RNA Interference and Cancer: Endogenous Pathways and Therapeutic Approaches

  • Derek M. Dykxhoorn
  • Dipanjan Chowdhury
  • Judy Lieberman
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 615)

The endogenous RNA interference (RNAi) pathway regulates cellular differentiation and development using small noncoding hairpin RNAs, called microRNAs. This chapter will review the link between mammalian microRNAs and genes involved in cellular proliferation, differentiation, and apoptosis. Some microRNAs act as oncogenes or tumor suppressor genes, but the target gene networks they regulate are just beginning to be described. Cancer cells have altered patterns of microRNA expression, which can be used to identify the cell of origin and to subtype cancers. RNAi has also been used to identify novel genes involved in cellular transformation using forward genetic screening methods previously only possible in invertebrates. Possible strategies and obstacles to harnessing RNAi for cancer therapy will also be discussed.

Keywords

RNA interference microRNA cancer microarray tumor profile siRNA therapy prognosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ambros, V. (2004). The functions of animal microRNAs. Nature 431(7006), 350–355.Google Scholar
  2. 2.
    Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2), 281–297.Google Scholar
  3. 3.
    Wienholds, E. and Plasterk, R. H. (2005). MicroRNA function in animal development. FEBS Lett 579(26), 5911–5922.Google Scholar
  4. 4.
    Du, T. and Zamore, P. D. (2005). microPrimer: the biogenesis and function of microRNA. Development 132(21), 4645–4652.Google Scholar
  5. 5.
    Croce, C. M. and Calin, G. A. (2005). miRNAs, cancer, and stem cell division. Cell 122(1), 6–7.Google Scholar
  6. 6.
    S. M. Hammond, S. M. (2006). MicroRNAs as oncogenes. Curr Opin Genet Dev 16(1), 4–9.Google Scholar
  7. 7.
    Gregory, R. I. and Shiekhattar, R. (2005). MicroRNA biogenesis and cancer. Cancer Res 65(9), 3509–3512.Google Scholar
  8. 8.
    Esquela-Kerscher, A. and Slack, F. J. (2006). Oncomirs–microRNAs with a role in cancer. Nat Rev Cancer 6(4), 259–269.Google Scholar
  9. 9.
    Cai, X., Hagedorn, C. H., and Cullen, B. R. (2004). Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10(12), 1957–1966.Google Scholar
  10. 10.
    Lee, Y., Kim, M., Han, J., Yeom, K. H., Lee, S., Baek, S. H., and Kim, V. N. (2004). MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23(20), 4051–4060.Google Scholar
  11. 11.
    Parizotto, E. A., Dunoyer, P., Rahm, N., Himber, C., and Voinnet, O. (2004). In vivo investigation of the transcription, processing, endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA. Genes Dev 18(18), 2237–2242.Google Scholar
  12. 12.
    Reinhart, B. J., Weinstein, E. G., Rhoades, M. W., Bartel, B., and Bartel, D. P. (2002). MicroRNAs in plants. Genes Dev 16(13), 1616–1626.Google Scholar
  13. 13.
    Lagos-Quintana, M., Rauhut, R., Lendeckel, W., and Tuschl, T. (2001). Identification of novel genes coding for small expressed RNAs. Science 294(5543), 853–858.Google Scholar
  14. 14.
    Lau, N. C., Lim, L. P., Weinstein, E. G., and Bartel, D. P. (2001). An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294(5543), 858–862.Google Scholar
  15. 15.
    Lee, Y., Jeon, K., Lee, J. T., Kim, S., and Kim, V. N. (2002).MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21(17), 4663–4670.Google Scholar
  16. 16.
    Rodriguez, A., Griffiths-Jones, S., Ashurst, J. L., and Bradley, A. (2004). Identification of mammalian microRNA host genes and transcription units. Genome Res 14(10A), 1902–1910.Google Scholar
  17. 17.
    Denli, A. M., Tops, B. B., Plasterk, R. H., Ketting, R. F., and Hannon, G. J. (2004).Processing of primary microRNAs by the Microprocessor complex. Nature 432(7014), 231–235.Google Scholar
  18. 18.
    Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Radmark, O., Kim, S., and Kim, V. N. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature 425(6956), 415–419.Google Scholar
  19. 19.
    Gregory, R. I., Yan, K. P., Amuthan, G., Chendrimada, T., Doratotaj, B., Cooch, N., and Shiekhattar, R. (2004). The Microprocessor complex mediates the genesis of microRNAs. Nature 432(7014), 235–240.Google Scholar
  20. 20.
    Han, J., Lee, Y., Yeom, K. H., Kim, Y. K., Jin, H., and Kim, V. N. (2004).The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 18(24), 3016–3027.Google Scholar
  21. 21.
    Landthaler, M., Yalcin, A., and Tuschl, T. (2004). The human DiGeorge syndrome critical region gene 8 and Its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol 14(23), 2162–2167.Google Scholar
  22. 22.
    Bohnsack, M. T., Czaplinski, K., and Gorlich, D. (2004).Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10(2), 185–191.Google Scholar
  23. 23.
    Lund, E., Guttinger, S., Calado, A., Dahlberg, J. E., and Kutay, U. (2004). Nuclear export of microRNA precursors, Science 303(5654), 95–98.Google Scholar
  24. 24.
    Zeng, Y., and Cullen, B. R. (2004).Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. Nucleic Acids Res 32(16), 4776–4785.Google Scholar
  25. 25.
    Yi, R., Qin, Y., Macara, I. G., and Cullen, B. R. (2003). Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17(24), 3011–3016 (2003).Google Scholar
  26. 26.
    Bernstein, E., Caudy, A. A., Hammond, S. M., and Hannon, G. J. (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409(6818), 363–366.Google Scholar
  27. 27.
    Hutvagner, G., McLachlan, J., Pasquinelli, A. E., Balint, E., Tuschl, T., and Zamore, P. D. (2001). A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293(5531), 834–838.Google Scholar
  28. 28.
    Chendrimada, T. P., Gregory, R. I., Kumaraswamy, E., Norman, J., Cooch, N., Nishikura, K., and Shiekhattar, R. (2005). TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436(7051), 740–744.Google Scholar
  29. 29.
    Forstemann, K., Tomari, Y., Du, T., Vagin, V. V., Denli, A. M., Bratu, D. P., Klattenhoff, C., Theurkauf, W. E., and Zamore, P. D. (2005). Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. PLoS Biol 3(7), e236.Google Scholar
  30. 30.
    Jiang, F., Ye, X., Liu, X., Fincher, L., McKearin, D., and Liu, Q. (2005). Dicer-1 and R3D1-L catalyze microRNA maturation in Drosophila. Genes Dev 19(14), 1674–1679.Google Scholar
  31. 31.
    Saito, K., Ishizuka, A., Siomi, H., and Siomi, M. C. (2005). Processing of pre-microRNAs by the Dicer-1-Loquacious complex in Drosophila cells. PLoS Biol 3(7), e235.Google Scholar
  32. 32.
    Schwarz, D. S., Hutvagner, G., Du, T., Xu, Z., Aronin, N., and Zamore, P. D. (2003). Asymmetry in the assembly of the RNAi enzyme complex, Cell 115(2), 199–208.Google Scholar
  33. 33.
    Khvorova, A., Reynolds, A., and Jayasena, S. D. (2003). Functional siRNAs and miRNAs exhibit strand bias. Cell 115(2), 209–216.Google Scholar
  34. 34.
    Rand, T. A., Petersen, S., Du, F., and Wang, X. (2005). Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 123(4), 621–629.Google Scholar
  35. 35.
    Matranga, C., Tomari, Y., Shin, C., Bartel, D. P., and Zamore, P. D. (2005). Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123(4), 607–620.Google Scholar
  36. 36.
    Rand, T. A., Ginalski, K., Grishin, N. V., and Wang, X. (2004). Biochemical identification of Argonaute 2 as the sole protein required for RNA-induced silencing complex activity. Proc Natl Acad Sci USA 101(40), 14385–14389.Google Scholar
  37. 37.
    Hutvagner, G. and Zamore, P. D. (2002). A microRNA in a multiple-turnover RNAi enzyme complex. Science 297(5589), 2056–2060.Google Scholar
  38. 38.
    Lippman, Z. and Martienssen, R. (2004). The role of RNA interference in heterochromatic silencing. Nature 431(7006), 364–370.Google Scholar
  39. 39.
    Kanellopoulou, C., Muljo, S. A., Kung, A. L., Ganesan, S., Drapkin, R., Jenuwein, T., Livingston, D. M., and Rajewsky, K. (2005). Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev 19(4), 489–501.Google Scholar
  40. 40.
    Ma, J. B., Yuan, Y. R., Meister, G., Pei, Y., Tuschl, T., and Patel, D. J. (2005). Structural basis for 5t-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature 434(7033), 666–670 (2005).Google Scholar
  41. 41.
    Lewis, B. P., Burge, C. B., and Bartel, D. P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1), 15–20.Google Scholar
  42. 42.
    Rehwinkel, J., Behm-Ansmant, I., Gatfield, D., and Izaurralde, E. (2005). A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. RNA 11(11), 1640–1647.Google Scholar
  43. 43.
    Sen, G. L. and Blau, H. M. (2005). Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nat Cell Biol 7(6), 633–636.Google Scholar
  44. 44.
    Jakymiw, A., Lian, S., Eystathioy, T., Li, S., Satoh, M., Hamel, J. C., Fritzler, M. J., and Chan, E. K. (2005). Disruption of GW bodies impairs mammalian RNA interference, Nat Cell Biol 7(12), 1267–1274.Google Scholar
  45. 45.
    Liu, J., Rivas, F. V., Wohlschlegel, J., Yates, J. R., III, Parker, R., and Hannon, G. J. (2005). A role for the P-body component GW182 in microRNA function. Nat Cell Biol 7(12), 1161–1166.Google Scholar
  46. 46.
    Liu, J., Valencia-Sanchez, M. A., Hannon, G. J., and Parker, R. (2005). MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol 7(7), 719–723.Google Scholar
  47. 47.
    Valencia-Sanchez, M. A., Liu, J., Hannon, G. J., and Parker, R. (2006). Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20(5), 515–524.Google Scholar
  48. 48.
    Teixeira, D., Sheth, U., Valencia-Sanchez, M. A., Brengues, M., and Parker, R. (2005). Processing bodies require RNA for assembly and contain nontranslating mRNAs. RNA 11(4), 371–382.Google Scholar
  49. 49.
    Brengues, M., Teixeira, D., and Parker, R. (2005). Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies. Science 310(5747), 486–489.Google Scholar
  50. 50.
    Sheth, U. and Parker, R. (2003). Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science 300(5620), 805–808.Google Scholar
  51. 51.
    Coller, J. and Parker, R. (2004). Eukaryotic mRNA decapping. Annu Rev Biochem 73, 861–890.Google Scholar
  52. 52.
    Lim, L. P., Lau, N. C., Weinstein, E. G., Abdelhakim, A., Yekta, S., Rhoades, M. W., Burge, C. B., and Bartel, D. P. (2003). The microRNAs of Caenorhabditis elegans. Genes Dev 17(8), 991–1008.Google Scholar
  53. 53.
    Lim, L. P., Glasner, M. E., Yekta, S., Burge, C. B., and Bartel, D. P. (2003). Vertebrate microRNA genes. Science 299(5612), 1540.Google Scholar
  54. 54.
    Bentwich, I., Avniel, A., Karov, Y., Aharonov, R., Gilad, S., Barad, O., Barzilai, A., Einat, P., Einav, U., Meiri, E., Sharon, E., Spector, Y., and Bentwich, Z. (2005). Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37(7), 766–770.Google Scholar
  55. 55.
    Pasquinelli, A. E. and Ruvkun, G. (2002). Control of developmental timing by microRNAs and their targets. Annu Rev Cell Dev Biol 18495–18513.Google Scholar
  56. 56.
    Mineno, J., Okamoto, S., Ando, T., Sato, M., Chono, H., Izu, H., Takayama, M., Asada, K., Mirochnitchenko, O., Inouye, M., and Kato, I. (2006). The expression profile of microRNAs in mouse embryos. Nucleic Acids Res 34(6), 1765–1771.Google Scholar
  57. 57.
    Willmann, M. R., and Poethig, R. S. (2005). Time to grow up: the temporal role of smallRNAs in plants. Curr Opin Plant Biol 8(5), 548–552.Google Scholar
  58. 58.
    Aboobaker, A. A., Tomancak, P., Patel, N., Rubin, G. M., and Lai, E. C. (2005). Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development. Proc Natl Acad Sci USA 102(50), 18017–18022.Google Scholar
  59. 59.
    Biemar, F., Zinzen, R., Ronshaugen, M., Sementchenko, V., Manak, J. R., and Levine, M. S. (2005). Spatial regulation of microRNA gene expression in the Drosophila embryo. Proc Natl Acad Sci USA 102(44), 15907–15911.Google Scholar
  60. 60.
    Wienholds, E., Kloosterman, W. P., Miska, E., Alvarez-Saavedra, E., Berezikov, E., de Bruijn, E., Horvitz, H. R., Kauppinen, S., and Plasterk, R. H. (2005). MicroRNA expression in zebrafish embryonic development. Science 309(5732), 310–311.Google Scholar
  61. 61.
    Aravin, A. A., Lagos-Quintana, M., Yalcin, A., Zavolan, M., Marks, D., Snyder, B., Gaasterland, T., Meyer, J., and Tuschl, T. (2003). The small RNA profile during Drosophila melanogaster development. Dev Cell 5(2), 337–350.Google Scholar
  62. 62.
    Houbaviy, H. B., Murray, M. F., and Sharp, P. A. Embryonic stem cell-specific MicroRNAs. Dev Cell 5(2), 351–358 (2003).Google Scholar
  63. 63.
    Pasquinelli, A. E. (2002). MicroRNAs: deviants no longer. Trends Genet 18(4), 171–173.Google Scholar
  64. 64.
    Plasterk, R. H. (2006). Micro RNAs in animal development. Cell 124(5), 877–881.Google Scholar
  65. 65.
    Doench, J. G. and Sharp, P. A. (2004). Specificity of microRNA target selection in translational repression. Genes Dev 18(5), 504–511 (2004).Google Scholar
  66. 66.
    Poy, M. N., Eliasson, L., Krutzfeldt, J., Kuwajima, S., Ma, X., Macdonald, P. E., Pfeffer, S., Tuschl, T., Rajewsky, N., Rorsman, P., and Stoffel, M. (2004). A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432(7014), 226–230.Google Scholar
  67. 67.
    Brennecke, J., Hipfner, D. R., Stark, A., Russell, R. B., Cohen, S. M. (2003). bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113(1), 25–36.Google Scholar
  68. 68.
    Xu, P., Vernooy, S. Y., Guo, M., and Hay, B. A. (2003). The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol 13(9), 790–795.Google Scholar
  69. 69.
    Abrahante, J. E., Daul, A. L., Li, M., Volk, M. L., Tennessen, J. M., Miller, E. A., and Rougvie, A. E. (2003). The Caenorhabditis elegans hunchback-like gene lin-57/hbl-1 controls developmental time and is regulated by microRNAs. Dev Cell 4(5), 625–637.Google Scholar
  70. 70.
    Lin, S. Y., Johnson, S. M., Abraham, M., Vella, M. C., Pasquinelli, A., Gamberi, C., Gottlieb, E., and Slack, F. J. (2003). The C elegans hunchback homolog, hbl-1, controls temporal patterning and is a probable microRNA target. Dev Cell 4(5), 639–650.Google Scholar
  71. 71.
    Calin, G. A., Dumitru, C. D., Shimizu, M., Bichi, R., Zupo, S., Noch, E., Aldler, H., Rattan, S., Keating, M., Rai, K., Rassenti, L., Kipps, T., Negrini, M., Bullrich, F., and Croce, C. M. (2002). Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99(24), 15524–15529.Google Scholar
  72. 72.
    Michael, M. Z., SM, O. C., van Holst Pellekaan, N. G., Young, G. P., and James, R. J. (2003). Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 1(12), 882–891.Google Scholar
  73. 73.
    Calin, G. A., Sevignani, C., Dumitru, C. D., Hyslop, T., Noch, E., Yendamuri, S., Shimizu, M., Rattan, S., Bullrich, F., Negrini, M., and Croce, C. M. (2004). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101(9), 2999–3004.Google Scholar
  74. 74.
    Lagos-Quintana, M., Rauhut, R., Yalcin, A., Meyer, J., Lendeckel, W., and Tuschl, T. (2002). Identification of tissue-specific microRNAs from mouse. Curr Biol 12(9), 735–739.Google Scholar
  75. 75.
    Tam, W., Ben-Yehuda, D., and Hayward, W. S. (1997). bic, a novel gene activated by proviral insertions in avian leukosis virus-induced lymphomas, is likely to function through its noncoding RNA. Mol Cell Biol 17(3), 1490–1502.Google Scholar
  76. 76.
    Kluiver, J., Poppema, S., de Jong, D., Blokzijl, T., Harms, G., Jacobs, S., Kroesen, B. J., and van den Berg, A. (2005). BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J Pathol 207(2), 243–249.Google Scholar
  77. 77.
    Metzler, M., Wilda, M., Busch, K., Viehmann, S., and Borkhardt, A. (2004). High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosomes Cancer 39(2), 167–169.Google Scholar
  78. 78.
    van den Berg, A., Kroesen, B. J., Kooistra, K., de Jong, D., Briggs, J., Blokzijl, T., Jacobs, S., Kluiver, J., Diepstra, A., Maggio, E., and Poppema, S. (2003). High expression of B-cell receptor inducible gene BIC in all subtypes of Hodgkin lymphoma. Genes Chromosomes Cancer 37(1), 20–28 (2003).Google Scholar
  79. 79.
    Thomson, J. M., Parker, J., Perou, C. M., and Hammond, S. M. (2004). A custom microarray platform for analysis of microRNA gene expression. Nat Methods 1(1), 47–53.Google Scholar
  80. 80.
    Nelson, P. T., Baldwin, D. A., Scearce, L. M., Oberholtzer, J. C., Tobias, J. W., and Mourelatos, Z. (2004). Microarray-based, high-throughput gene expression profiling of microRNAs. Nat Methods 1(2), 155–161.Google Scholar
  81. 81.
    Babak, T., Zhang, W., Morris, Q., Blencowe, B. J., and Hughes, T. R. (2004). Probing microRNAs with microarrays: tissue specificity and functional inference. RNA 10(11), 1813–1819.Google Scholar
  82. 82.
    Sun, Y., Koo, S., White, N., Peralta, E., Esau, C., Dean, N. M., and Perera, R. J. (2004). Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Res 32(22), e188.Google Scholar
  83. 83.
    Barad, O., Meiri, E., Avniel, A., Aharonov, R., Barzilai, A., Bentwich, I., Einav, U., Gilad, S., Hurban, P., Karov, Y., Lobenhofer, E. K., Sharon, E., Shiboleth, Y. M., Shtutman, M., Bentwich, Z., and Einat, P. (2004). MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues. Genome Res 14(12), 2486–2494.Google Scholar
  84. 84.
    Liu, C. G., Calin, G. A., Meloon, B., Gamliel, N., Sevignani, C., Ferracin, M., Dumitru, C. D., Shimizu, M., Zupo, S., Dono, M., Alder, H., Bullrich, F., Negrini, M., and Croce, C. M. (2004). An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci USA 101(26), 9740–9744.Google Scholar
  85. 85.
    Calin, G. A., Liu, C. G., Sevignani, C., Ferracin, M., Felli, N., Dumitru, C. D., Shimizu, M., Cimmino, A., Zupo, S., Dono, M., Dell’Aquila, M. L., Alder, H., Rassenti, L., Kipps, T. J., Bullrich, F., Negrini, M., and Croce, C. M. (2004). MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA 101(32), 11755–11760.Google Scholar
  86. 86.
    He, L., Thomson, J. M., Hemann, M. T., Hernando-Monge, E., Mu, D., Goodson, S., Powers, S., Cordon-Cardo, C., Lowe, S. W., Hannon, G. J., and Hammond, S. M. (2005). A microRNA polycistron as a potential human oncogene. Nature 435(7043), 828–833.Google Scholar
  87. 87.
    Volinia, S., Calin, G. A., Liu, C. G., Ambs, S., Cimmino, A., Petrocca, F., Visone, R., Iorio, M., Roldo, C., Ferracin, M., Prueitt, R. L., Yanaihara, N., Lanza, G., Scarpa, A., Vecchione, A., Negrini, M., Harris, C. C., and Croce, C. M. (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103(7), 2257–2261.Google Scholar
  88. 88.
    Yanaihara, N., Caplen, N., Bowman, E., Seike, M., Kumamoto, K., Yi, M., Stephens, R. M., Okamoto, A., Yokota, J., Tanaka, T., Calin, G. A., Liu, C. G., Croce, C. M., and Harris, C. C. (2006). Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9(3), 189–198.Google Scholar
  89. 89.
    Calin, G. A., Ferracin, M., Cimmino, A., Di Leva, G., Shimizu, M., Wojcik, S. E., Iorio, M. V., Visone, R., Sever, N. I., Fabbri, M., Iuliano, R., Palumbo, T., Pichiorri, F., Roldo, C., Garzon, R., Sevignani, C., Rassenti, L., Alder, H., Volinia, S., Liu, C. G., Kipps, T. J., Negrini, M., and Croce, C. M. (2005). A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353(17), 1793–1801.Google Scholar
  90. 90.
    Lu, J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., Peck, D., Sweet-Cordero, A., Ebert, B. L., Mak, R. H., Ferrando, A. A., Downing, J. R., Jacks, T., Horvitz, H. R., and Golub, T. R. (2005). MicroRNA expression profiles classify human cancers. Nature 435(7043), 834–838.Google Scholar
  91. 91.
    Thorgeirsson, S. S., Lee, J. S., and Grisham, J. W. (2006). Functional genomics of hepatocellular carcinoma. Hepatology 43(2 Suppl 1), S145–S150.Google Scholar
  92. 92.
    Takamizawa, J., Konishi, H., Yanagisawa, K., Tomida, S., Osada, H., Endoh, H., Harano, T., Yatabe, Y., Nagino, M., Nimura, Y., Mitsudomi, T., and Takahashi, T. (2004). Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64(11), 3753–3756.Google Scholar
  93. 93.
    Johnson, S. M., Grosshans, H., Shingara, J., Byrom, M., Jarvis, R., Cheng, A., Labourier, E., Reinert, K. L., Brown, D., and Slack, F. J. (2005). RAS is regulated by the let-7 microRNA family. Cell 120(5), 635–647.Google Scholar
  94. 94.
    O’Donnell, K. A., Wentzel, E. A., Zeller, K. I., Dang, C. V., and Mendell, J. T. (2005). c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435(7043), 839–843.Google Scholar
  95. 95.
    Bernstein, E., Kim, S. Y., Carmell, M. A., Murchison, E. P., Alcorn, H., Li, M. Z., Mills, A. A., Elledge, S. J., Anderson, K. V., and Hannon, G. J. (2003). Dicer is essential for mouse development. Nat Genet 35(3), 215–217.Google Scholar
  96. 96.
    Muljo, S. A., Ansel, K. M., Kanellopoulou, C., Livingston, D. M., Rao, A., and Rajewsky, K. (2005). Aberrant T cell differentiation in the absence of Dicer. J Exp Med 202(2), 261–269.Google Scholar
  97. 97.
    Harfe, B. D., McManus, M. T., Mansfield, J. H., Hornstein, E., and Tabin, C. J. (2005). The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc Natl Acad Sci USA 102(31), 10898–10903.Google Scholar
  98. 98.
    Yi, R., O’Carroll, D., Pasolli, H. A., Zhang, Z., Dietrich, F. S., Tarakhovsky, A., and Fuchs, E. (2006). Morphogenesis in skin is governed by discrete sets of differentially expressed microRNAs. Nat Genet 38(3), 356–362.Google Scholar
  99. 99.
    Chen, C. Z., Li, L., Lodish, H. F., and Bartel, D. P. (2004). MicroRNAs modulate hematopoietic lineage differentiation. Science 303(5654), 83–86.Google Scholar
  100. 100.
    Fazi, F., Rosa, A., Fatica, A., Gelmetti, V., De Marchis, M. L., Nervi, C., and Bozzoni, I. (2005). A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 123(5), 819–831.Google Scholar
  101. 101.
    Felli, N., Fontana, L., Pelosi, E., Botta, R., Bonci, D., Facchiano, F., Liuzzi, F., Lulli, V., Morsilli, O., Santoro, S., Valtieri, M., Calin, G. A., Liu, C. G., Sorrentino, A., Croce, C. M., and Peschle, C. (2005). MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci USA 102(50), 18081–18086.Google Scholar
  102. 102.
    Garzon, R., Pichiorri, F., Palumbo, T., Iuliano, R., Cimmino, A., Aqeilan, R., Volinia, S., Bhatt, D., Alder, H., Marcucci, G., Calin, G. A., Liu, C. G., Bloomfield, C. D., Andreeff, M., and Croce, C. M. (2006). MicroRNA fingerprints during human megakaryocytopoiesis. Proc Natl Acad Sci USA 103(13), 5078–5083.Google Scholar
  103. 103.
    Mansfield, J. H., Harfe, B. D., Nissen, R., Obenauer, J., Srineel, J., Chaudhuri, A., Farzan-Kashani, R., Zuker, M., Pasquinelli, A. E., Ruvkun, G., Sharp, P. A., Tabin, C. J., and McManus, M. T. (2004). MicroRNA-responsive “sensor” transgenes uncover Hox-like and other developmentally regulated patterns of vertebrate microRNA expression. Nat Genet 36(10), 1079–1083.Google Scholar
  104. 104.
    Morgan, R. (2006). Hox genes: a continuation of embryonic patterning? Trends Genet 22(2), 67–69.Google Scholar
  105. 105.
    Tanzer, A., Amemiya, C. T., Kim, C. B., and Stadler, P. F. (2005). Evolution of microRNAs located within Hox gene clusters. J Exp Zoolog B Mol Dev Evol 304(1), 75–85.Google Scholar
  106. 106.
    Yekta, S., Shih, I. H., and Bartel, D. P. (2004). MicroRNA-directed cleavage of HOXB8 mRNA. Science 304(5670), 594–596.Google Scholar
  107. 107.
    Hornstein, E., Mansfield, J. H., Yekta, S., Hu, J. K., Harfe, B. D., McManus, M. T., Baskerville, S., Bartel, D. P., and Tabin, C. J. (2005). The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development. Nature 438(7068), 671–674.Google Scholar
  108. 108.
    Naguibneva, I., Ameyar-Zazoua, M., Polesskaya, A., Ait-Si-Ali, S., Groisman, R., Souidi, M., Cuvellier, S., and Harel-Bellan, A. (2006). The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat Cell Biol 8(3), 278–284.Google Scholar
  109. 109.
    Yamamoto, M. and Kuroiwa, A. (2003). Hoxa-11 and Hoxa-13 are involved in repression of MyoD during limb muscle development. Dev Growth Differ 45(5–6), 485–498.Google Scholar
  110. 110.
    Yamamoto, M., Gotoh, Y., Tamura, K., Tanaka, M., Kawakami, A., Ide, H., and Kuroiwa, A. (1998). Coordinated expression of Hoxa-11 and Hoxa-13 during limb muscle patterning. Development 125(7), 1325–1335.Google Scholar
  111. 111.
    Zhao, Y., Samal, E., and Srivastava, D. (2005). Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436(7048), 214–220.Google Scholar
  112. 112.
    Chen, J. F., Mandel, E. M., Thomson, J. M., Wu, Q., Callis, T. E., Hammond, S. M., Conlon, F. L., and Wang, D. Z. (2006). The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38(2), 228–233.Google Scholar
  113. 113.
    Lu, J., McKinsey, T. A., Zhang, C. L., and Olson, E. N. (2000). Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class II histone deacetylases. Mol Cell 6(2), 233–244.Google Scholar
  114. 114.
    Li, S., Czubryt, M. P., McAnally, J., Bassel-Duby, R., Richardson, J. A., Wiebel, F. F., Nordheim, A., and Olson, E. N. (2005). Requirement for serum response factor for skeletal muscle growth and maturation revealed by tissue-specific gene deletion in mice. Proc Natl Acad Sci USA 102(4), 1082–1087.Google Scholar
  115. 115.
    Schratt, G. M., Tuebing, F., Nigh, E. A., Kane, C. G., Sabatini, M. E., Kiebler, M., and Greenberg, M. E. (2006). A brain-specific microRNA regulates dendritic spine development. Nature 439(7074), 283–289.Google Scholar
  116. 116.
    Bamburg, J. R. (1999). Proteins of the ADF/cofilin family: essential regulators of actin dynamics. Annu Rev Cell Dev Biol 15185–230.Google Scholar
  117. 117.
    Esau, C., Kang, X., Peralta, E., Hanson, E., Marcusson, E. G., Ravichandran, L. V., Sun, Y., Koo, S., Perera, R. J., Jain, R., Dean, N. M., Freier, S. M., Bennett, C. F., Lollo, B., and Griffey, R. (2004). MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 279(50), 52361–52365.Google Scholar
  118. 118.
    Fearnhead, H. O. (2004). Getting back on track, or what to do when apoptosis is de-railed: recoupling oncogenes to the apoptotic machinery. Cancer Biol Ther 3(1), 21–28.Google Scholar
  119. 119.
    Leaman, D., Chen, P. Y., Fak, J., Yalcin, A., Pearce, M., Unnerstall, U., Marks, D. S., Sander, C., Tuschl, T., and Gaul, U. (2005). Antisense-mediated depletion reveals essential and specific functions of microRNAs in Drosophila development. Cell 121(7), 1097–1108.Google Scholar
  120. 120.
    Nairz, K., Rottig, C., Rintelen, F., Zdobnov, E., Moser, M., and Hafen, E. (2006). Overgrowth caused by misexpression of a microRNA with dispensable wild-type function. Dev Biol 291(2), 314–324.Google Scholar
  121. 121.
    Cimmino, A., Calin, G. A., Fabbri, M., Iorio, M. V., Ferracin, M., Shimizu, M., Wojcik, S. E., Aqeilan, R. I., Zupo, S., Dono, M., Rassenti, L., Alder, H., Volinia, S., Liu, C. G., Kipps, T. J., Negrini, M., and Croce, C. M. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102(39), 13944–13949.Google Scholar
  122. 122.
    Chan, J. A., Krichevsky, A. M., and Kosik, K. S. (2005). MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65(14), 6029–6033.Google Scholar
  123. 123.
    Cheng, A. M., Byrom, M. W., Shelton, J., and Ford, L. P. (2005). Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res 33(4), 1290–1297.Google Scholar
  124. 124.
    Aza-Blanc, P., Cooper, C. L., Wagner, K., Batalov, S., Deveraux, Q. L., and Cooke, M. P. (2003). Identification of modulators of TRAIL-induced apoptosis via RNAi-based phenotypic screening. Mol Cell 12(3), 627–637.Google Scholar
  125. 125.
    MacKeigan, J. P., Murphy, L. O., and Blenis, J. (2005). Sensitized RNAi screen of human kinases and phosphatases identifies new regulators of apoptosis and chemoresistance. Nat Cell Biol 7(6), 591–600.Google Scholar
  126. 126.
    Brummelkamp, T. R., Nijman, S. M., Dirac, A. M., and Bernards, R. (2003). Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature 424(6950), 797–801.Google Scholar
  127. 127.
    Paddison, P. J., Silva, J. M., Conklin, D. S., Schlabach, M., Li, M., Aruleba, S., Balija, V., O’Shaughnessy, A., Gnoj, L., Scobie, K., Chang, K., Westbrook, T., Cleary, M., Sachidanandam, R., McCombie, W. R., Elledge, S. J., and Hannon, G. J. (2004). A resource for large-scale RNA-interference-based screens in mammals. Nature 428(6981), 427–431.Google Scholar
  128. 128.
    Moffat, J., Grueneberg, D. A., Yang, X., Kim, S. Y., Kloepfer, A. M., Hinkle, G., Piqani, B., Eisenhaure, T. M., Luo, B., Grenier, J. K., Carpenter, A. E., Foo, S. Y., Stewart, S. A., Stockwell, B. R., Hacohen, N., Hahn, W. C., Lander, E. S., Sabatini, D. M., and Root, D. E. (2006). A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 124(6), 1283–1298.Google Scholar
  129. 129.
    Silva, J. M., Li, M. Z., Chang, K., Ge, W., Golding, M. C., Rickles, R. J., Siolas, D., Hu, G., Paddison, P. J., Schlabach, M. R., Sheth, N., Bradshaw, J., Burchard, J., Kulkarni, A., Cavet, G., Sachidanandam, R., McCombie, W. R., Cleary, M. A., Elledge, S. J., and Hannon, G. J. (2005). Second-generation shRNA libraries covering the mouse and human genomes. Nat Genet 37(11), 1281–1288.Google Scholar
  130. 130.
    Kolfschoten, I. G., van Leeuwen, B., Berns, K., Mullenders, J., Beijersbergen, R. L., Bernards, R., Voorhoeve, P. M., and Agami, R. (2005). A genetic screen identifies PITX1 as a suppressor of RAS activity and tumorigenicity. Cell 121(6), 849–858.Google Scholar
  131. 131.
    Brummelkamp, T. R., Fabius, A. W., Mullenders, J., Madiredjo, M., Velds, A., Kerkhoven, R. M., Bernards, R., and Beijersbergen, R. L. (2006). An shRNA barcode screen provides insight into cancer cell vulnerability to MDM2 inhibitors. Nat Chem Biol 2(4), 202–206.Google Scholar
  132. 132.
    Brummelkamp, T. R., Berns, K., Hijmans, E. M., Mullenders, J., Fabius, A., Heimerikx, M., Velds, A., Kerkhoven, R. M., Madiredjo, M., Bernards, R., and Beijersbergen, R. L. (2004). Functional identification of cancer-relevant genes through large-scale RNA interference screens in mammalian cells. Cold Spring Harb Symp Quant Biol 69439–445.Google Scholar
  133. 133.
    Berns, K., Hijmans, E. M., Mullenders, J., Brummelkamp, T. R., Velds, A., Heimerikx, M., Kerkhoven, R. M., Madiredjo, M., Nijkamp, W., Weigelt, B., Agami, R., Ge, W., Cavet, G., Linsley, P. S., Beijersbergen, R. L., and Bernards, R. (2004). A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428(6981), 431–437.Google Scholar
  134. 134.
    Westbrook, T. F., Martin, E. S., Schlabach, M. R., Leng, Y., Liang, A. C., Feng, B., Zhao, J. J., Roberts, T. M., Mandel, G., Hannon, G. J., Depinho, R. A., Chin, L., and Elledge, S. J. (2005). A genetic screen for candidate tumor suppressors identifies REST. Cell 121(6), 837–848.Google Scholar
  135. 135.
    Ngo, V. N., Davis, R. E., Lamy, L., Yu, X., Zhao, H., Lenz, G., Lam, L. T., Dave, S., Yang, L., Powell, J., and Staudt, L. M. (2006). A loss-of-function RNA interference screen for molecular targets in cancer. Nature 441(7089), 106–110.Google Scholar
  136. 136.
    Voorhoeve, P. M., le Sage, C., Schrier, M., Gillis, A. J., Stoop, H., Nagel, R., Liu, Y. P., van Duijse, J., Drost, J., Griekspoor, A., Zlotorynski, E., Yabuta, N., De Vita, G., Nojima, H., Looijenga, L. H., and Agami, R. (2006). A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 124(6), 1169–1181.Google Scholar
  137. 137.
    Shankar, P., Manjunath, N., and Lieberman, J. (2005). The prospect of silencing disease using RNA interference. JAMA 293(11), 1367–1373.Google Scholar
  138. 138.
    Pai, S. I., Lin, Y. Y., Macaes, B., Meneshian, A., Hung, C. F., and Wu, T. C. (2006). Prospects of RNA interference therapy for cancer. Gene Ther 13(6), 464–477.Google Scholar
  139. 139.
    Brummelkamp, T. R., Bernards, R., and Agami, R. (2002). Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2(3), 243–247.Google Scholar
  140. 140.
    Rubinson, D. A., Dillon, C. P., Kwiatkowski, A. V., Sievers, C., Yang, L., Kopinja, J., Rooney, D. L., Ihrig, M. M., McManus, M. T., Gertler, F. B., Scott, M. L., and Van Parijs, L. (2003). A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 33(3), 401–406.Google Scholar
  141. 141.
    Song, E., Lee, S. K., Dykxhoorn, D. M., Novina, C., Zhang, D., Crawford, K., Cerny, J., Sharp, P. A., Lieberman, J., Manjunath, N., and Shankar, P. (2003). Sustained small interfering RNA-mediated human immunodeficiency virus type 1 inhibition in primary macrophages. J Virol 77(13), 7174–7181.Google Scholar
  142. 142.
    Purow, B. W., Haque, R. M., Noel, M. W., Su, Q., Burdick, M. J., Lee, J., Sundaresan, T., Pastorino, S., Park, J. K., Mikolaenko, I., Maric, D., Eberhart, C. G., and Fine, H. A. (2005). Expression of Notch-1 and its ligands, Delta-like-1 and Jagged-1, is critical for glioma cell survival and proliferation. Cancer Res 65(6), 2353–2363.Google Scholar
  143. 143.
    Yuan, J., Yan, R., Kramer, A., Eckerdt, F., Roller, M., Kaufmann, M., and Strebhardt, K. Cyclin B1 depletion inhibits proliferation and induces apoptosis in human tumor cells. Oncogene 23(34), 5843–5852 (2004).Google Scholar
  144. 144.
    Roberson, R. S., Kussick, S. J., Vallieres, E., Chen, S. Y., and Wu, D. Y. (2005). Escape from therapy-induced accelerated cellular senescence in p53-null lung cancer cells and in human lung cancers. Cancer Res 65(7), 2795–2803.Google Scholar
  145. 145.
    Zen, Y., Harada, K., Sasaki, M., Chen, T. C., Chen, M. F., Yeh, T. S., Jan, Y. Y., Huang, S. F., Nimura, Y., and Nakanuma, Y. (2005). Intrahepatic cholangiocarcinoma escapes from growth inhibitory effect of transforming growth factor-beta1 by overexpression of cyclin D1. Lab Invest 85(4), 572–581.Google Scholar
  146. 146.
    Xiao, Z., Xue, J., Sowin, T. J., Rosenberg, S. H., and Zhang, H. (2005). A novel mechanism of checkpoint abrogation conferred by Chk1 downregulation. Oncogene 24(8), 1403–1411.Google Scholar
  147. 147.
    Takei, Y., Kadomatsu, K., Yuzawa, Y., Matsuo, S., and Muramatsu, T. (2004). A small interfering RNA targeting vascular endothelial growth factor as cancer therapeutics. Cancer Res 64(10), 3365–3370.Google Scholar
  148. 148.
    Filleur, S., Courtin, A., Ait-Si-Ali, S., Guglielmi, J., Merle, C., Harel-Bellan, A., Clezardin, P., and Cabon, F. (2003). SiRNA-mediated inhibition of vascular endothelial growth factor severely limits tumor resistance to antiangiogenic thrombospondin-1 and slows tumor vascularization and growth. Cancer Res 63(14), 3919–3922.Google Scholar
  149. 149.
    Schiffelers, R. M., Ansari, A., Xu, J., Zhou, Q., Tang, Q., Storm, G., Molema, G., Lu, P. Y., Scaria, P. V., and Woodle, M. C. (2004). Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res 32(19), e149.Google Scholar
  150. 150.
    Kilic, N., Oliveira-Ferrer, L., Wurmbach, J. H., Loges, S., Chalajour, F., Neshat-Vahid, S., Weil, J., Fernando, M., and Ergun, S. (2005). Pro-angiogenic signaling by the endothelial presence of CEACAM1. J Biol Chem 280(3), 2361–2369.Google Scholar
  151. 151.
    Liu, N., Bi, F., Pan, Y., Sun, L., Xue, Y., Shi, Y., Yao, X., Zheng, Y., and Fan, D. (2004). Reversal of the malignant phenotype of gastric cancer cells by inhibition of RhoA expression and activity. Clin Cancer Res 10(18 Pt 1), 6239–6247.Google Scholar
  152. 152.
    Chen, Y., Stamatoyannopoulos, G., and Song, C. Z. (2003). Down-regulation of CXCR4 by inducible small interfering RNA inhibits breast cancer cell invasion in vitro. Cancer Res 63(16), 4801–4804.Google Scholar
  153. 153.
    Liang, Z., Yoon, Y., Votaw, J., Goodman, M. M., Williams, L., and Shim, H. (2005). Silencing of CXCR4 blocks breast cancer metastasis. Cancer Res 65(3), 967–971.Google Scholar
  154. 154.
    Lee, E. J., Mircean, C., Shmulevich, I., Wang, H., Liu, J., Niemisto, A., Kavanagh, J. J., Lee, J. H., and Zhang, W. (2005). Insulin-like growth factor binding protein 2 promotes ovarian cancer cell invasion. Mol Cancer 4(1), 7.Google Scholar
  155. 155.
    Yin, Q. and Flemington, E. K. (2006). siRNAs against the Epstein Barr virus latency replication factor, EBNA1, inhibit its function and growth of EBV-dependent tumor cells. Virology 346(2), 385–393.Google Scholar
  156. 156.
    Hong, M., Murai, Y., Kutsuna, T., Takahashi, H., Nomoto, K., Cheng, C. M., Ishizawa, S., Zhao, Q. L., Ogawa, R., Harmon, B. V., Tsuneyama, K., and Takano, Y. (2006). Suppression of Epstein-Barr nuclear antigen 1 (EBNA1) by RNA interference inhibits proliferation of EBV-positive Burkitt’s lymphoma cells. J Cancer Res Clin Oncol 132(1), 1–8.Google Scholar
  157. 157.
    Li, X. P., Li, G., Peng, Y., Kung, H. F., and Lin, M. C. (2004). Suppression of Epstein-Barr virus-encoded latent membrane protein-1 by RNA interference inhibits the metastatic potential of nasopharyngeal carcinoma cells. Biochem Biophys Res Commun 315(1), 212–218.Google Scholar
  158. 158.
    Jiang, M. and Milner, J. (2005). Selective silencing of viral gene E6 and E7 expression in HPV-positive human cervical carcinoma cells using small interfering RNAs. Methods Mol Biol 292, 401–420.Google Scholar
  159. 159.
    Jiang, M. and Milner, J. (2002). Selective silencing of viral gene expression in HPV-positive human cervical carcinoma cells treated with siRNA, a primer of RNA interference. Oncogene 21(39), 6041–6048.Google Scholar
  160. 160.
    Wu, H., Hait, W. N., and Yang, J. M. (2003). Small interfering RNA-induced suppression of MDR1 (P-glycoprotein) restores sensitivity to multidrug-resistant cancer cells. Cancer Res 63(7), 1515–1519.Google Scholar
  161. 161.
    Stege, A., Priebsch, A., Nieth, C., and Lage, H. (2004). Stable and complete overcoming of MDR1/P-glycoprotein-mediated multidrug resistance in human gastric carcinoma cells by RNA interference Cancer. Gene Ther 11(11), 699–706.Google Scholar
  162. 162.
    Nieth, C., Priebsch, A., Stege, A., and Lage, H. (2003). Modulation of the classical multidrug resistance (MDR) phenotype by RNA interference (RNAi). FEBS Lett 545(2–3), 144–150.Google Scholar
  163. 163.
    Yague, E., Higgins, C. F., and Raguz, S. (2004). Complete reversal of multidrug resistance by stable expression of small interfering RNAs targeting MDR1. Gene Ther 11(14), 1170–1174.Google Scholar
  164. 164.
    Duan, Z., Brakora, K. A., and Seiden, M. V. (2004). Inhibition of ABCB1 (MDR1) and ABCB4 (MDR3) expression by small interfering RNA and reversal of paclitaxel resistance in human ovarian cancer cells. Mol Cancer Ther 3(7), 833–838.Google Scholar
  165. 165.
    Peng, Z., Xiao, Z., Wang, Y., Liu, P., Cai, Y., Lu, S., Feng, W., and Han, Z. C. (2004). Reversal of P-glycoprotein-mediated multidrug resistance with small interference RNA (siRNA) in leukemia cells. Cancer Gene Ther 11(11), 707–712.Google Scholar
  166. 166.
    Chang, I. Y., Kim, M. H., Kim, H. B., Lee do, Y., Kim, S. H., Kim, H. Y., and You, H. J. (2005). Small interfering RNA-induced suppression of ERCC1 enhances sensitivity of human cancer cells to cisplatin. Biochem Biophys Res Commun 327(1), 225–233.Google Scholar
  167. 167.
    Dykxhoorn, D. M. and Lieberman, J. (2005). The silent revolution: RNA interference as basic biology, research tool, and therapeutic. Annu Rev Med 56, 401–423.Google Scholar
  168. 168.
    Dykxhoorn, D. M., Palliser, D., and Lieberman, J. (2006). The silent treatment: siRNAs as small molecule drugs. Gene Ther 13(6), 541–552.Google Scholar
  169. 169.
    Soutschek, J., Akinc, A., Bramlage, B., Charisse, K., Constien, R., Donoghue, M., Elbashir, S., Geick, A., Hadwiger, P., Harborth, J., John, M., Kesavan, V., Lavine, G., Pandey, R. K., Racie, T., Rajeev, K. G., Rohl, I., Toudjarska, I., Wang, G., Wuschko, S., Bumcrot, D., Koteliansky, V., Limmer, S., Manoharan, M., and Vornlocher, H. P. (2004). Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432(7014), 173–178.Google Scholar
  170. 170.
    Urban-Klein, B., Werth, S., Abuharbeid, S., Czubayko, F., and Aigner, A. (2005). RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther 12(5), 461–466.Google Scholar
  171. 171.
    Ge, Q., Filip, L., Bai, A., Nguyen, T., Eisen, H. N., and Chen, J. (2004). Inhibition of influenza virus production in virus-infected mice by RNA interference. Proc Natl Acad Sci USA 101(23), 8676–8681.Google Scholar
  172. 172.
    Santel, A., Aleku, M., Keil, O., Endruschat, J., Esche, V., Fisch, G., Dames, S., Loffler, K., Fechtner, M., Arnold, W., Giese, K., Klippel, A., and Kaufmann, J. (2006). A novel siRNA-lipoplex technology for RNA interference in the mouse vascular endothelium. Gene Ther 13(16), 1222–1234.Google Scholar
  173. 173.
    Santel, A., Aleku, M., Keil, O., Endruschat, J., Esche, V., Durieux, B., Loffler, K., Fechtner, M., Rohl, T., Fisch, G., Dames, S., Arnold, W., Giese, K., Klippel, A., and Kaufmann, J. (2006). RNA interference in the mouse vascular endothelium by systemic administration of siRNA-lipoplexes for cancer therapy, Gene Ther 13(18), 1360–1370.Google Scholar
  174. 174.
    Yano, J., Hirabayashi, K., Nakagawa, S., Yamaguchi, T., Nogawa, M., Kashimori, I., Naito, H., Kitagawa, H., Ishiyama, K., Ohgi, T., and Irimura, T. (2004). Antitumor activity of small interfering RNA/cationic liposome complex in mouse models of cancer, Clin Cancer Res 10(22), 7721–7726.Google Scholar
  175. 175.
    Morrissey, D. V., Lockridge, J. A., Shaw, L., Blanchard, K., Jensen, K., Breen, W., Hartsough, K., Machemer, L., Radka, S., Jadhav, V., Vaish, N., Zinnen, S., Vargeese, C., Bowman, K., Shaffer, C. S., Jeffs, L. B., Judge, A., MacLachlan, I., and Polisky, B. (2005). Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol 23(8), 1002–1007.Google Scholar
  176. 176.
    Song, E., Zhu, P., Lee, S. K., Chowdhury, D., Kussman, S., Dykxhoorn, D. M., Feng, Y., Palliser, D., Weiner, D. B., Shankar, P., Marasco, W. A., and Lieberman, J. (2005). Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol 23(6), 709–717.Google Scholar
  177. 177.
    Bagga, S., Bracht, J., Hunter, S., Massirer, K., Holtz, J., Eachus, R., and Pasquinelli, A. E. (2005). Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122(4), 553–563.Google Scholar
  178. 178.
    Krutzfeldt, J., Rajewsky, N., Braich, R., Rajeev, K. G., Tuschl, T., Manoharan, M., and Stoffel, M. (2005). Silencing of microRNAs in vivo with “antagomirs”. Nature 438(7068), 685–689.Google Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Derek M. Dykxhoorn
    • 1
  • Dipanjan Chowdhury
    • 1
  • Judy Lieberman
    • 1
  1. 1.CBR Institute for Biomedical Research and Department of PediatricsHarvard Medical SchoolBostonUSA

Personalised recommendations