Paraoxonase (PON1) and Organophosphate Toxicity

  • L.G. Costa
  • T.B. Cole
  • K.L. Jansen
  • C.E. Furlong
Part of the Proteins And Cell Regulation book series (PROR, volume 6)


Paraoxonase (PON1) is a high density lipoprotein-associated enzyme capable of hydrolyzing multiple substrates, including several organophosphorus (OP) insecticides and nerve agents, oxidized lipids and a number of drugs or pro-drugs. Several polymorphisms in the PON1 gene have been described, which have been shown to affect either the catalytic efficiency of hydrolysis or the expression level of the enzyme. Animal studies have shown that PON1 is an important determinant of the toxicity of certain OPs. Evidence for this was provided by cross-species comparisons, by administration of exogenous PON1 and by experiments in PON1 knockout and transgenic mice. Low PON1 plays also a role in the higher susceptibility of the young to OP toxicity. Recent findings also suggest that PON1 may modulate the toxicity resulting from exposure to mixtures of OP compounds


Paraoxonase PON1 status organophosphate paraoxon chlorpyrifos oxon diazoxon 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adkins, S., Gan, K. N., Mody, M., LaDu, B. N. (1993). Molecular basis for the polymorphic forms of human serum paraoxonase/arylesterase: glutamine or arginine at position 191, for the respective A or B allozymes. Am. J. Hum. Genet. 53, 598–608.Google Scholar
  2. Aldridge, W. N. (1953). Serum esterases I. Two types of esterase (A and B) hydrolyzing p-nitrophenyl acetate, proprionate and butyrate and a method for their determination. Biochem. J. 53, 110–117.PubMedGoogle Scholar
  3. Augustinsson, K. B., Barr, M. (1963). Age variation in plasma arylesterase activity in children. Clin. Chim. Acta. 8, 568–573.CrossRefPubMedGoogle Scholar
  4. Benke, G. M., and Murphy, S. D. (1975). The influence of age in the toxicity and metabolism of methylparathion and parathion in male and female rats. Toxicol. Appl. Pharmacol. 31, 254–269.CrossRefPubMedGoogle Scholar
  5. Berkowitz, G. S., Wetmur, J. G., Birman-Deych, E., Obel, J., Lapinski, R. H., Godbold, J. H., Holzman, I. R., Wolff, M. S. (2004). In utero pesticide exposure, maternal paraoxonase activity, and head circumference. Environ. Health Perspect. 112, 388–391.PubMedCrossRefGoogle Scholar
  6. Brealey, C. B., Walker, C. M., Baldwin, B. C. (1980). A-esterase activities in relation to the differential toxicity of pirimiphos-methyl to birds and mammals. Pestic. Sci. 11, 546–554.CrossRefGoogle Scholar
  7. Brophy, V. H., Jampsa, R. L., Clendenning, J. B., McKinstry, L. A., Furlong, C. E. (2001). Effects of 5 regulatory – region polymorphisms on paraoxonase gene (PON1) expression. Am. J. Hum. Genet. 68, 1428–1436.CrossRefPubMedGoogle Scholar
  8. Brophy, V. H., Jarvik, G. P., Furlong, C. E. (2002). PON1 polymorphisms. In Paraoxonase (PON1) in Health and Disease: Basic and Clinical Aspects, (L. G. Costa, C. E. Furlong, Eds.), Kluwer Academic Publishers, Norwell, MA, pp. 53–77.Google Scholar
  9. Chambers, J. E., Ma, R., Boone, J. S., Chambers, H. W. (1994). Role of detoxication pathways in acute toxicity of phosphorothioate insecticides in the rat. Life Sci. 54, 1357–1364.CrossRefPubMedGoogle Scholar
  10. Chen, J., Kumar, M., Chan, W., Berkowitz, G. S., Wetmur, J. G. (2003). Increased influence of genetic variation on PON1 activity in neonates. Env. Health Perspect. 111, 1403–1410.Google Scholar
  11. Cohen, S. D., Murphy, S. D. (1971). Malathion potentiation and inhibition of various carboxylic esters by triorthotolyl phosphate (TOTP) in mice. Biochem Pharmacol. 20, 575–587.CrossRefPubMedGoogle Scholar
  12. Cole, T. B., Jampsa, R. L., Walter, B. J., Arndt, T. L., Richter, R. J., Shih, D. M., Tward, A., Lusis, A. J., Jack, R. M., Costa, L. G., Furlong, C. E. (2003). Expression of human paraoxonase during development. Pharmacogenetics 13, 1–8.CrossRefGoogle Scholar
  13. Cole, T. B., Walter, B. J., Shih, D. M., Tward, A. D., Lusis, A. J., Timchalk, C., Richter, R. J., Costa, L. G., Furlong, C. E. (2005). Toxicity of chlorpyrifos and chlorpyrifos oxon in a transgenic mouse model of the human paraoxonase (PON1) Q192R polymorphism. Pharmacogenet. Genom. 15, 589–598.CrossRefGoogle Scholar
  14. Costa, L. G., Cole, T. B., Jarvik, G. P., Furlong, C. E. (2003). Functional genomics of the paraoxonase (PON1) polymorphisms: effect on pesticide sensitivity, cardiovascular disease and drug metabolism. Annu. Rev. Med. 54, 371–392.CrossRefPubMedGoogle Scholar
  15. Costa, L. G., Eaton, D. L. (2006). Gene-Environment Interactions. Fundamentals of Ecogenetics. John Wiley & Sons, Hoboken, NJ, p. 557.Google Scholar
  16. Costa, L. G., Furlong, C. E., Eds. (2002). Paraoxonase (PON1) in Health and Disease: Basic and Clinical Aspects. Kluwer Academic Publishers, Norwell, MA, p. 210.Google Scholar
  17. Costa, L. G., Li, W. F., Richter, R. J., Shih, D. M., Lusis, A. J., Furlong, C. E. (2002). PON1 and organophosphate toxicity. In Paraoxonase (PON1) in Health and Disease: Basic and Clinical Aspects. (L. G. Costa, C. E. Furlong, Eds.), Kluwer Academic Press, Norwell, MA, pp. 165–183.Google Scholar
  18. Costa, L. G., McDonald, B. E., Murphy, S. D., Omenn, G. S., Richter, R. J., Motulsky, A. G., Furlong, C. E. (1990). Serum paraoxonase and its influence on paraoxon and chlorpyrifos-oxon toxicity in rats. Toxicol. Appl. Pharmacol. 103, 66–76.CrossRefPubMedGoogle Scholar
  19. Costa, L. G., Richter, R. J., Murphy, S. D., Omenn, G. S., Motulsky, A. G., Furlong, C. E. (1987). Species differences in serum paraoxonase correlate with sensitivity to paraoxon toxicity. In Toxicology of Pesticides: Experimental, Clinical and Regulatory Per-spectives. (L. G. Costa, C. L. Galli, S. D. Murphy, Eds.), Springer-Verlag, Heidelberg, pp. 263–266.Google Scholar
  20. Costa, L. G., Vitalone, A., Cole, T. B., Furlong, C. E. (2005). Modulation of paraoxonase activity. Biochem Pharmacol. 69, 541–550.CrossRefPubMedGoogle Scholar
  21. Cowan, J., Sinton, C. M., Varley, A. W., Wians, F. H., Haley, R. W., Munford, R. S. (2001). Gene therapy to prevent organophosphate intoxication. Toxicol. Appl. Pharmacol. 173, 1–6.CrossRefPubMedGoogle Scholar
  22. Draganov, D. I., La Du, B. N. (2004). Pharmacogenetics of paraoxonases: a brief review. Naunyn-Schmiedeberg’s Arch. Pharmacol. 369, 78–88.CrossRefGoogle Scholar
  23. Eckerson, H. W., Wyte, C. M., LaDu, B. N. (1983). The human serum paraoxonase/arylesterase polymorphism. Am. J. Hum. Genet. 35, 1126–1138.PubMedGoogle Scholar
  24. Ecobichon, D. J., Stephens, D. S. (1973). Perinatal development of human blood esterases. Clin. Pharmacol. Ther. 14, 41–47.PubMedGoogle Scholar
  25. Furlong, C. E., Holland, N., Richter R. J., Bradman, A., Ho, A., Eskenazi, B. (2006). PON1 status of farmworker mothers and children as a predictor of organophosphate sensitivity. Pharmacogent. Genom. 16, 183–190.Google Scholar
  26. Furlong, C. E., Li, W. F., Richter, R. J., Shih, D. M., Lusis, A. J., Alleva, E., Costa, L. G. (2000). Genetic and temporal determinants of pesticide sensitivity: role of paraoxonase (PON1). Neurotoxicology 21, 91–100.PubMedGoogle Scholar
  27. Furlong, C. E., Richter, R. J., Pline, C., Crabb, J. W. (1991). Purification of rabbit and human serum paraoxonase. Biochemistry 30, 10133–10140.CrossRefPubMedGoogle Scholar
  28. Geldmacher-von Mallinckrodt, M., Diepgen, T. L. (1988). The human serum paraoxonase: polymoprphism and specificity. Toxicol. Environ. Chem. 18, 79–186.Google Scholar
  29. Harbison, R. D. (1975). Perinatal development of human blood esterases. Clin. Pharmacol. Ther. 14, 41–47.Google Scholar
  30. Humbert, R., Adler, D. A., Disteche, C. M., Omiecinski, C. J., Furlong C. E. (1993). The molecular basis of the human serum paraoxonase polymorphisms. Nature Genet. 3, 73–76.CrossRefPubMedGoogle Scholar
  31. Jokanovic, M. (2001). Biotransformation of organophosphorus compounds. Toxicology 166, 139–160.CrossRefPubMedGoogle Scholar
  32. Karanth, S., Pope, C. (2000). Carboxylesterase and A-esterase activities during maturation and aging: relationship to the toxicity of chlorpyrifos and parathion in rats. Toxicol. Sci. 58, 282–289.CrossRefPubMedGoogle Scholar
  33. Leviev, I., James R. W. (2000). Promoter polymorphisms of human paraoxonase PON1 gene and serum paraoxonase activities and concentrations. Arterioscler. Thromb. Vasc. Biol. 20, 516–521.PubMedGoogle Scholar
  34. Li, W. F., Costa, L. G., Furlong, C. E. (1993). Serum paraoxonase status: a major factor in determining resistance to organophosphates. J. Toxicol. Environ. Hlth. 40, 337–346.CrossRefGoogle Scholar
  35. Li, W. F., Costa, L. G., Richter, R. J., Hagen, T., Shih, D. M., Tward, A., Lusis, A. J., Furlong, C. E. (2000). Catalytic efficiency determines the in vivo efficacy of PON1 for detoxifying organophosphates. Pharmacogenetics 10, 767–779.CrossRefPubMedGoogle Scholar
  36. Li, W. F., Furlong, C. E., Costa, L. G. (1995). Paraoxonase protects against chlorpyrifos toxicity in mice. Toxicol. Lett. 76, 219–226.CrossRefPubMedGoogle Scholar
  37. Li, W. F., Matthews, C., Disteche, C. M., Costa, L. G., Furlong, C. E. (1997). Paraoxonase (PON1) gene in mice: sequencing, chromosomal localization and developmental expression. Pharmacogenetics 7, 137–144.CrossRefPubMedGoogle Scholar
  38. Lotti, M. (2000). Organophosphorus compounds. In Experimental and Clinical Neurotoxicology. (P. S. Spencer, H. Schaumburg, A. C. Ludolph, Eds.), Oxford, Oxford University Press, pp. 898–925.Google Scholar
  39. Machin, A. F., Anderson, P. H., Quick, M. P., Woddel, D. F., Skibniewska, K. A., Howells, L. C. (1976). The metabolism of diazinon in the liver and blood of species of varying susceptibility to diazinon poisoning. Xenobiotica 6, 104.Google Scholar
  40. Main, A. R. (1956). The role of A-esterase in the acute toxicity of paraoxon, TEEP and parathion. Can. J. Biochem. Physiol. 34, 197–216.PubMedGoogle Scholar
  41. Mazur, A. (1946). An enzyme in animal tissue capable of hydrolyzing the phosphorus-fluorine bond of alkyl fluorophosphates. J. Biol. Chem. 164, 271–289.Google Scholar
  42. Mortensen, S. R., Chanda, S. M., Hooper, M. J., Padilla, S. (1996). Maturational differences in chlorpyrifos-oxonase activity may contribute to age-related sensitivity to chlorpyrifos. J. Biochem. Toxicol. 11, 279–287.CrossRefPubMedGoogle Scholar
  43. Moser, V. C., Chanda, S. M., Mortensen, S. R., Padilla, S. (1998). Age- and gender-related differences in sensitivity to chlorpyrifos in the rat reflect developmental profiles of esterase activities. Toxicol. Sci. 46, 211–222.CrossRefPubMedGoogle Scholar
  44. Mueller, R. F., Hornung, S., Furlong, C. E., Anderson, J., Giblett, E. R., Motulsky, A.G. (1983). Plasma paraoxonase polymorphism: a new enzyme assay, population, family biochemical and linkage studies. Am. J. Hum. Genet. 35, 393–408.PubMedGoogle Scholar
  45. Murphy, S. D. (1982). Toxicity and hepatic metabolism of organophosphate insecticides in developing rats. Banbury Report 11, 125–136.Google Scholar
  46. Padilla, S., Buzzard, J., Moser, V. C. (2000). Comparison of the role of esterases in the differential age-related sensibility to chlorpyrifos and metamidophos. Neurotoxicology 21, 49–56.PubMedGoogle Scholar
  47. Playfer, J. R., Eze, L. C., Bullen, M. F., Evans, D. A. (1976). Genetic polymorphism and interethnic variability of plasma paraoxonase activity. J. Med. Genet. 13, 337–342.PubMedCrossRefGoogle Scholar
  48. Pond, A. L., Chambers, H. W., Chambers, J. E. (1995). Organophosphate detoxication potential of various rat tissues via A-esterase and aliesterase activities. Toxicol. Lett. 70, 245–252.CrossRefGoogle Scholar
  49. Pope, C. N., Chakraborti, T. K., (1992). Dose-related inhibition of brain and plasma cholinesterase in neonatal and adult rats following sublethal organophosphate exposure. Toxicology 73, 35–43.CrossRefPubMedGoogle Scholar
  50. Pope, C. N., Liu, J. (1997). Age-related differences in sensitivity to organophosphorus pesticides. Environ. Toxicol. Pharmacol. 4, 309–314.CrossRefGoogle Scholar
  51. Shih, D. M., Gu, L., Xia, Y. R., Navab, M., Li, W. F., Hama, S., Castellani, L. W., Furlong, C. E., Costa, L. G., Fogelman, A. M., Lusis, A. J. (1998). Mice lacking serum paraoxonase are susceptible to organophosphate toxicity and atherosclerosis. Nature 394, 284–287.CrossRefPubMedGoogle Scholar
  52. Suehiro, T., Nakamura, T., Inoue, M., Shiinoki, T., Ikeda, Y., Kumoin, Y., Shindo, M., Tanaka, H., Hashimoto, K. (2000). A polymorphism upstream from the human paraoxonase (PON1) gene and its association with PON1 expression. Atherosclerosis 150, 295–298.CrossRefPubMedGoogle Scholar
  53. Zech, R., Zurcher, K. (1974). Organophosphate splitting serum enzymes in different mammals. Comp. Biochem. Physiol. B. 48, 427–433.CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • L.G. Costa
    • 1
    • 2
  • T.B. Cole
    • 1
    • 3
  • K.L. Jansen
    • 1
  • C.E. Furlong
    • 3
  1. 1.Dept. of Environmental and Occupational Health SciencesUniversity of WashingtonSeattleUSA
  2. 2.Dept. of Human Anatomy, Pharmacology and Forensic MedicineUniversity of ParmaItaly
  3. 3.Depts of Genome Sciences and Medicine (Medical Genetics)University of WashingtonSeattleUSA

Personalised recommendations