The Mitochondrial Death Pathway

  • Anas Chalah
  • Roya Khosravi-Far
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 615)

Mitochondria have long been known to be critical for cell survival due to their role in energy metabolism. However, not until the mid-1990s did it become evident that mitochondria are also active participants in programmed cell death (PCD). This chapter focuses mainly on the role the mitochondria in mammalian cell death and cancer progression and therapy.

Keywords

apoptosis death receptors mitochondria bid membranes phospholipases cardiolipin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, K., Kurakin, A., Mohseni-Maybodi, M., Kay, B., and Khosravi-Far, R. (2000). The complexity of TNF-related apoptosis-inducing ligand. Ann N Y Acad Sci 926, 52–63.PubMedCrossRefGoogle Scholar
  2. Acehan, D., Jiang, X., Morgan, D. G., Heuser, J. E., Wang, X., and Akey, C. W. (2002). Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol Cell 9, 423–432.CrossRefPubMedGoogle Scholar
  3. Adams, J. M. and Cory, S. (2002). Apoptosomes: engines for caspase activation. Curr Opin Cell Biol 14, 715–720.CrossRefPubMedGoogle Scholar
  4. Adrain, C., Slee, E. A., Harte, M. T., and Martin, S. J. (1999). Regulation of apoptotic protease activating factor-1 oligomerization and apoptosis by the WD-40 repeat region. J Biol Chem 274, 20855–20860.CrossRefPubMedGoogle Scholar
  5. Adrain, C., Creagh, E. M., and Martin, S. J. (2001). Apoptosis-associated release of Smac/DIABLO from mitochondria requires active caspases and is blocked by bcl-2. Embo J 20, 6627–6636.CrossRefPubMedGoogle Scholar
  6. Algeciras-Schimnich, A., Shen, L., Barnhart, B. C., Murmann, A. E., Burkhardt, J. K., and Peter, M. E. (2002). Molecular ordering of the initial signaling events of CD95. Mol Cell Biol 22, 207–220.CrossRefPubMedGoogle Scholar
  7. Andreyev, A. Y., Kushnareva, Y. E., and Starkov, A. A. (2005). Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc) 70, 200–214.CrossRefGoogle Scholar
  8. Antonsson, B., Conti, F., Ciavatta, A., Montessuit, S., Lewis, S., Martinou, I., Bernasconi, L., Bernard, A., Mermod, J. J., Mazzei, G., et al. (1997). Inhibition of bax channel-forming activity by bcl-2. Science 277, 370–372.CrossRefPubMedGoogle Scholar
  9. Arnoult, D., Gaume, B., Karbowski, M., Sharpe, J. C., Cecconi, F., and Youle, R. J. (2003). Mitochondrial release of AIF and EndoG requires caspase activation downstream of bax/bak-mediated permeabilization. Embo J 22, 4385–4399.CrossRefPubMedGoogle Scholar
  10. Ashkenazi, A. and Dixit, V. M. (1999). Apoptosis control by death and decoy receptors. Curr Opin Cell Biol 11, 255–260.CrossRefPubMedGoogle Scholar
  11. Baliga, B. and Kumar, S. (2003). Apaf-1/cytochrome c apoptosome: an essential initiator of caspase activation or just a sideshow? Cell Death Differ 10, 16–18.CrossRefPubMedGoogle Scholar
  12. Barnhart, B. C., Legembre, P., Pietras, E., Bubici, C., Franzoso, G., and Peter, M. E. (2004). CD95 ligand induces motility and invasiveness of apoptosis-resistant tumor cells. Embo J 23, 3175–3185.CrossRefPubMedGoogle Scholar
  13. Bettaieb, A., Dubrez-Daloz, L., Launay, S., Plenchette, S., Rebe, C., Cathelin, S., and Solary, E. (2003). Bcl-2 proteins: targets and tools for chemosensitisation of tumor cells. Curr Med Chem Anti-Canc Agents 3, 307–318.CrossRefGoogle Scholar
  14. Beyer, R. E. (1992). An analysis of the role of coenzyme Q in free radical generation and as an antioxidant. Biochem Cell Biol 70, 390–403.CrossRefPubMedGoogle Scholar
  15. Brenner, C., Cadiou, H., Vieira, H. L., Zamzami, N., Marzo, I., Xie, Z., Leber, B., Andrews, D., Duclohier, H., Reed, J. C., and Kroemer, G. (2000). Bcl-2 and bax regulate the channel activity of the mitochondrial adenine nucleotide translocator. Oncogene 19, 329–336.CrossRefPubMedGoogle Scholar
  16. Brenner, C., Le Bras, M., and Kroemer, G. (2003). Insights into the mitochondrial signaling pathway: what lessons for chemotherapy? J Clin Immunol 23, 73–80.CrossRefPubMedGoogle Scholar
  17. Burns, T. F. and el-Deiry, W. S. (2003). Cell death signaling in malignancy. Cancer Treat Res 115, 319–343.CrossRefPubMedGoogle Scholar
  18. Cain, K., Bratton, S. B., and Cohen, G. M. (2002). The apaf-1 apoptosome: a large caspase-activating complex. Biochimie 84, 203–214.CrossRefPubMedGoogle Scholar
  19. Cande, C., Cecconi, F., Dessen, P., and Kroemer, G. (2002). Apoptosis-inducing factor (AIF): key to the conserved caspase-independent pathways of cell death? J Cell Sci 115, 4727–4734.CrossRefPubMedGoogle Scholar
  20. Carew, J. S. and Huang, P. (2002). Mitochondrial defects in cancer. Mol Cancer 1, 9.CrossRefPubMedGoogle Scholar
  21. Cecconi, F., Alvarez-Bolado, G., Meyer, B. I., Roth, K. A., and Gruss, P. (1998). Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell 94, 727–737.CrossRefPubMedGoogle Scholar
  22. Chao, D. T. and Korsmeyer, S. J. (1998). BCL-2 family: regulators of cell death. Annu Rev Immunol 16, 395–419.CrossRefPubMedGoogle Scholar
  23. Cheng, E. H., Wei, M. C., Weiler, S., Flavell, R. A., Mak, T. W., Lindsten, T., and Korsmeyer, S. J. (2001). BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell 8, 705–711.CrossRefPubMedGoogle Scholar
  24. Chinnaiyan, A. M. (1999). The apoptosome: heart and soul of the cell death machine. Neoplasia 1, 5–15.CrossRefPubMedGoogle Scholar
  25. Chou, J. J., Li, H., Salvesen, G. S., Yuan, J., and Wagner, G. (1999). Solution structure of BID, an intracellular amplifier of apoptotic signaling. Cell 96, 615–624.CrossRefPubMedGoogle Scholar
  26. Colombini, M., Blachly-Dyson, E., and Forte, M. (1996). VDAC, a channel in the outer mitochondrial membrane. Ion Channels 4, 169–202.PubMedGoogle Scholar
  27. Cory, S. and Adams, J. M. (2002). The bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2, 647–656.CrossRefPubMedGoogle Scholar
  28. Cory, S., Huang, D. C., and Adams, J. M. (2003). The bcl-2 family: roles in cell survival and oncogenesis. Oncogene 22, 8590–8607.CrossRefPubMedGoogle Scholar
  29. Costantini, P., Jacotot, E., Decaudin, D., and Kroemer, G. (2000). Mitochondrion as a novel target of anticancer chemotherapy. J Natl Cancer Inst 92, 1042–1053.CrossRefPubMedGoogle Scholar
  30. Cote, J. and Ruiz-Carrillo, A. (1993). Primers for mitochondrial DNA replication generated by endonuclease G. Science 261, 765–769.CrossRefPubMedGoogle Scholar
  31. Crompton, M. (1999). The mitochondrial permeability transition pore and its role in cell death. Biochem J 341 (Pt 2), 233–249.CrossRefPubMedGoogle Scholar
  32. Danial, N. N. and Korsmeyer, S. J. (2004). Cell death: critical control points. Cell 116, 205–219.CrossRefPubMedGoogle Scholar
  33. Daniel, P. T., Wieder, T., Sturm, I., and Schulze-Osthoff, K. (2001). The kiss of death: promises and failures of death receptors and ligands in cancer therapy. Leukemia 15, 1022–1032.CrossRefPubMedGoogle Scholar
  34. Debatin, K. M., Poncet, D., and Kroemer, G. (2002). Chemotherapy: targeting the mitochondrial cell death pathway. Oncogene 21, 8786–8803.CrossRefPubMedGoogle Scholar
  35. Degli Esposti, M. (1999). To die or not to die–the quest of the TRAIL receptors. J Leukoc Biol 65, 535–542.PubMedGoogle Scholar
  36. Dejean, L. M., Martinez-Caballero, S., Guo, L., Hughes, C., Teijido, O., Ducret, T., Ichas, F., Korsmeyer, S. J., Antonsson, B., Jonas, E. A., and Kinnally, K. W. (2005). Oligomeric bax is a component of the putative cytochrome c release channel MAC, mitochondrial apoptosis-induced channel. Mol Biol Cell 16, 2424–2432.CrossRefPubMedGoogle Scholar
  37. Dejean, L. M., Martinez-Caballero, S., and Kinnally, K. W. (2006). Is MAC the knife that cuts cytochrome c from mitochondria during apoptosis? Cell Death Differ 13, 1387–1395.CrossRefPubMedGoogle Scholar
  38. Deveraux, Q. L. and Reed, J. C. (1999). IAP family proteins–suppressors of apoptosis. Genes Dev 13, 239–252.CrossRefPubMedGoogle Scholar
  39. Dias, N. and Bailly, C. (2005). Drugs targeting mitochondrial functions to control tumor cell growth. Biochem Pharmacol 70, 1–12.CrossRefPubMedGoogle Scholar
  40. Diekert, K., de Kroon, A. I., Kispal, G., and Lill, R. (2001). Isolation and subfractionation of mitochondria from the yeast Saccharomyces cerevisiae. Methods Cell Biol 65, 37–51.CrossRefPubMedGoogle Scholar
  41. Dumont, M. E., Cardillo, T. S., Hayes, M. K., and Sherman, F. (1991). Role of cytochrome c heme lyase in mitochondrial import and accumulation of cytochrome c in Saccharomyces cerevisiae. Mol Cell Biol 11, 5487–5496.PubMedGoogle Scholar
  42. Ekert, P. G., Silke, J., Hawkins, C. J., Verhagen, A. M., and Vaux, D. L. (2001). DIABLO promotes apoptosis by removing MIHA/XIAP from processed caspase 9. J Cell Biol 152, 483–490.CrossRefPubMedGoogle Scholar
  43. el-Deiry, W. S. (1997). Role of oncogenes in resistance and killing by cancer therapeutic agents. Curr Opin Oncol 9, 79–87.CrossRefPubMedGoogle Scholar
  44. Eskes, R., Desagher, S., Antonsson, B., and Martinou, J. C. (2000). Bid induces the oligomerization and insertion of bax into the outer mitochondrial membrane. Mol Cell Biol 20, 929–935.CrossRefPubMedGoogle Scholar
  45. Esposti, M. D., Cristea, I. M., Gaskell, S. J., Nakao, Y., and Dive, C. (2003). Proapoptotic bid binds to monolysocardiolipin, a new molecular connection between mitochondrial membranes and cell death. Cell Death Differ.Google Scholar
  46. Fantin, V. R. and Leder, P. (2006). Mitochondriotoxic compounds for cancer therapy. Oncogene 25, 4787–4797.CrossRefPubMedGoogle Scholar
  47. Fiers, W., Beyaert, R., Declercq, W., and Vandenabeele, P. (1999). More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene 18, 7719–7730.CrossRefPubMedGoogle Scholar
  48. Fliss, M. S., Usadel, H., Caballero, O. L., Wu, L., Buta, M. R., Eleff, S. M., Jen, J., and Sidransky, D. (2000). Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science 287, 2017–2019.CrossRefPubMedGoogle Scholar
  49. Galluzzi, L., Larochette, N., Zamzami, N., and Kroemer, G. (2006). Mitochondria as therapeutic targets for cancer chemotherapy. Oncogene 25, 4812–4830.CrossRefPubMedGoogle Scholar
  50. Geske, F. J. and Gerschenson, L. E. (2001). The biology of apoptosis. Hum Pathol 32, 1029–1038.CrossRefPubMedGoogle Scholar
  51. Green, D. R. and Evan, G. I. (2002). A matter of life and death. Cancer Cell 1, 19–30.CrossRefPubMedGoogle Scholar
  52. Green, D. R. and Kroemer, G. (2004). The pathophysiology of mitochondrial cell death. Science 305, 626–629.CrossRefPubMedGoogle Scholar
  53. Guihard, G., Bellot, G., Moreau, C., Pradal, G., Ferry, N., Thomy, R., Fichet, P., Meflah, K., and Vallette, F. M. (2004). The mitochondrial apoptosis-induced channel (MAC) corresponds to a late apoptotic event. J Biol Chem 279, 46542–46550.CrossRefPubMedGoogle Scholar
  54. Guo, L., Pietkiewicz, D., Pavlov, E. V., Grigoriev, S. M., Kasianowicz, J. J., Dejean, L. M., Korsmeyer, S. J., Antonsson, B., and Kinnally, K. W. (2004). Effects of cytochrome c on the mitochondrial apoptosis-induced channel MAC. Am J Physiol Cell Physiol 286, C1109–1117.CrossRefPubMedGoogle Scholar
  55. Hanahan, D. and Weinberg, R. A. (2000). The hallmarks of cancer. Cell 100, 57–70.CrossRefPubMedGoogle Scholar
  56. Hansen, T. M., Smith, D. J., and Nagley, P. (2006). Smac/DIABLO is not released from mitochondria during apoptotic signalling in cells deficient in cytochrome c. Cell Death Differ 13, 1181–1190.CrossRefPubMedGoogle Scholar
  57. Hegde, R., Srinivasula, S. M., Zhang, Z., Wassell, R., Mukattash, R., Cilenti, L., DuBois, G., Lazebnik, Y., Zervos, A. S., Fernandes-Alnemri, T., and Alnemri, E. S. (2002). Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J Biol Chem 277, 432–438.CrossRefPubMedGoogle Scholar
  58. Hersey, P. and Zhang, X. D. (2003). Overcoming resistance of cancer cells to apoptosis. J Cell Physiol 196, 9–18.CrossRefPubMedGoogle Scholar
  59. Hill, M. M., Adrain, C., and Martin, S. J. (2003). Portrait of a killer: the mitochondrial apoptosome emerges from the shadows. Mol Interv 3, 19–26.CrossRefPubMedGoogle Scholar
  60. Jaattela, M. (2004). Multiple cell death pathways as regulators of tumour initiation and progression. Oncogene 23, 2746–2756.CrossRefPubMedGoogle Scholar
  61. Kasibhatla, S. and Tseng, B. (2003). Why target apoptosis in cancer treatment? Mol Cancer Ther 2, 573–580.PubMedGoogle Scholar
  62. Khosravi-Far, R. and Esposti, M. D. (2004). Death receptor signals to mitochondria. Cancer Biol Ther 3, 1051–1057.PubMedCrossRefGoogle Scholar
  63. Kim, R., Emi, M., Tanabe, K., and Toge, T. (2004). Therapeutic potential of antisense Bcl-2 as a chemosensitizer for cancer therapy. Cancer 101, 2491–2502.CrossRefPubMedGoogle Scholar
  64. Kluck, R. M., Bossy-Wetzel, E., Green, D. R., and Newmeyer, D. D. (1997). The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275, 1132–1136.CrossRefPubMedGoogle Scholar
  65. Kluck, R. M., Esposti, M. D., Perkins, G., Renken, C., Kuwana, T., Bossy-Wetzel, E., Goldberg, M., Allen, T., Barber, M. J., Green, D. R., and Newmeyer, D. D. (1999). The pro-apoptotic proteins, Bid and Bax, cause a limited permeabilization of the mitochondrial outer membrane that is enhanced by cytosol. J Cell Biol 147, 809–822.CrossRefPubMedGoogle Scholar
  66. Kluza, J., Gallego, M. A., Loyens, A., Beauvillain, J. C., Sousa-Faro, J. M., Cuevas, C., Marchetti, P., and Bailly, C. (2006). Cancer cell mitochondria are direct proapoptotic targets for the marine antitumor drug lamellarin D. Cancer Res 66, 3177–3187.CrossRefPubMedGoogle Scholar
  67. Korsmeyer, S. J., Wei, M. C., Saito, M., Weiler, S., Oh, K. J., and Schlesinger, P. H. (2000). Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ 7, 1166–1173.CrossRefPubMedGoogle Scholar
  68. Kroemer, G. (2003). Mitochondrial control of apoptosis: an introduction. Biochem Biophys Res Commun 304, 433–435.CrossRefPubMedGoogle Scholar
  69. Kuwana, T. and Newmeyer, D. D. (2003). Bcl-2-family proteins and the role of mitochondria in apoptosis. Curr Opin Cell Biol 15, 691–699.CrossRefPubMedGoogle Scholar
  70. Kuwana, T., Smith, J. J., Muzio, M., Dixit, V., Newmeyer, D. D., and Kornbluth, S. (1998). Apoptosis induction by caspase-8 is amplified through the mitochondrial release of cytochrome c. J Biol Chem 273, 16589–16594.CrossRefPubMedGoogle Scholar
  71. Kuwana, T., Mackey, M. R., Perkins, G., Ellisman, M. H., Latterich, M., Schneiter, R., Green, D. R., and Newmeyer, D. D. (2002). Bid, bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111, 331–342.CrossRefPubMedGoogle Scholar
  72. Lawen, A. (2003). Apoptosis-an introduction. Bioessays 25, 888–896.CrossRefPubMedGoogle Scholar
  73. Li, H., Zhu, H., Xu, C. J., and Yuan, J. (1998). Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94, 491–501.CrossRefPubMedGoogle Scholar
  74. Li, L. Y., Luo, X., and Wang, X. (2001). Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412, 95–99.CrossRefPubMedGoogle Scholar
  75. Lim, M. L., Minamikawa, T., and Nagley, P. (2001). The protonophore CCCP induces mitochondrial permeability transition without cytochrome c release in human osteosarcoma cells. FEBS Lett 503, 69–74.CrossRefPubMedGoogle Scholar
  76. Lo, S., Tolner, B., Taanman, J. W., Cooper, J. M., Gu, M., Hartley, J. A., Schapira, A. H., and Hochhauser, D. (2005). Assessment of the significance of mitochondrial DNA damage by chemotherapeutic agents. Int J Oncol 27, 337–344.PubMedGoogle Scholar
  77. Lorenzo, H. K., Susin, S. A., Penninger, J., and Kroemer, G. (1999). Apoptosis inducing factor (AIF): a phylogenetically old, caspase-independent effector of cell death. Cell Death Differ 6, 516–524.CrossRefPubMedGoogle Scholar
  78. Luo, X., Budihardjo, I., Zou, H., Slaughter, C., and Wang, X. (1998). Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94, 481–490.CrossRefPubMedGoogle Scholar
  79. Lutter, M., Fang, M., Luo, X., Nishijima, M., Xie, X., and Wang, X. (2000). Cardiolipin provides specificity for targeting of tBid to mitochondria. Nat Cell Biol 2, 754–761.CrossRefPubMedGoogle Scholar
  80. Mangan, P. S. and Colombini, M. (1987). Ultrasteep voltage dependence in a membrane channel. Proc Natl Acad Sci USA 84, 4896–4900.CrossRefPubMedGoogle Scholar
  81. Martinou, J. C. and Green, D. R. (2001). Breaking the mitochondrial barrier. Nat Rev Mol Cell Biol 2, 63–67.CrossRefPubMedGoogle Scholar
  82. Martins, L. M., Iaccarino, I., Tenev, T., Gschmeissner, S., Totty, N. F., Lemoine, N. R., Savopoulos, J., Gray, C. W., Creasy, C. L., Dingwall, C., and Downward, J. (2002). The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a reaper-like motif. J Biol Chem 277, 439–444.CrossRefPubMedGoogle Scholar
  83. Marzo, I., Brenner, C., and Kroemer, G. (1998a). The central role of the mitochondrial megachannel in apoptosis: evidence obtained with intact cells, isolated mitochondria, and purified protein complexes. Biomed Pharmacother 52, 248–251.CrossRefPubMedGoogle Scholar
  84. Marzo, I., Brenner, C., Zamzami, N., Jurgensmeier, J. M., Susin, S. A., Vieira, H. L., Prevost, M. C., Xie, Z., Matsuyama, S., Reed, J. C., and Kroemer, G. (1998b). Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 281, 2027–2031.CrossRefPubMedGoogle Scholar
  85. Mayer, A., Neupert, W., and Lill, R. (1995). Translocation of apocytochrome c across the outer membrane of mitochondria. J Biol Chem 270, 12390–12397.CrossRefPubMedGoogle Scholar
  86. McDonnell, J. M., Fushman, D., Milliman, C. L., Korsmeyer, S. J., and Cowburn, D. (1999). Solution structure of the proapoptotic molecule BID: a structural basis for apoptotic agonists and antagonists. Cell 96, 625–634.CrossRefPubMedGoogle Scholar
  87. McMillin, J. B. and Dowhan, W. (2002). Cardiolipin and apoptosis. Biochim Biophys Acta 1585, 97–107.PubMedGoogle Scholar
  88. Miller, L. K. (1999). An exegesis of IAPs: salvation and surprises from BIR motifs. Trends Cell Biol 9, 323–328.CrossRefPubMedGoogle Scholar
  89. Miramar, M. D., Costantini, P., Ravagnan, L., Saraiva, L. M., Haouzi, D., Brothers, G., Penninger, J. M., Peleato, M. L., Kroemer, G., and Susin, S. A. (2001). NADH oxidase activity of mitochondrial apoptosis-inducing factor. J Biol Chem 276, 16391–16398.CrossRefPubMedGoogle Scholar
  90. Morisaki, T. and Katano, M. (2003). Mitochondria-targeting therapeutic strategies for overcoming chemoresistance and progression of cancer. Curr Med Chem 10, 2517–2521.CrossRefPubMedGoogle Scholar
  91. Nechushtan, A., Smith, C. L., Lamensdorf, I., Yoon, S. H., and Youle, R. J. (2001). Bax and Bak coalesce into novel mitochondria-associated clusters during apoptosis. J Cell Biol 153, 1265–1276.CrossRefPubMedGoogle Scholar
  92. Newmeyer, D. D. and Ferguson-Miller, S. (2003). Mitochondria: releasing power for life and unleashing the machineries of death. Cell 112, 481–490.CrossRefPubMedGoogle Scholar
  93. O’Neill, J., Manion, M., Schwartz, P., and Hockenbery, D. M. (2004). Promises and challenges of targeting Bcl-2 anti-apoptotic proteins for cancer therapy. Biochim Biophys Acta 1705, 43–51.PubMedGoogle Scholar
  94. Ohtsuka, T., Nishijima, M., Suzuki, K., and Akamatsu, Y. (1993). Mitochondrial dysfunction of a cultured Chinese hamster ovary cell mutant deficient in cardiolipin. J Biol Chem 268, 22914–22919.PubMedGoogle Scholar
  95. Ozoren, N. and El-Deiry, W. S. (2002). Defining characteristics of types I and II apoptotic cells in response to TRAIL. Neoplasia 4, 551–557.CrossRefPubMedGoogle Scholar
  96. Ozoren, N. and El-Deiry, W. S. (2003). Cell surface Death Receptor signaling in normal and cancer cells. Semin Cancer Biol 13, 135–147.CrossRefPubMedGoogle Scholar
  97. Pavlov, E. V., Priault, M., Pietkiewicz, D., Cheng, E. H., Antonsson, B., Manon, S., Korsmeyer, S. J., Mannella, C. A., and Kinnally, K. W. (2001). A novel, high conductance channel of mitochondria linked to apoptosis in mammalian cells and Bax expression in yeast. J Cell Biol 155, 725–731.CrossRefPubMedGoogle Scholar
  98. Penninger, J. M. and Kroemer, G. (2003). Mitochondria, AIF and caspases–rivaling for cell death execution. Nat Cell Biol 5, 97–99.CrossRefPubMedGoogle Scholar
  99. Peter, M. E. and Krammer, P. H. (1998). Mechanisms of CD95 (APO-1/Fas)-mediated apoptosis. Curr Opin Immunol 10, 545–551.CrossRefPubMedGoogle Scholar
  100. Peter, M. E. and Krammer, P. H. (2003). The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ 10, 26–35.CrossRefPubMedGoogle Scholar
  101. Raha, S. and Robinson, B. H. (2000). Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem Sci 25, 502–508.CrossRefPubMedGoogle Scholar
  102. Ravagnan, L., Roumier, T., and Kroemer, G. (2002). Mitochondria, the killer organelles and their weapons. J Cell Physiol 192, 131–137.CrossRefPubMedGoogle Scholar
  103. Reed, J. C. (2004). Apoptosis mechanisms: implications for cancer drug discovery. Oncology (Williston Park) 18, 11–20.Google Scholar
  104. Rehm, M., Dussmann, H., and Prehn, J. H. (2003). Real-time single cell analysis of Smac/DIABLO release during apoptosis. J Cell Biol 162, 1031–1043.CrossRefPubMedGoogle Scholar
  105. Rotem, R., Heyfets, A., Fingrut, O., Blickstein, D., Shaklai, M., and Flescher, E. (2005). Jasmonates: novel anticancer agents acting directly and selectively on human cancer cell mitochondria. Cancer Res 65, 1984–1993.CrossRefPubMedGoogle Scholar
  106. Saelens, X., Festjens, N., Vande Walle, L., van Gurp, M., van Loo, G., and Vandenabeele, P. (2004). Toxic proteins released from mitochondria in cell death. Oncogene 23, 2861–2874.CrossRefPubMedGoogle Scholar
  107. Saito, S., Hiroi, Y., Zou, Y., Aikawa, R., Toko, H., Shibasaki, F., Yazaki, Y., Nagai, R., and Komuro, I. (2000). beta-Adrenergic pathway induces apoptosis through calcineurin activation in cardiac myocytes. J Biol Chem 275, 34528–34533.CrossRefPubMedGoogle Scholar
  108. Salvesen, G. S. and Dixit, V. M. (1997). Caspases: intracellular signaling by proteolysis. Cell 91, 443–446.CrossRefPubMedGoogle Scholar
  109. Salvesen, G. S. and Renatus, M. (2002). Apoptosome: the seven-spoked death machine. Dev Cell 2, 256–257.CrossRefPubMedGoogle Scholar
  110. Schatz, G. (1995). Mitochondria: beyond oxidative phosphorylation. Biochim Biophys Acta 1271, 123–126.PubMedGoogle Scholar
  111. Schendel, S. L., Xie, Z., Montal, M. O., Matsuyama, S., Montal, M., and Reed, J. C. (1997). Channel formation by antiapoptotic protein Bcl-2. Proc Natl Acad Sci USA 94, 5113–5118.CrossRefPubMedGoogle Scholar
  112. Schlame, M., Rua, D., and Greenberg, M. L. (2000). The biosynthesis and functional role of cardiolipin. Prog Lipid Res 39, 257–288.CrossRefPubMedGoogle Scholar
  113. Schulze-Osthoff, K., Ferrari, D., Los, M., Wesselborg, S., and Peter, M. E. (1998). Apoptosis signaling by death receptors. Eur J Biochem 254, 439–459.CrossRefPubMedGoogle Scholar
  114. Semenza, G. L., Artemov, D., Bedi, A., Bhujwalla, Z., Chiles, K., Feldser, D., Laughner, E., Ravi, R., Simons, J., Taghavi, P., and Zhong, H. (2001). The metabolism of tumours: 70 years later. Novartis Found Symp 240, 251–260; discussion 260–254.Google Scholar
  115. Shangary, S. and Johnson, D. E. (2003). Recent advances in the development of anticancer agents targeting cell death inhibitors in the Bcl-2 protein family. Leukemia 17, 1470–1481.CrossRefPubMedGoogle Scholar
  116. Sheikh, M. S. and Huang, Y. (2004). Death receptors as targets of cancer therapeutics. Curr Cancer Drug Targets 4, 97–104.CrossRefPubMedGoogle Scholar
  117. Shi, Y. (2002). Apoptosome: the cellular engine for the activation of caspase-9. Structure (Camb) 10, 285–288.CrossRefGoogle Scholar
  118. Shidoji, Y., Hayashi, K., Komura, S., Ohishi, N., and Yagi, K. (1999). Loss of molecular interaction between cytochrome c and cardiolipin due to lipid peroxidation. Biochem Biophys Res Commun 264, 343–347.CrossRefPubMedGoogle Scholar
  119. Sies, H. and de Groot, H. (1992). Role of reactive oxygen species in cell toxicity. Toxicol Lett 64–65 Spec No, 547–551.Google Scholar
  120. Singh, K. K., Russell, J., Sigala, B., Zhang, Y., Williams, J., and Keshav, K. F. (1999). Mitochondrial DNA determines the cellular response to cancer therapeutic agents. Oncogene 18, 6641–6646.CrossRefPubMedGoogle Scholar
  121. Slee, E. A., Adrain, C., and Martin, S. J. (1999). Serial killers: ordering caspase activation events in apoptosis. Cell Death Differ 6, 1067–1074.CrossRefPubMedGoogle Scholar
  122. Soengas, M. S., Alarcon, R. M., Yoshida, H., Giaccia, A. J., Hakem, R., Mak, T. W., and Lowe, S. W. (1999). Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition. Science 284, 156–159.CrossRefPubMedGoogle Scholar
  123. Sorice, M., Circella, A., Cristea, I. M., Garofalo, T., Renzo, L. D., Alessandri, C., Valesini, G., and Esposti, M. D. (2004). Cardiolipin and its metabolites move from mitochondria to other cellular membranes during death receptor-mediated apoptosis. Cell Death Differ 11, 1133–1145.CrossRefPubMedGoogle Scholar
  124. Springs, S. L., Diavolitsis, V. M., Goodhouse, J., and McLendon, G. L. (2002). The kinetics of translocation of Smac/DIABLO from the mitochondria to the cytosol in HeLa cells. J Biol Chem 277, 45715–45718.CrossRefPubMedGoogle Scholar
  125. Srinivasula, S. M., Ahmad, M., Guo, Y., Zhan, Y., Lazebnik, Y., Fernandes-Alnemri, T., and Alnemri, E. S. (1999). Identification of an endogenous dominant-negative short isoform of caspase-9 that can regulate apoptosis. Cancer Res 59, 999–1002.PubMedGoogle Scholar
  126. Stegh, A. H. and Peter, M. E. (2001). Apoptosis and caspases. Cardiol Clin 19, 13–29.CrossRefPubMedGoogle Scholar
  127. Strasser, A., O’Connor, L., and Dixit, V. M. (2000). Apoptosis signaling. Annu Rev Biochem 69, 217–245.CrossRefPubMedGoogle Scholar
  128. Susin, S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., Snow, B. E., Brothers, G. M., Mangion, J., Jacotot, E., Costantini, P., Loeffler, M., et al. (1999). Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441–446.CrossRefPubMedGoogle Scholar
  129. Suzuki, Y., Imai, Y., Nakayama, H., Takahashi, K., Takio, K., and Takahashi, R. (2001). A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol Cell 8, 613–621.CrossRefPubMedGoogle Scholar
  130. Suzuki, Y., Takahashi-Niki, K., Akagi, T., Hashikawa, T., and Takahashi, R. (2004). Mitochondrial protease Omi/HtrA2 enhances caspase activation through multiple pathways. Cell Death Differ 11, 208–216.CrossRefPubMedGoogle Scholar
  131. Szeto, H. H. (2006). Cell-permeable, mitochondrial-targeted, peptide antioxidants. Aaps J 8, E277–283.PubMedGoogle Scholar
  132. Thomas, L., Blachly-Dyson, E., Colombini, M., and Forte, M. (1993). Mapping of residues forming the voltage sensor of the voltage-dependent anion-selective channel. Proc Natl Acad Sci USA 90, 5446–5449.CrossRefPubMedGoogle Scholar
  133. Thompson, C. B. (1995). Apoptosis in the pathogenesis and treatment of disease. Science 267, 1456–1462.CrossRefPubMedGoogle Scholar
  134. Thorburn, A. (2004). Death receptor-induced cell killing. Cell Signal 16, 139–144.CrossRefPubMedGoogle Scholar
  135. van Loo, G., Schotte, P., van Gurp, M., Demol, H., Hoorelbeke, B., Gevaert, K., Rodriguez, I., Ruiz-Carrillo, A., Vandekerckhove, J., Declercq, W., et al. (2001). Endonuclease G: a mitochondrial protein released in apoptosis and involved in caspase-independent DNA degradation. Cell Death Differ 8, 1136–1142.CrossRefPubMedGoogle Scholar
  136. Vaux, D. L. and Korsmeyer, S. J. (1999). Cell death in development. Cell 96, 245–254.CrossRefPubMedGoogle Scholar
  137. Verhagen, A. M. and Vaux, D. L. (2002). Cell death regulation by the mammalian IAP antagonist Diablo/Smac. Apoptosis 7, 163–166.CrossRefPubMedGoogle Scholar
  138. Vieira, H. L., Belzacq, A. S., Haouzi, D., Bernassola, F., Cohen, I., Jacotot, E., Ferri, K. F., El Hamel, C., Bartle, L. M., Melino, G., et al. (2001). The adenine nucleotide translocator: a target of nitric oxide, peroxynitrite, and 4-hydroxynonenal. Oncogene 20, 4305–4316.CrossRefPubMedGoogle Scholar
  139. Walensky, L. D. (2006). BCL-2 in the crosshairs: tipping the balance of life and death. Cell Death Differ 13, 1339–1350.CrossRefPubMedGoogle Scholar
  140. Wallach, D. (1997). Apoptosis. Placing death under control. Nature 388, 123, 125–126.Google Scholar
  141. Wang, K., Yin, X. M., Chao, D. T., Milliman, C. L., and Korsmeyer, S. J. (1996). BID: a novel BH3 domain-only death agonist. Genes Dev 10, 2859–2869.CrossRefPubMedGoogle Scholar
  142. Warburg, E. (1951). Therapeutic imperative and evaluation of therapeutics. Ugeskr Laeger 113, 86–88.PubMedGoogle Scholar
  143. Waterhouse, N. J., Goldstein, J. C., Kluck, R. M., Newmeyer, D. D., and Green, D. R. (2001). The (Holey) study of mitochondria in apoptosis. Methods Cell Biol 66, 365–391.CrossRefPubMedGoogle Scholar
  144. Wei, M. C., Lindsten, T., Mootha, V. K., Weiler, S., Gross, A., Ashiya, M., Thompson, C. B., and Korsmeyer, S. J. (2000). tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev 14, 2060–2071.PubMedGoogle Scholar
  145. Wei, M. C., Zong, W. X., Cheng, E. H., Lindsten, T., Panoutsakopoulou, V., Ross, A. J., Roth, K. A., MacGregor, G. R., Thompson, C. B., and Korsmeyer, S. J. (2001). Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292, 727–730.CrossRefPubMedGoogle Scholar
  146. Wright, M. M., Howe, A. G., and Zaremberg, V. (2004). Cell membranes and apoptosis: role of cardiolipin, phosphatidylcholine, and anticancer lipid analogues. Biochem Cell Biol 82, 18–26.CrossRefPubMedGoogle Scholar
  147. Yang, J., Liu, X., Bhalla, K., Kim, C. N., Ibrado, A. M., Cai, J., Peng, T. I., Jones, D. P., and Wang, X. (1997). Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275, 1129–1132.CrossRefPubMedGoogle Scholar
  148. Yang, X., Fraser, M., Moll, U. M., Basak, A., and Tsang, B. K. (2006). Akt-mediated cisplatin resistance in ovarian cancer: modulation of p53 action on caspase-dependent mitochondrial death pathway. Cancer Res 66, 3126–3136.CrossRefPubMedGoogle Scholar
  149. Zamzami, N. and Kroemer, G. (2001). The mitochondrion in apoptosis: how Pandora’s box opens. Nat Rev Mol Cell Biol 2, 67–71.CrossRefPubMedGoogle Scholar
  150. Zhivotovsky, B., Hanson, K. P., and Orrenius, S. (1998a). Back to the future: the role of cytochrome c in cell death. Cell Death Differ 5, 459–460.CrossRefPubMedGoogle Scholar
  151. Zhivotovsky, B., Orrenius, S., Brustugun, O. T., and Doskeland, S. O. (1998b). Injected cytochrome c induces apoptosis. Nature 391, 449–450.CrossRefPubMedGoogle Scholar
  152. Zornig, M., Hueber, A., Baum, W., and Evan, G. (2001). Apoptosis regulators and their role in tumorigenesis. Biochim Biophys Acta 1551, F1–37.PubMedGoogle Scholar
  153. Zou, H., Li, Y., Liu, X., and Wang, X. (1999). An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 274, 11549–11556.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Anas Chalah
    • Roya Khosravi-Far

      There are no affiliations available

      Personalised recommendations