Cell Death: History and Future

  • Zahra Zakeri
  • Richard A. Lockshin
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 615)

Cell death was observed and understood since the 19th century, but there was no experimental examination until the mid-20th century. Beginning in the 1960s, several laboratories demonstrated that cell death was biologically controlled (programmed) and that the morphology was common and not readily explained (apoptosis). By 1990, the genetic basis of programmed cell death had been established, and the first components of the cell death machinery (caspase 3, bcl-2, and Fas) had been identified, sequenced, and recognized as highly conserved in evolution. The rapid development of the field has given us substantial understanding of how cell death is achieved. However, this knowledge has made it possible for us to understand that there are multiple pathways to death and that the commitment to die is not the same as execution. A cell that has passed the commitment stage but is blocked from undergoing apoptosis will die by another route. We still must learn much more about how a cell commits to death and what makes it choose a path to die.

Keywords

apoptosis autophagy autophagic cell death history lysosome 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ameisen, J. C. and Capron, A. (1991). Cell dysfunction and depletion in AIDS: the programmed cell death hypothesis. Immunol Today Dev 12, 102–105.CrossRefGoogle Scholar
  2. Beaulaton, J. and Lockshin, R. A. (1977). Ultrastructural study of the normal degeneration of the intersegmental muscles of Antheraea polyphemus and Manduca sexta (Insecta, Lepidoptera) with particular reference to cellular autophagy. J Morphol Dev 154, 39–58.CrossRefGoogle Scholar
  3. Beaulaton, J. and Lockshin, R. A. (1978). Ultrastructural study of neuromuscular relations during degeneration of the intersegmental muscles. Biol Cellulaire Dev 33, 169–174.Google Scholar
  4. Bortner, C. D. and Cidlowski, J. A. (2002). Apoptotic volume decrease and the incredible shrinking cell. Cell Death Differ Dev 9, 1307–1310.CrossRefGoogle Scholar
  5. Boya, P., Gonzalez-Polo, R. A., Casares, N., Perfettini, J. L., Dessen, P., Larochette, N., Metivier, D., Meley, D., Souquere, S., Yoshimori, T., Pierron, G., Codogno, P., and Kroemer, G. (2005). Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol Dev 25, 1025–1040.CrossRefGoogle Scholar
  6. Clarke, P. G. H. and Clarke, S. (1995). Historic apoptosis. Nat Dev 378, 230.CrossRefGoogle Scholar
  7. Clarke, P. G. H. and Clarke, S. (1996). Nineteenth century research on naturally occurring cell death and related phenomena. Anat Embryol Dev 193, 81–99.Google Scholar
  8. Glücksmann, A. (1951). Cell deaths in normal vertebrate ontogeny. Biol. Rev. Cambridge Phil Soc Dev 26, 59–86.CrossRefGoogle Scholar
  9. Glücksmann, A. (1965). Cell death in normal development. Arch Biol (Liege) Dev 76, 419–437.Google Scholar
  10. Golstein, P. (1997). Controlling cell death [comment]. Sci Dev 275, 1081–1082.Google Scholar
  11. Golstein, P., Marguet, D., and Depraetere, V. (1995a). Fas bridging cell death and cytotoxicity: the reaper connection. Immunol Rev Dev 146, 45–56.CrossRefGoogle Scholar
  12. Golstein, P., Marguet, D., and Depraetere, V. (1995b). Homology between reaper and the cell death domains of Fas and TNFR1. Cell Dev 81, 185–186.Google Scholar
  13. Häcker, G. and Vaux, D. L. (1997). A chronology of cell death. Apoptosis 2, 247–256.PubMedCrossRefGoogle Scholar
  14. Hensey, C. and Gautier, J. (1997). A developmental timer that regulates apoptosis at the onset of gastrulation. Mech Dev 69, 183–195.PubMedCrossRefGoogle Scholar
  15. Hensey, C. and Gautier, J. (1999). Developmental regulation of induced and programmed cell death in Xenopus embryos. In: Mechanisms of Cell Death, eds. Z. Zakeri, R. A. Lockshin, and L. Benitez-Bribiesca, New York Academy of Sciences, New York City, pp. 105–119.Google Scholar
  16. Horvitz, H. R. (2003). Nobel lecture. Worms, life and death. Biosci Rep Dev 23, 239–303.CrossRefGoogle Scholar
  17. Janet, C. (1907). Anatomie du corselet et histolyse des muscles vibrateurs après le vol nuptial, chez la reine de la fourmi (Lasius niger). DuCourtieux et Gout, Limoges, pp. 1–150.Google Scholar
  18. Jaattela, M. (2004). Multiple cell death pathways as regulators of tumour initiation and progression. Oncogene Dev 23, 2746–2756.CrossRefGoogle Scholar
  19. Kerr, J. F. R. (1971). Shrinkage necrosis: a distinct mode of cellular death. J Pathol Dev 105, 13–20.CrossRefGoogle Scholar
  20. Kerr, J. F. R. and Harmon, B. V. (1991). Definition and incidence of apoptosis: an historical perspective. In: Apopotosis: The Molecular Biology of Cell Death, eds. L. D. Tomei and F.O. Cope. Cold Spring Harbor Press, Cold Spring Harbor, NY, pp. 5–30.Google Scholar
  21. Kerr, J. F. R., Wyllie, A. H., and Currie, A. R. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer Dev 26, 239–257.Google Scholar
  22. Kroemer, G., El-Deiry, W. S., Golstein, P., Peter, M. E., Vaux, D., Vandenabeele, P., Zhivotovsky, B., Blagosklonny, M. V., Malorni, W., Knight, R. A., Piacentini, M., Nagata, S., and Melino, G. (2005). Classification of cell death: recommendations of the nomenclature committee on cell death. Cell Death Differ Dev 12 (Suppl 2), 1463–1467.CrossRefGoogle Scholar
  23. Kuma, A., Hatano, M., Matsui, M., Yamamoto, A., Nakaya, H., Yoshimori, T., Ohsumi, Y., Tokuhisa, T., and Mizushima, N. (2004). The role of autophagy during the early neonatal starvation period. Nat Dev 432, 1032–1036.CrossRefGoogle Scholar
  24. Lang-Rollin, I. C., Rideout, H. J., Noticewala, M., and Stefanis, L. (2003). Mechanisms of caspase-independent neuronal death: energy depletion and free radical generation. J Neurosci Dev 23, 11015–11025.Google Scholar
  25. Lockshin, R. A. (1969). Programmed cell death. Activation of lysis of a mechanism involving the synthesis of protein. J Insect Physiol Dev 15, 1505–1516.CrossRefGoogle Scholar
  26. Lockshin, R. A. and Beaulaton, J. (1974a). Programmed cell death. Cytochemical evidence for lysosomes during the normal breakdown of the intersegmental muscles. J Ultrastruct Res Dev 46, 43–62.CrossRefGoogle Scholar
  27. Lockshin, R. A. and Beaulaton, J. (1974b). Programmed cell death. Life Sci Dev 15, 1549–1565.CrossRefGoogle Scholar
  28. Lockshin, R. A. and Beaulaton, J. (1979). Cytological studies of dying muscle fibers of known physiological parameters. Tissue Cell Dev 11, 803–819.CrossRefGoogle Scholar
  29. Lockshin, R. A. and Beaulaton, J. (1981). Cell death: questions for histochemists concerning the causes of the various cytological changes. Histochem J Dev 13, 659–666.CrossRefGoogle Scholar
  30. Lockshin, R. A. and Williams, C. M. (1964). Programmed cell death. II. Endocrine potentiation of the breakdown of the intersegmental muscles of silkmoths. J Insect Physiol Dev 10, 643–649.CrossRefGoogle Scholar
  31. Lockshin, R. A. and Williams, C. M. (1965a). Programmed cell death. III. Neural control of the breakdown of the intersegmental muscles. J Insect Physiol Dev 11, 605–610.Google Scholar
  32. Lockshin, R. A. and Williams, C. M. (1965b). Programmed cell death. I. Cytology of the degeneration of the intersegmental muscles of the pernyi silkmoth. J Insect Physiol Dev 11, 123–133.CrossRefGoogle Scholar
  33. Lockshin, R. A. and Williams, C. M. (1965c). Programmed cell death. IV. The influence of drugs on the breakdown of the intersegmental muscles of silkmoths. J Insect Physiol Dev 11, 803–809.CrossRefGoogle Scholar
  34. Lockshin, R. A. and Williams, C. M. (1965d). Programmed cell death. V. Cytolytic enzymes in relation to the breakdown of the intersegmental muscles of silkmoths. J Insect Physiol Dev 11, 831–844.CrossRefGoogle Scholar
  35. Lockshin, R. A. and Zakeri, Z. (2001). Programmed cell death and apoptosis: origins of the theory. Nat Rev Mol Cell Biol Dev 2, 545–550.CrossRefGoogle Scholar
  36. Lockshin, R. A. and Zakeri, Z. (2004a). When Cells Die II. Wiley-Liss, New York.Google Scholar
  37. Lockshin, R. A. and Zakeri, Z. (2004b). Apoptosis, autophagy, and more. Int J Biochem Cell Biol Dev 36, 2405–2419.CrossRefGoogle Scholar
  38. Lockshin, R. A. and Zakeri, Z. (2004c). Caspase-independent cell death? Oncogene Dev 23, 2766–2773.CrossRefGoogle Scholar
  39. Lum, J. J., Bauer, D. E., Kong, M., Harris, M. H., Li, C., Lindsten, T., and Thompson, C. B. (2005). Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell Dev 120, 237–248.Google Scholar
  40. Melendez, A., Talloczy, Z., Seaman, M., Eskelinen, E. L., Hall, D. H., and Levine, B. (2003). Autophagy genes are essential for dauer development and life-span extension in C. elegans. Sci Dev 301, 1387–1391.Google Scholar
  41. Nagata, S. and Golstein, P. (1995). The fas death factor. Sci Dev 267, 1449–1456.Google Scholar
  42. Negron, J. F. and Lockshin, R. A. (2004). Activation of apoptosis and caspase-3 in zebrafish early gastrulae. Dev Dyn Dev 231, 161–170.CrossRefGoogle Scholar
  43. Okada, H. and Mak, T. W. (2004). Pathways of apoptotic and non-apoptotic death in tumour cells. Nat Rev Cancer Dev 4, 592–603.CrossRefGoogle Scholar
  44. Pérez, C. (1910). Recherches histologiques sur la métamorphose des muscides (Calliphora erythrocephala Mg). Arch Zool Expér Gén 5e Série Dev 4, 1–274.Google Scholar
  45. Saunders, J. W., Jr. (1966). Death in embryonic systems. Sci Dev 154, 604–612.Google Scholar
  46. Sperandio, S., Poksay, K., de, B., Lafuente, I. M. J., Liu, B., Nasir, J., and Bredesen, D. E. (2004). Paraptosis: mediation by MAP kinases and inhibition by AIP-1/Alix. Cell Death Differ Dev 11, 1066–1075.Google Scholar
  47. Tata, J. R. (1966). Requirement for RNA and protein synthesis for induced regression of tadpole tail in organ culture. Dev Biol Dev 13, 77–94.CrossRefGoogle Scholar
  48. Terre, L. (1889). Contribution á l’étude de l’histolyse et de l’histogénèse du tissu musculaire chez l’abeille. C R Soc Biol (IIe Série) Dev 51, 896–898.Google Scholar
  49. Tolkovsky, A. M., Bampton, E. T. W., and Goemans, C. G. (2004). Cell death in neuronal development and maintenance. In: When Cells Die II, eds. Lockshin, R. A. and Zakeri, Z. Wiley-Liss, New York, pp. 175–200.Google Scholar
  50. Wiggleswoth, V. B. (1972). The Principles of Insect Physiology. Chapman & Hall, London.Google Scholar
  51. Xue, L., Fletcher, G. C., and Tolkovsky, A. M. (1999). Autophagy is activated by apoptotic signalling in sympathetic neurons: an alternative mechanism of death execution. Mol Cell Neurosci Dev 14, 180–198.CrossRefGoogle Scholar
  52. Xue, L., Fletcher, G. C., and Tolkovsky, A. M. (2001). Mitochondria are selectively eliminated from eukaryotic cells after blockade of caspases during apoptosis. Curr Biol Dev 11, 361–365.CrossRefGoogle Scholar
  53. Yonish-Rouach, E., Grunwald, D., Wilder, S., Kimchi, A., May, E., Lawrence, J.-J., May, P., and Oren, M. (1993). p53-Mediated cell death: relationship to cell cycle control. Mol Cell Biol Dev 13, 1415–1423.Google Scholar
  54. Zakeri, Z. and Lockshin, R. A. (2002). Cell death during development. J Immunol Methods Dev 265, 3–20.CrossRefGoogle Scholar
  55. Zakeri, Z. and Lockshin, R. A. (2004). Cell death: shaping an embryo. In: When Cells Die II, eds. Lockshin, R. A. and Zakeri, Z. Wiley-Liss, New York, pp. 27–58.Google Scholar
  56. Zakeri, Z., Bursch, W., Tenniswood, M., and Lockshin, R. A. (1995). Cell death. Programmed, apoptosis, necrosis, or other. Cell Death Differ Dev 2, 87–96.Google Scholar
  57. Zakeri, Z. F., Quaglino, D., Latham, T., and Lockshin, R. A. (1993). Delayed internucleosomal DNA fragmentation in programmed cell death. FASEB J Dev 7, 470–478.Google Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Zahra Zakeri
    • 1
  • Richard A. Lockshin
    • 2
  1. 1.Department of BiologyQueens College and the Graduate Center of the City University of New YorkNew YorkUSA
  2. 2.Queens College and the Graduate Center of the City University of New York, St. John's UniversityNew YorkUSA

Personalised recommendations