Analyzing the Global Fractionation of Persistent Organic Pollutants (Pops)

  • Martin Scheringer
Part of the NATO Science for Peace and Security Series book series (NAPSC)

Persistent organic pollutants (POPs) such as PCBs, but also substances still on the market such as PBDEs are transported over long distances and are present in many environmental media. In principle, differences in the physicochemical properties and environmental half-lives of different POPs would lead to a “fractionation” process, i.e., more volatile substances would be transported more rapidly and over larger distances than less volatile compounds. However, the fractionation pattern to be expected on the basis of chemical properties is often confounded by spatial and temporal variability of the emissions of the chemicals and by the conditions under which samples are taken in the field. Here, modeling results are presented that support the identification of fractionation patterns, and key questions in the area of global fractionation requiring further investigation are identified. Research needs concern the degradation processes of POPs in the gas phase, the interaction of POPs with atmospheric aerosols (aerosol—air partitioning; reactivity of the aerosol-bound fraction; deposition and transport with aerosols), and the characterization of various surface media (soil, vegetation, ice/snow, and water) with respect to their sorptive capacity for POPs (importance of secondary sources).

Keywords

persistent organic pollutants long-range transport POPs pesticides cold condensation global fractionation multimedia models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, P.N., Hites, R.A., 1996, OH radical reactions: the major removal pathway for polychlorinated biphenyls from the atmosphere, Environ. Sci. Technol. 30, 1763-1765.Google Scholar
  2. Beyer, A., Wania, F., Gouin, T., Mackay, D., Matthies, M., 2003, Temperature dependence of the characteristic travel distance, Environ. Sci. Technol. 37, 766-771.CrossRefGoogle Scholar
  3. Bidleman, T.F., 1988, Atmospheric processes, Environ. Sci. Technol. 22, 361-367.CrossRefGoogle Scholar
  4. Bignert, A., Olsson, M., Persson, W., Jensen, S., Zakrisson, S., Litzén, K., Eriksson, U., Häggberg, L., Alsberg, T., 1998, Temporal trends of organochlorines in Northern Europe, 1967-1995. Relation to global fractionation, leakage from sediments and international measures, Environ. Pollut. 99, 177-198.CrossRefGoogle Scholar
  5. Breivik, K., Sweetman, A., Pacyna, J.M., Jones, K.C., 2002, Towards a global historical emission inventory for selected PCB congeners - a mass balance approach. 2. Emissions, Sci. Total Environ. 290, 199-224.CrossRefGoogle Scholar
  6. Breivik, K., Wania, F., Muir, D.C.G., Alaee, M., Backus, S., 2006, Empirical and modeling evidence of the long-range atmospheric transport of decabromodiphenyl ether, Environ. Sci. Technol. 40, 4612-4618.CrossRefGoogle Scholar
  7. Brubaker, W.W., Hites, R.A., 1998, OH reaction kinetics of gas-phase α- and γ-hexachlorocyclohexane and hexachlorobenzene, Environ. Sci. Technol. 32, 766-769.CrossRefGoogle Scholar
  8. Calamari, D., Bacci, E., Focardi, S., Gaggi, C., Morosini, M., Vighi, M., 1991, Role of plant biomass in the global environmental partitioning of chlorinated hydrocarbons, Environ. Sci. Technol. 25, 1489-1495.CrossRefGoogle Scholar
  9. Götz, C., Scheringer, M., MacLeod, M., Roth, C., Hungerbühler, K., 2007, Alternative approaches for modeling gas-particle partitioning of semivolatile organic chemicals: model development and comparison, Environ. Sci. Technol. 41, 1272-1278.CrossRefGoogle Scholar
  10. Goldberg, E.D., 1975, Synthetic organohalides in the sea, Proc. R. Soc. Lond. B 189, 277-289.CrossRefGoogle Scholar
  11. Hansen, K.M., Christensen, J.H., Brandt, J., Frohn, L.M., Geels, C., 2004, Modelling atmospheric transport of α-hexachlorocyclohexane in the Northern Hemisphere with a 3-d dynamical model: DEHM-POP, Atmos. Chem. Phys. 4, 1125-1137.Google Scholar
  12. Hunter-Smith, R.J., Balls, P.W., Liss, P.S., 1983, Henry’s law constants and the air-sea exchange of various low molecular weight halocarbon gases, Tellus 35B, 170-176.CrossRefGoogle Scholar
  13. Jaward, F.M., Barber, J.L., Booij, K., Dachs, J., Lohmann, R., Jones, K.C., 2004, Evidence for dynamic air-water coupling and cycling of persistent organic pollutants over the open Atlantic Ocean, Environ. Sci. Technol. 38, 2617-2625.CrossRefGoogle Scholar
  14. Kalantzi, O.I., Alcock, R.E., Johnston, P.A., Santillo, D., Stringer, R.L., Thomas, G.O., Jones, K.C., 2001, The global distribution of PCBs and organochlorine pesticides in butter, Environ. Sci. Technol. 35, 1013-1019.CrossRefGoogle Scholar
  15. Krüger, H.-U., Gavrilov, R., Liu, Q., Zetzsch, C., 2005, Development of a method for determining tropospheric degradation of semivolatile pesticides by OH radicals. German Federal Environment Agency, Berlin, Germany, Report FKZ 201 67 424/02.Google Scholar
  16. Lee, R.G.M., Hung, H., Mackay, D., Jones, K.C., 1998, Measurement and modeling of the diurnal cycling of atmospheric PCBs and PAHs, Environ. Sci. Technol. 32, 2172-2179.CrossRefGoogle Scholar
  17. Leip, A., Lammel, G., 2004, Indicators for persistence and long-range transport potential as derived from multicompartment chemistry-transport modelling, Environ. Pollut. 128, 205-221.CrossRefGoogle Scholar
  18. MacLeod, M., Scheringer, M., Hungerbühler, K., 2007, Estimating enthalpy of vaporization from vapor pressure using Trouton’s rule, Environ. Sci. Technol. 41, 2827-2832.CrossRefGoogle Scholar
  19. Malmquist, C., Bindler, R., Renberg, I., van Bavel, B., Karlsson, E., Anderson, N.J., Tysklind, M., 2003, Time trends of selected persistent organic pollutants in lake sediments from Greenland, Environ. Sci. Technol. 37, 4319-4324.CrossRefGoogle Scholar
  20. Meijer, S.N., Steinnes, E., Ockenden, W.A., Jones, K.C., 2002, Influence of environmental variables on the spatial distribution of PCBs in Norwegian and U.K. soils: implications for global cycling, Environ. Sci. Technol. 36, 2146-2153.CrossRefGoogle Scholar
  21. Meijer, S.N., Ockenden, W.A., Sweetman, A., Breivik, K., Grimalt, J.O., Jones, K.C., 2003, Global distribution and budget of PCBs and HCB in background soils: implications for sources and environmental processes, Environ. Sci. Technol. 37, 667-672.CrossRefGoogle Scholar
  22. Müller-Herold, U., Smieszek, T., Peter, P., Scheringer, M., Morosini, M., 2006, A simple measure for precautionary assessment of organic chemicals with respect to global cold condensation, Environ. Mod. 194, 266-273.Google Scholar
  23. Ottar, B., 1981, The transfer of airborne pollutants to the Arctic region, Atmos. Environ. 15, 1439-1445.CrossRefGoogle Scholar
  24. Palm, W.-U., Elend, M., Krüger, H.-U., Zetzsch, C., 1997, OH radical reactivity of airborne terbuthylazine adsorbed on inert aerosol, Environ. Sci. Technol. 31, 3389-3396.CrossRefGoogle Scholar
  25. Pankow, J.F., 1998, Further discussion of the octanol/air partition coefficient Koa, as a correlating parameter for gas/particle partitioning coefficients, Atmos. Environ. 32, 1493-1497.CrossRefGoogle Scholar
  26. Rahn, K.A., Heidam, N.Z., 1981, Progress in Arctic air chemistry, 1977-1981: a comparison of the first and second symposia, Atmos. Environ. 15, 1345-1348.CrossRefGoogle Scholar
  27. Risebrough, R.W., 1990, Beyond long-range transport: a model of a global gas chromatographic system, in: Long-range transport of pesticides, Kurtz, D.A., ed., Lewis Publishers, Chelsea, MI, pp. 417-426.Google Scholar
  28. Schenker, U., Scheringer, M., Hungerbühler, K., 2007a, Investigating the global fate of DDT: model evaluation and estimation of future trends, Environ. Sci. Technol. (under review).Google Scholar
  29. Schenker, U., Scheringer, M., Hungerbühler, K., 2007b, Including degradation products of persistent organic pollutants in a global multi-media box model, Environ. Sci. Pollut. Res. 14, 145-152.CrossRefGoogle Scholar
  30. Scheringer, M., Wania, F., 2003, Multimedia models of global transport and fate of persistent organic pollutants, in: Handbook of Environmental Chemistry 3 O: Persistent Organic Pollutants, Fiedler, H., ed., Springer, Heidelberg, pp. 237-269.Google Scholar
  31. Scheringer, M., Wegmann, F., Fenner, K., Hungerbühler, K., 2000, Investigation of the cold condensation of persistent organic pollutants with a global multimedia fate model, Environ. Sci. Technol. 34, 1842-1850.CrossRefGoogle Scholar
  32. Scheringer, M., Salzmann, M., Stroebe, M., Wegmann, F., Fenner, K., Hungerbühler, K., 2004, Long-range transport and global fractionation of POPs: insights from multimedia modeling studies, Environ. Pollut. 128, 177-188.CrossRefGoogle Scholar
  33. Scheringer, M., Fiedler, H., Suzuki, N., Holoubek, I., Zetzsch, C., Bergman, Å., 2006, Initiative for an International Panel on Chemical Pollution (IPCP), Environ. Sci. Pollut. Res. 13, 432-434.CrossRefGoogle Scholar
  34. Simonich, S.L., Hites, R.A.,1995, Global distribution of persistent organochlorine compounds, Science 269, 1851-1854.CrossRefGoogle Scholar
  35. Shen, L., Wania, F., Lei, Y.D., Teixeira, C., Muir, D.C.G., Bidleman, T.F., 2005, Atmospheric distribution and long-range transport behavior of organochlorine pesticides in North America, Environ. Sci. Technol. 39, 409-420.CrossRefGoogle Scholar
  36. Shen, L., Wania, F., Lei, Y.D., Teixeira, C., Muir, D.C.G., iao, H., 2006, Polychlorinated biphenyls and polybrominated diphenyl ethers in the North American atmosphere, Environ. Pollut. 144, 434-444.CrossRefGoogle Scholar
  37. Stocker, J., Scheringer, M., Wegmann, F., Hungerbühler, K., 2007, Modeling the effect of snow and ice on the global environmental fate and long-range transport potential of semivolatile organic compounds, Environ. Sci. Technol. 41, 6192-6198.CrossRefGoogle Scholar
  38. Su, Y., Wania, F., 2005, Does the forest filter effect prevent semivolatile organic compounds from reaching the Arctic? Environ. Sci. Technol. 39, 7185-7193.CrossRefGoogle Scholar
  39. ter Schure, A.F.H., Larson, P., Merilä, J., Jönsson, K.I., 2002, Latitudinal fractionation of polybrominated diphenyl ethers and polychlorinated biphenyls in frogs (Rana temporaria), Environ. Sci. Technol. 36, 5057-5061.CrossRefGoogle Scholar
  40. Wania, F., Mackay, D., 1993, Global fractionation and cold condensation of low volatility organochlorine compounds in polar regions, Ambio 22, 10-18.Google Scholar
  41. Wania, F., Mackay, D., 1995, A global distribution model for persistent organic pollutants, Sci. Total Environ. 160/161, 211-232.CrossRefGoogle Scholar
  42. Wania, F., Mackay, D., 1996, Tracking the distribution of persistent organic pollutants, Environ. Sci. Technol. 30, 390A-396A.Google Scholar
  43. Wania, F., Mackay, D., 1999, The evolution of mass balance models of persistent organic pollutant fate in the environment, Environ. Pollut. 100, 223-240.CrossRefGoogle Scholar
  44. Wania, F., Su, Y., 2004, Quantifying the global fractionation of polychlorinated biphenyls, Ambio 33, 161-168.Google Scholar
  45. Wegmann, F., Scheringer, M., Möller, M., Hungerbühler, K., 2004, Influence of vegetation on the environmental partitioning of DDT in two global multimedia models, Environ. Sci. Technol. 38, 1505-1512.CrossRefGoogle Scholar
  46. Weschler, C., 1981, Identification of selected organics in the Arctic aerosol, Atmos. Environ. 15, 1365-1369.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V 2008

Authors and Affiliations

  • Martin Scheringer
    • 1
  1. 1.Institute for Chemical and BioengineeringETH ZurichZurichSwitzerland

Personalised recommendations