspers, J., & Kanselaar, G. (2006, June/July). Visualizing participation to facilitate argumentation. Proceedings of the 7th International Conference of the Learning Sciences, Bloomington, IN.Google Scholar
  41. Jaspers, J., & Broeken, M. (2005, May). VCRI: A groupware application for CSCL research. Paper presented at the European Tcl/Tk Users Meeting, Bergisch Gladbach, Germany.Google Scholar
  42. Jermann, P., & Dillenbourg, P. (2003). Elaborating new arguments through a CSCL script. In J. Andriessen, M. Baker, & D. Suthers (Eds.), Arguing to learn: Confronting cognitions in computer-supported collaborative learning environments (pp. 205–226). Dordrecht, The Netherlands: Kluwer Academic.Google Scholar
  43. Jermann, P., Soller, A., & Muehlenbrock, M. (2001). From mirroring to guiding: a review of state of art technology for supporting collaborative learning. Paper presented at the European Computer Supported Collaborative Learning Conference. (EU-CSCL’01), Maastricht, NL.Google Scholar
  44. Joiner, R., & Jones, S. (2003). The effects of communication medium on argumentation and the development of critical thinking. International Journal of Educational Research, 39(8), 861–971.CrossRefGoogle Scholar
  45. King, A. (2007). Scripting collaborative learning processes: A cognitive perspective. In F. Fischer, I. Kollar, H. Mandl, & J. M. Haake (Eds.), Scripting computer-supported collaborative learning: Cognitive, computational, and educational perspectives. New York: Springer.Google Scholar
  46. Kirschner, P. A., Buckingham Shum, S. J., & Carr, C. S. (Eds.) (2003). Visualizing argumentation: Software tools for collaborative and educational sense-making. London: Springer.Google Scholar
  47. Kobbe, L., Weinberger, A., Dillenbourg, P., Harrer, A., Hämäläinen, R., & Fischer, F. (in press). Specifying computer-supported collaboration scripts. International Journal of Computer-Supported Collaborative Learning.Google Scholar
  48. Kollar, I., Fischer, F., & Slotta, J. D. (2005). Internal and external collaboration scripts in web-based science learning at schools. In T. Koschmann, D. Suthers, & T. W. Chan (Eds.), Computer-supported collaborative learning 2005: The next 10 years! (pp. 331–340). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  49. Kolodner, J. L., Schwarz, B., Barkai, R. D., Levy-Neumand, E., Tcherni, A., & Turbovsk, A. (1997). Roles of a case library as a collaborative tool for fostering argumentation. In R. Hall, N. Miyake, & N. Enyedy (Eds.), Proceedings of the 1997 computer support for collaborative learning (CSCL 97) (pp. 150–156). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  50. Kuhn, D., & Goh, W. W. L. (2005). Arguing on the computer. In T. Koschmann, D. Suthers, & T. W. Chan (Eds.), Computer supported collaborative learning 2005: The next 10 years! (pp. 125–134). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  51. Kuhn, D., Shaw, V., & Felton, M. (1997). Effects of dyadic interaction on argumentive reasoning. Cognition and Instruction, 15(3), 287–315.CrossRefGoogle Scholar
  52. Leitão, S. (2000). The potential of argument in knowledge building. Human Development, 43, 332–360.CrossRefGoogle Scholar
  53. Lewis, E. L. (1996). Conceptual change among middle school students studying elementary thermodynamics. Journal of Science Education and Technology, 5(1), 3–31.CrossRefGoogle Scholar
  54. Linn, M. C., & Hsi, S. (2000). Computers, teachers, peers: Science learning partners. Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  55. Linn, M. C., Clark, D., & Slotta, J. D. (2003). WISE Design for knowledge integration. Science Education, 87(4), 517–538.CrossRefGoogle Scholar
  56. Marttunen, M. (1992). Commenting on written arguments as a part of argumentation skills: Comparison between students engaged in traditional vs. on-line study. Scandinavian Journal of Educational Research, 36(4), 289–302.CrossRefGoogle Scholar
  57. Marttunen, M., & Laurinen, L. (2001). Learning of argumentation skills in networked and face-to-face environments. Instructional Science, 29, 127–153.CrossRefGoogle Scholar
  58. Munneke, L., Andriessen, J., Kirschner, P., & Kanselaar, G. (2007, July). Effects of synchronous and asynchronous CMC on interactive argumentation. Paper to be presented at the CSCL 2007 Conference, New Brunswick, NY.Google Scholar
  59. Norman, D. A. (1990). The design of everyday things. New York: Doubleday/Currency. Doubleday.Google Scholar
  60. Norman, D. A. (1993). Things that make us smart. Reading, MA: Addison-Wesley.Google Scholar
  61. Oestermeier, U., & Hesse, F. (2000). Verbal and visual causal arguments. Cognition, 75, 65–104.CrossRefGoogle Scholar
  62. Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in science classrooms. Journal of Research in Science Teaching, 41(10), 994–1020.CrossRefGoogle Scholar
  63. Pea, R. D. (1994). Seeing what we build together: Distributed multimedia learning environments for transformative communications. Special Issue: Computer support for collaborative learning. Journal of the Learning Sciences, 3(3), 285–299.CrossRefGoogle Scholar
  64. Pfister, H.-R. (2005). How to support synchronous net-based learning discourses: Principles and perspectives. In R. Bromme, F. Hesse, & H. Spada (Eds.), Barriers and biases in computer-mediated knowledge communication (pp. 39–57). New York: Springer.CrossRefGoogle Scholar
  65. Reiser, B. J. (2002). Why scaffolding should sometimes make tasks more difficult for learners. In G. Stahl (Ed.), Computer support for collaborative learning: Foundations for a CSCL community. Proceedings of CSCL 2002 (pp. 255–264). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  66. Reiser, B. J., Tabak, I., Sandoval, W. A., Smith, B. K., Steinmuller, F., & Leone, A. J. (2001). BGuILE: Strategic and conceptual scaffolds for scientific inquiry in biology classrooms. In S. M. Carver & D. Klahr (Eds.), Cognition and instruction: Twenty-five years of progress (pp. 263–305). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  67. Resnick, L. B., Salomon, M., Zeitz, C., Wathen, S. H., & Holowchak, M. (1993). Reasoning in conversation. Cognition and Instruction, 11, 347–364.CrossRefGoogle Scholar
  68. Rogoff, B. (1998). Cognition as a collaborative process. In D. S. Kuhn & R. W. Damon (Eds.), Cognition, perception and language, Vol. 2 (5th ed., pp. 679–744). New York: Wiley.Google Scholar
  69. Roschelle, J., & Pea, R. (1999). Trajectories from today’s WWW to a powerful educational infrastructure. Educational Researcher, 28(5), 22–25 and 43.Google Scholar
  70. Sandoval, W. A. (2003). Conceptual and epistemic aspects of students’ scientific explanations. Journal of the Learning Sciences, 12(1), 5–51.CrossRefGoogle Scholar
  71. Sandoval, W. A., & Millwood, K. A. (2005). The quality of students’ use of evidence in written scientific explanations. Cognition and Instruction, 23(1), 23–55.CrossRefGoogle Scholar
  72. Sandoval, W. A., & Reiser, B. J. (2004). Explanation-driven inquiry: Integrating conceptual and epistemic supports for science inquiry. Science Education, 88, 345–372.CrossRefGoogle Scholar
  73. Scardamalia, M., & Bereiter, C. (1994). Computer support for knowledge-building communities. Journal of the Learning Sciences, 3(3), 265–283.CrossRefGoogle Scholar
  74. Schellens, T., & Valcke, M. (2006). Fostering knowledge construction in university students through asynchronous discussion groups. Computers & Education, 46(4), 349–370.CrossRefGoogle Scholar
  75. Schwarz, B. B., & Glassner, A. (in press). The role of CSCL argumentative environments for broadening and deepening understanding of the space of debate. In R. Saljo (Ed.), Information technologies and transformation of knowledge.Google Scholar
  76. Stegmann, K., Weinberger, A., & Fischer, F. (2006). Facilitating argumentative knowledge construction with computer-supported collaboration scripts.Google Scholar
  77. Stegmann, K., Weinberger, A., Fischer, F., & Mandl, H. (2004). Scripting argumentation in computer-supported learning environments. In P. Gerjets, P. A. Kirschner, J. Elen, & R. Joiner (Eds.), Instructional design for effective and enjoyable computer-supported learning. Proceedings of the first joint meeting of the EARLI SIGs Instructional Design and Learning and Instruction with Computers (CD-ROM) (pp. 320–330). Tuebingen: Knowledge Media Research Center.Google Scholar
  78. Suthers, D. D., & Hundhausen, C. D. (2001). Learning by constructing collaborative representations: An empirical comparison of three alternatives. In P. Dillenbourg, A. Eurelings, & K. Hakkarainen (Eds.), European perspectives on computer-supported collaborative learning (pp. 577–592). Maastricht, NL: University of Maastricht.Google Scholar
  79. Tabak, I. (1999). Unraveling the development of scientific literacy: Domain-specific inquiry support in a system of cognitive and social interactions, dissertation abstracts international Vol. A 60 (pp. 4323). Evanston, IL: Northwestern University.Google Scholar
  80. Tabak, I. (2000). Exploring a range of student-directed inquiry processes and their influence on the construction of scientific conceptions. Paper presented at the annual meeting of the National Association for Research in Science Teaching, New Orleans, LA.Google Scholar
  81. Tabak, I. (2004). Synergy: A complement to emerging patterns of distributed scaffolding. Journal of the Learning Sciences, 13(3), 305–335.CrossRefGoogle Scholar
  82. Tabak, I., & Baumgartner, E. (2004). The teacher as partner: Exploring participant structures, symmetry and identity work in scaffolding. Cognition and Instruction, 22(4), 393–429.CrossRefGoogle Scholar
  83. Tabak, I., & Reiser, B. J. (1997). Domain-specific inquiry support: Permeating discussions with scientific conceptions. In Proceedings of From Misconceptions to Constructed Understanding, Meaningful Learning Research Group, Ithaca, NY.Google Scholar
  84. Tabak, I., Reiser, B. J., Spillane, J. P. (1999). BGuILE: Teachers, students and materials interacting to construct biological knowledge. In CILT99 the 1999 Annual CILT Conference, San Jose, CA.Google Scholar
  85. Toulmin, S. (1958). The uses of argument. Cambridge: Cambridge University Press.Google Scholar
  86. van Eemeren, F. H. (2003). A glance behind the scenes: The state of the art in the study of argumentation. Studies in Communication Sciences, 3(1), 1–23.Google Scholar
  87. Veerman, A. (2003). Constructive discussions through electronic dialogue. In J. Andriessen, M. Baker, & D. Suthers (Eds.), Arguing to learn: Confronting cognitions in computer-supported collaborative learning environments (pp. 117–143). Amsterdam: Kluwer Academic.Google Scholar
  88. Veerman, A. L., & Treasure-Jones, T. (1999). Software for problem solving through collaborative argumentation. In P. Coirier & J. E. B. Andriessen (Eds.), Foundations of argumentative text processing (pp. 203–230). Amsterdam: Amsterdam University Press.Google Scholar
  89. Veerman, A. L., Andriessen, J. E. B., & Kanselaar, G. (1999). Collaborative learning through computer-mediated argumentation. In C. Hoadley & J. Roschelle (Eds.), Proceedings of the third conference on computer supported collaborative learning (pp. 640–650). Stanford, CA: Stanford University.Google Scholar
  90. Voss, J. F., Tyler, S. W., & Yengo, L. A. (1983). Individual differences in the solving of social science problems. In R. F. Dillon & R. R. Schmeck (Eds.), Individual differences in cognition (pp. 205–232). New York: Academic.Google Scholar
  91. Weinberger, A. (2003). Scripts for computer-supported collaborative learning. Effects of social and epistemic cooperation scripts on collaborative knowledge construction. Unpublished doctoral dissertation. Ludwig-Maximilians-University, Munich, Germany.Google Scholar
  92. Weinberger, A., & Fischer, F. (2006). A framework to analyze argumentative knowledge construction in computer-supported collaborative learning. Computers & Education, 46(1), 71–95.CrossRefGoogle Scholar
  93. Weinberger, A., Ertl, B., Fischer, F., & Mandl, H. (2005). Epistemic and social scripts in computer-supported collaborative learning. Instructional Science, 33(1), 1–30.CrossRefGoogle Scholar
  94. Weinberger, A., Fischer, F., & Mandl, H. (2001). Scripts and scaffolds in text-based CSCL: fostering participation and transfer. Paper presented at the 8th European Conference for Research on Learning and Instruction, Fribourg, Switzerland.Google Scholar
  95. Weinberger, A., Reiserer, M., Ertl, B., Fischer, F., & Mandl, H. (2005). Facilitating collaborative knowledge construction in computer-mediated learning with cooperation scripts. In R. Bromme, F. Hesse, & H. Spada (Eds.), Barriers and biases in computer-mediated knowledge communication—and how they may be overcome (pp. 15–37). Boston, MA: Kluwer Academic.CrossRefGoogle Scholar
  96. Weinberger, A., Stegmann, K., Fischer, F., & Mandl, H. (2007). Scripting argumentative knowledge construction in computer-supported learning environments. In F. Fischer, I. Kollar, H. Mandl, & J. Haake (Eds.), Scripting computer-supported communication of knowledge—cognitive, computational and educational perspectives (pp. 191–211). New York: Springer.Google Scholar
  97. Wolfe, C. R. (1995). Homespun hypertext: Student-constructed hypertext as a tool for teaching critical thinking. Special issue: Psychologists teach critical thinking. Teaching of Psychology, 22(1), 29–33.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2007

Authors and Affiliations

  • Douglas B. Clark
    • 1
  • Karsten Stegmann
    • 2
  • Armin Weinberger
    • 2
  • Muhsin Menekse
    • 1
  • Gijsbert Erkens
    • 3
  1. 1.College of Education, Payne 203FArizona State UniversityTempeUSA
  2. 2.Pädagogik und Pädagogische Psychologie Leopoldstrasse 13Ludwig-Maximilians Universität München Lehrstuhl für EmpirischeMünchenGermany
  3. 3.Heidelberglaan 1, 3584 CS UtrechtMartinus J. LangeveldgebouwTC UtrechtThe Netherlands

Personalised recommendations