Myosins pp 95-124 | Cite as

Myosin I

  • Lynne M. Coluccio
Part of the Proteins and Cell Regulation book series (PROR, volume 7)


Class I myosins are single-headed molecular mechano-enzymes, or motors, that translocate actin filaments in vitro. They constitute the largest group of unconventional myosins. Found in many different organisms from protists and yeast to vertebrates, they are often associated with membranes. Class I myosins are diverse in structure, regulation and function. They are responsible for the ultrastructure of intestinal microvilli; they function as the adaptation motor in the stereocilia of the inner ear; they are implicated in transcription regulation; and they modulate cell adhesion and motility in the immune system. Many of the observed effects are a consequence of the ability of myosin I to modulate actin function by coupling the cytoskeleton to the membrane, crosslinking actin filaments and/or modulating actin assembly.


actin myosin I microvilli motility stereocilia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, R. J., and Pollard, T. D. (1989). Binding of myosin I to membrane lipids. Nature 340)565–568.PubMedCrossRefGoogle Scholar
  2. Ahmed, Z. M., Goodyear, R., Riazuddin, S., Lagziel, A., Legan, P. K., Behra, M., Burgess, S. M., Lilley, K. S., Wilcox, E. R., Riazuddin, S. and others. (2006). The tip-link antigen, a protein associated with the transduction complex of sensory hair cells, is protocadherin-15. Journal of Neuroscience 26)7022–7034.PubMedCrossRefGoogle Scholar
  3. Albanesi, J. P., Couè, M., Fujisaki, H., and Korn, E. D. (1985). Effect of actin filament length and filament number concentration on the actin-activated ATPase activity of Acanthamoeba myosin I. J Biol Chem 260(24)13276–80.PubMedGoogle Scholar
  4. Albanesi, J. P., Fujisaki, H., and Korn, E. D. (1984). Localization of the active site and phosphorylation site of Acanthamoeba myosins IA and IB. J Biol Chem 259(22)14184–9.PubMedGoogle Scholar
  5. Albanesi, J. P., Hammer, J. A. I., and Korn, E. D. (1983). The interaction of F-actin with phosphorylated and unphosphorylated myosins IA and IB from Acanthamoeba castellanii. J Biol Chem 258(16)10176–81.PubMedGoogle Scholar
  6. Anderson, B. L., Boldogh, I., Evangelista, M., Boone, C., Greene, L. A., and Pon, L. A. (1998). The Src homology domain 3 (SH3) of a yeast type I myosin, Myo5p, binds to verprolin and is required for targeting to sites of actin polarization. J Cell Biol 141(6)1357–70.PubMedCrossRefGoogle Scholar
  7. Arthur, C., Lin, A., and Milligan, R. A. (2006). Myo1b as an adaptive crosslinker. in preparation.Google Scholar
  8. Bähler, M., Kroschewski, R., Stöffler, H. E., and Behrmann, T. (1994). Rat myr 4 defines a novel subclass of myosin I: identification, distribution, localization, and mapping of calmodulin-binding sites with differential calcium sensitivity. J Cell Biol 126(2)375–89.PubMedCrossRefGoogle Scholar
  9. Baines, I. C., Brzeska, H., and Korn, E. D. (1992). Differential localization of Acanthamoeba myosin I isoforms. J Cell Biol 119(5)1193–203.PubMedCrossRefGoogle Scholar
  10. Baines, I. C., Corigliano-Murphy, A., and Korn, E. D. (1995). Quantification and localization of phosphorylated myosin I isoforms in Acanthamoeba castellanii. J Cell Biol 130(3)591–603.PubMedCrossRefGoogle Scholar
  11. Baines, I. C., and Korn, E. D. (1990). Localization of myosin IC and myosin II in Acanthamoeba castellanii by indirect immunofluorescence and immunogold electron microscopy. J Cell Biol 111(5 Pt 1)1895–904.PubMedCrossRefGoogle Scholar
  12. Barylko, B., Wagner, M. C., Reizes, O., and Albanesi, J. P. (1992). Purification and characterization of a mammalian myosin I. Proc. Natl. Acad. Sci. U. S. A. 89(2)490–4.PubMedCrossRefGoogle Scholar
  13. Batters, C., Arthur, C. P., Lin, A., Porter, J., Geeves, M. A., Milligan, R. A., Molloy, J. E., and Coluccio, L. M. (2004). Myo1c is designed for the adaptation response in the inner ear. EMBO J 23)1433–1440.PubMedCrossRefGoogle Scholar
  14. Bement, W. M., and Mooseker, M. S. (1995). TEDS rule: a molecular rationale for differential regulation of myosins by phosphorylation of the heavy chain head. Cell. Motil. Cytoskeleton 31(2)87–92.PubMedCrossRefGoogle Scholar
  15. Bement, W. M., Wirth, J. A., and Mooseker, M. S. (1994). Cloning and mRNA expression of human unconventional myosin-IC. A homologue of amoeboid myosins-I with a single IQ motif and an SH3 domain. J Mol Biol 243(2)356–63.Google Scholar
  16. Berg, J. S., Powell, B. C., and Cheney, R. E. (2001). A millennial myosin census. Mol Biol Cell 12(4)780–94.PubMedGoogle Scholar
  17. Bonfanti, P., Colombo, A., Heintzelman, M. B., Mooseker, M. S., and Camatini, M. (1992). The molecular architecture of an insect midgut brush border cytoskeleton. Eur J Cell Biol 57(2)298–307.PubMedGoogle Scholar
  18. Bose, A., Guilherme, A., Robida, S. I., Nicoloro, S. M., Zhou, Q. L., Jiang, Z. Y., Pomerleau, D. P., and Czech, M. P. (2002). Glucose transporter recycling in response to insulin is facilitated by myosin Myo1c. Nature 420(6917)821–4.PubMedCrossRefGoogle Scholar
  19. Bose, A., Robida, S., Furcinitti, P. S., Chawla, A., Fogarty, K., Corvera, S., and Czech, M. P. (2004). Unconventional myosin Myo1c promotes membrane fusion in a regulated exocytic pathway. Mol Cell Biol 24(12)5447–5458.PubMedCrossRefGoogle Scholar
  20. Bretscher, A., and Weber, K. (1980). Fimbrin, a new microfilament-associated protein present in microvilli and other cell surface structures. J. Cell Biol 86)335–340.PubMedCrossRefGoogle Scholar
  21. Brown, M. E., and Bridgman, P. C. (2004). Myosin function in nervous and sensory systems. J Neurobiology 58)118–130.CrossRefGoogle Scholar
  22. Brzeska, H., and Korn, E. D. (1996). Regulation of class I and class II myosins by heavy chain phosphorylation. J Biol Chem 271(29)16983–6.PubMedCrossRefGoogle Scholar
  23. Brzeska, H., Lynch, T. J., Martin, B., and Korn, E. D. (1989). The localization and sequence of the phosphorylation sites of Acanthamoeba myosins I. An improved method for locating the phosphorylated amino acid. J Biol Chem 264(32)19340–8.Google Scholar
  24. Brzeska, H., Young, R., Knaus, U., and Korn, E. D. (1999). Myosin I heavy chain kinase: Cloning of the full-length gene and acidic lipid-dependent activation by Rac and Cdc42. Proc Natl Acad Sci USA 96)394–399.PubMedCrossRefGoogle Scholar
  25. Cheney, R. E., and Mooseker, M. S. (1992). Unconventional myosins. Curr Opin Cell Biol 4(1)27–35.PubMedCrossRefGoogle Scholar
  26. Clark, R., Ansari, M. A., Dash, S., Geeves, M. A., and Coluccio, L. M. (2005). Loop 1 of transducer region in mammalian class I myosin, Myo1b, modulates actin affinity, ATPase activity, and nucleotide access. J Biol Chem 280)30935–30942.PubMedCrossRefGoogle Scholar
  27. Collins, J. H., and Borysenko, C. W. (1984). The 110,000-dalton actin- and calmodulin-binding protein from intestinal brush border is a myosin-like ATPase. J Biol Chem 259(22)14128–35.PubMedGoogle Scholar
  28. Collins, K., Sellers, J. R., and Matsudaira, P. (1990). Calmodulin dissociation regulates brush border myosin I (110-kD-calmodulin) mechanochemical activity in vitro. J Cell Biol 110(4)1137–47.PubMedCrossRefGoogle Scholar
  29. Coluccio, L. M. (1997). Myosin I. Am. J. Physiol. 273(2 Pt 1)C347–59.PubMedGoogle Scholar
  30. Coluccio, L. M., and Bretscher, A. (1987). Calcium-regulated cooperative binding of the microvillar 110K-calmodulin complex to F-actin: formation of decorated filaments. J Cell Biol 105(1)325–33.PubMedCrossRefGoogle Scholar
  31. Coluccio, L. M., and Bretscher, A. (1989). Reassociation of microvillar core proteins: making a microvillar core in vitro. J Cell Biol 108(2)495–502.PubMedCrossRefGoogle Scholar
  32. Coluccio, L. M., and Conaty, C. (1993). Myosin-I in mammalian liver. Cell Motil Cytoskeleton 24(3)189–99.PubMedCrossRefGoogle Scholar
  33. Coluccio, L. M., and Geeves, M. A. (1999). Transient kinetic analysis of the 130-kDa myosin I (myr 1 gene product) from rat liver: A myosin I designed for maintenance of tension? J Biol Chem 274)21575–21580.PubMedCrossRefGoogle Scholar
  34. Conzelman, K. A., and Mooseker, M. S. (1987). The 110-kD protein-calmodulin complex of the intestinal microvillus is an actin-activated MgATPase. J Cell Biol 105(1)313–24.PubMedCrossRefGoogle Scholar
  35. Cope, M. J. T., Whisstock, J., Rayment, I., and Kendrick-Jones, J. (1996). Conservation within the myosin motor domain: implications for structure and function. Structure 4(8)969–87.PubMedCrossRefGoogle Scholar
  36. Cordonnier, M. N., Dauzonne, D., Louvard, D., and Coudrier, E. (2001). Actin filaments and Myosin I alpha cooperate with microtubules for the movement of lysosomes. Mol Biol Cell 12(12)4013–29.PubMedGoogle Scholar
  37. Côtè, G. P., Albanesi, J. P., Ueno, T., Hammer, J. A. d., and Korn, E. D. (1985). Purification from Dictyostelium discoideum of a low-molecular-weight myosin that resembles myosin I from Acanthamoeba castellanii. J Biol Chem 260(8)4543–6.Google Scholar
  38. Craig, S., and Powell, L. (1980). Regulation of actin polymerization by villin, a 95,000 cytoskeletal component of intestinal brush borders. Cell 22)739–746.PubMedCrossRefGoogle Scholar
  39. Crawley, S. W., Yang, Y., Bigg, A., and Côtè, G. P. Myosin I substrate specificity of the Dictyostelium PAK family; 2006; San Diego. p 50.Google Scholar
  40. Cyr, J. L., Dumont, R. A., and Gillespie, P. G. (2002). Myosin-1c interacts with hair-cell receptors through its calmodulin-binding IQ domains. J Neuroscience 22(7)2487–2495.Google Scholar
  41. De La Cruz, E. M., and Ostap, E. M. (2004). Relating biochemistry and function in the myosin superfamily. Curr Opin Cell Biol 16)61–67.CrossRefGoogle Scholar
  42. de la Roche, M., Lee, S.-F., and Côtè, G. P. (2003). The Dictyostelium class I myosin, MyoD, contains a novel light chain that lacks high-affinity calcium-binding sites. Biochem J 374)697–705.CrossRefGoogle Scholar
  43. de la Roche, M. A., and Côtè, G. P. (2001). Regulation of Dictyostelium myosin I and II. Biochim Biophys Acta 1525(3)245–61.PubMedGoogle Scholar
  44. de Lanerolle, P., Johnson, T., and Hofmann, W. A. (2005). Actin and myosin I in the nucleus: what next? Nature Structural & Molecular Biology 12)742–746.CrossRefGoogle Scholar
  45. Diefenbach, T. J., Latham, V. M., Yimlamai, D., Liu, C. A., Herman, I. M., and Jay, D. G. (2002). Myosin 1c and myosin IIB serve opposing roles in lamellipodial dynamics of the neuronal growth cone. J Cell Biol 158(7)1207–17.PubMedCrossRefGoogle Scholar
  46. Doberstein, S. K., Baines, I. C., Wiegand, G., Korn, E. D., and Pollard, T. D. (1993). Inhibition of contractile vacuole function in vivo by antibodies against myosin-I [see comments]. Nature 365(6449)841–3.PubMedCrossRefGoogle Scholar
  47. Doberstein, S. K., and Pollard, T. D. (1992). Localization and specificity of the phospholipid and actin binding sites on the tail of Acanthamoeba myosin 1C. J Cell Biol 117)1241–1249.PubMedCrossRefGoogle Scholar
  48. Durrbach, A., Collins, K., Matsudaira, P., Louvard, D., and Coudrier, E. (1996). Brush border myosin-I truncated in the motor domain impairs the distribution and the function of endocytic compartments in an hepatoma cell line. Proc Natl Acad Sci U S A 93(14)7053–8.PubMedCrossRefGoogle Scholar
  49. Durrbach, A., Raposo, G., Tenza, D., Louvard, D., and Coudrier, E. (2000). Truncated brush border myosin I affects membrane traffic in polarized epithelial cells. Traffic 1)411–424.PubMedCrossRefGoogle Scholar
  50. Dürrwang, U., Fujita-Becker, S., Erent, M., Kull, F. J., Tsiavaliaris, G., Geeves, M. A., and Manstein, D. J. (2006). Dictyostelium myosin-1E is a fast molecular motor involved in phagocytosis. J. Cell Science 119)550–558.Google Scholar
  51. El Mezgueldi, M., Tang, N., Rosenfeld, S. S., and Ostap, E. M. (2002). The kinetic mechanism of Myo1e (human myosin-1C). J Biol Chem 277)21514–21521.PubMedCrossRefGoogle Scholar
  52. Evangelista, M., Klebl, B. M., Tong, A. H., Webb, B. A., Leeuw, T., Leberer, E., Whiteway, M., Thomas, D. Y., and Boone, C. (2000). A role for myosin-I in actin assembly through interactions with Vrp1p, Bee1p, and the Arp2/3 complex [see comments]. J Cell Biol 148(2)353–62.PubMedCrossRefGoogle Scholar
  53. Fath, K. R., Obenauf, S. D., and Burgess, D. R. (1990). Cytoskeletal protein and mRNA accumulation during brush border formation in adult chicken enterocytes. Development 109(2)449–59.PubMedGoogle Scholar
  54. Fath, K. R., Trimbur, G. M., and Burgess, D. R. (1994). Molecular motors are differentially distributed on Golgi membranes from polarized epithelial cells. J Cell Biol 126(3)661–75.PubMedCrossRefGoogle Scholar
  55. Finer, J. T., Simmons, R. M., and Spudich, J. A. (1994). Single myosin molecule mechanics: piconewton forces and nanometre steps [see comments]. Nature 368(6467)113–9.PubMedCrossRefGoogle Scholar
  56. Foth, B. J., Goedecke, M. C., and Soldati, D. (2006). New insights into myosin evolution and classification. Proc Natl Acad Sci (USA) 103)3681–3686.CrossRefGoogle Scholar
  57. Fujita-Becker, S., Dürrwang, U., Erent, M., Clark, R. J., Geeves, M. A., and Manstein, D. J. (2005). Changes in $Mg2 +$ ion concentration and heavy chain phosphorylation regulate the motor activity of a class I myosin. J Biol Chem 280)6064–6071.PubMedCrossRefGoogle Scholar
  58. Fukui, Y., Lynch, T. J., Brzeska, H., and Korn, E. D. (1989). Myosin I is located at the leading edges of locomoting Dictyostelium amoebae. Nature 341(6240)328–31.PubMedCrossRefGoogle Scholar
  59. Garcia, A., Coudrier, E., Carboni, J., and erson, J., Vandekerkhove, J., Mooseker, M., Louvard, D., and Arpin, M. (1989). Partial deduced sequence of the 110-kD-calmodulin complex of the avian intestinal microvillus shows that this mechanoenzyme is a member of the myosin I family. J Cell Biol 109(6 Pt 1)2895–903.PubMedCrossRefGoogle Scholar
  60. Garcia, J. A., Yee, A. G., Gillespie, P. G., and Corey, D. P. (1998). Localization of myosin-Ibeta near both ends of tip links in frog saccular hair cells. J Neurosci 18(21)8637–47.PubMedGoogle Scholar
  61. Geeves, M. A., Perreault-Micale, C., and Coluccio, L. M. (2000). Kinetic analyses of a truncated mammalian myosin I suggest a novel isomerization event preceding nucleotide binding. J Biol Chem 275)21624–21630.PubMedCrossRefGoogle Scholar
  62. Gillespie, P. G., Albanesi, J. P., Bähler, M., Bement, W. M., Berg, J. S., Burgess, D. R., Burnside, B., Cheney, R. E., Corey, D. P., Coudrier, E. and others. (2001). Myosin-I nomenclature. J Cell Biol 155(5)703–4.PubMedCrossRefGoogle Scholar
  63. Gillespie, P. G., and Cyr, J. L. (2002). Calmodulin binding to recombinant myosin-1c and myosin-1c IQ peptides. BMC Biochemistry 3)31–47.PubMedCrossRefGoogle Scholar
  64. Gillespie, P. G., and Cyr, J. L. (2004). Myosin-1c, the hair cell’s adaptation motor. Ann Rev Physiol 66)521–545.CrossRefGoogle Scholar
  65. Gillespie, P. G., Wagner, M. C., and Hudspeth, A. J. (1993). Identification of a 120 kd hair-bundle myosin located near stereociliary tips. Neuron 11(4)581–94.PubMedCrossRefGoogle Scholar
  66. Goodson, H. V., and erson, B. L., Warrick, H. M., Pon, L. A., and Spudich, J. A. (1996). Synthetic lethality screen identifies a novel yeast myosin I gene (MYO5): myosin I proteins are required for polarization of the actin cytoskeleton. J Cell Biol 133(6)1277–91.PubMedCrossRefGoogle Scholar
  67. Goodson, H. V., and Spudich, J. A. (1995). Identification and molecular characterization of a yeast myosin I. Cell Motil Cytoskeleton 30(1)73–84.PubMedCrossRefGoogle Scholar
  68. Halsall, D. J., and Hammer, J. A. I. (1990). A second isoform of chicken brush border myosin I contains a 29-residue inserted sequence that binds calmodulin. FEBS Lett. 267)126–130.PubMedCrossRefGoogle Scholar
  69. Hammer, J. A. I. (1991). Novel myosins. Trends in Cell Biology 1)50–56.PubMedCrossRefGoogle Scholar
  70. Hammer, J. A. I., Korn, E. D., and Paterson, B. M. (1986). Isolation of a non-muscle myosin heavy chain gene from Acanthamoeba. J Biol Chem 261(4)1949–56.PubMedGoogle Scholar
  71. Hayden, S. M., Wolenski, J. S., and Mooseker, M. S. (1990). Binding of brush border myosin I to phospholipid vesicles. J Cell Biol 111(2)443–51.PubMedCrossRefGoogle Scholar
  72. Hegan, P. S., Mermall, V., and Mooseker, M. S. Roles for Drosophila melanogaster myosin 1B in maintenance of enterocyte brush border structure and resistance to bacterial pathogens; ASCB, 2006; San Diego.Google Scholar
  73. Hirono, M., Denis, C. S., Richardson, G. P., and Gillespie, P. G. (2004). Hair cells require phosphatidyl inositol 4,5-bisphosphate for mechanical transduction and adaptation. Neuron 44)309–320.PubMedCrossRefGoogle Scholar
  74. Hofmann, W. A., Vargas, G. M., Ramchandran, R., Stojiljkovic, L., Goodrich, J. A., and de Lanerolle, P. A. (2006). Nuclear myosin I is necessary for the formation of the first phosphodiester bond during transcription initiation by RNA polymerase II. J Cellular Biochem 99)1001–1009.CrossRefGoogle Scholar
  75. Hokanson, D. E., and Ostap, E. M. (2006). Myo1c binds tightly and specifically to phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate. Proc Natl Acad Sci (USA) 103)3118–3123.CrossRefGoogle Scholar
  76. Holt, J. R., and Corey, D. P. (2000). Two mechanisms for transducer adaptation in vertebrate hair cells. Proc Natl Acad Sci. USA 97)11730–11735.PubMedCrossRefGoogle Scholar
  77. Holt, J. R., Gillespie, S. K. H., Provance, D. W., Shah, K., Shokat, K. M., Corey, D. P., Mercer, J. A., and Gillespie, P. G. (2002). A chemical-genetic strategy implicates myosin-1c in adaptation by hair cells. Cell 108(3)371–81.PubMedCrossRefGoogle Scholar
  78. Howe, C. L., and Mooseker, M. S. (1983). Characterization of the 110-kdalton actin-calmodulin-, and membrane-binding protein from microvilli of intestinal epithelial cells. J Cell Biol 97(4)974–85.PubMedCrossRefGoogle Scholar
  79. Hozumi, S., Maeda, R., Taniguchi, K., Kanai, M., Shirakabe, S., Sasamura, T., Spèder, P., Noselli, S., Aigaki, T., Murakami, R. and others. (2006). An unconventional myosin in Drosophila reverses the default handedness in visceral organs. Nature 440)798–802.PubMedCrossRefGoogle Scholar
  80. Huber, L. A., Fialka, I., Paiha, K., Hunziker, W., Sacks, D. B., Bähler, M., Way, M., Gagescu, R., and Gruenberg, J. (2000). Both calmodulin and the unconventional myosin Myr4 regulate membrane trafficking along the recycling pathway of MDCK cells. Traffic 1)494–503.PubMedCrossRefGoogle Scholar
  81. Hwang, K.-J., Mahmoodian, F., Ferretti, J. A., Korn, E. D., and Gruschus, J. M. (2007). Intramolecular interaction in the tail region of Acanthamoeba myosin 1C between the SH3 domain and a putative pleckstrin homology domain. Proceedings of the National Academy of Science (U.S.A.) 104)784–789.Google Scholar
  82. Jonsdottir, G. A., and Li, R. (2004). Dynamics of yeast myosin I: evidence for a possible role in scission of endocytic vesicles. Current Biology 14)1604–1609.PubMedCrossRefGoogle Scholar
  83. Jontes, J. D., and Milligan, R. A. (1997). Brush border myosin-I structure and ADP-dependent conformational changes revealed by cryoelectron microscopy and image analysis. J Cell Biol 139(3)683–93.PubMedCrossRefGoogle Scholar
  84. Jontes, J. D., Milligan, R. A., Pollard, T. D., and Ostap, E. M. (1997). Kinetic characterization of brush border myosin-I ATPase. Proc Natl Acad Sci U S A 94(26)14332–7.PubMedCrossRefGoogle Scholar
  85. Jontes, J. D., Ostap, E. M., Pollard, T. D., and Milligan, R. A. (1998). Three-dimensional structure of Acanthamoeba castellanii myosin-IB (MIB) determined by cryoelectron microscopy of decorated actin filaments. J Cell Biol 141(1)155–62.PubMedCrossRefGoogle Scholar
  86. Jontes, J. D., Wilson-Kubalek, E. M., and Milligan, R. A. (1995). A 32 degree tail swing in brush border myosin I on ADP release [see comments]. Nature 378(6558)751–3.PubMedCrossRefGoogle Scholar
  87. Jung, G., and Hammer, J. A., 3rd. (1990). Generation and characterization of Dictyostelium cells deficient in a myosin I heavy chain isoform. J Cell Biol 110(6)1955–64.PubMedCrossRefGoogle Scholar
  88. Jung, G., and Hammer, J. A., 3rd. (1994). The actin binding site in the tail domain of Dictyostelium myosin IC (myoC) resides within the glycine- and proline-rich sequence (tail homology region 2). FEBS Lett 342(2)197–202.PubMedCrossRefGoogle Scholar
  89. Jung, G., Korn, E. D., and Hammer, J. A. I. (1987). The heavy chain of Acanthamoeba myosin IB is a fusion of myosin-like and non-myosin-like sequences. Proc Natl Acad Sci U S A 84(19)6720–4.PubMedCrossRefGoogle Scholar
  90. Jung, G., Remmert, K., Wu, X., Volosky, J. M., and Hammer, J. A., 3rd. (2001). The Dictyostelium CARMIL protein links capping protein and the Arp2/3 complex to type I myosins through their SH3 domains. J Cell Biol 153(7)1479–97.PubMedCrossRefGoogle Scholar
  91. Jung, G., Schmidt, C. J., and Hammer, J. A. I. (1989). Myosin I heavy-chain genes of Acanthamoeba castellanii: cloning of a second gene and evidence for the existence of a third isoform. Gene 82(2)269–80.PubMedCrossRefGoogle Scholar
  92. Jung, G., Wu, X., and Hammer, J. A. I. (1996). Dictyostelium mutants lacking multiple classic myosin I isoforms reveal combinations of shared and distinct functions. J Cell Biol 133)305–323.Google Scholar
  93. Kim, S. V., Mehal, W. Z., Dong, X., Heinrich, V., Pypaert, M., Mellman, I., Dembo, M., Mooseker, M. S., Wu, D., and Flavell, R. A. (2006). Modulation of cell adhesion and motility in the immune system by Myo1f. Science 314)136–139.PubMedCrossRefGoogle Scholar
  94. Köhler, D., Ruff, C., Meyhöfer, E., and Bähler, M. (2003). Different degrees of lever arm rotation control myosin step size. J Cell Biol 161)237–241.PubMedCrossRefGoogle Scholar
  95. Köhler, D., Struchholz, S., and Bähler, M. (2005). The two IQ-motifs and $Ca2 +$/calmodulin regulate the rat myosin 1d ATPase activity. FEBS Journal 272)2189–2197.PubMedCrossRefGoogle Scholar
  96. Kollmar, M., Dürrwang, U., Kliche, W., Manstein, D. J., and Kull, F. J. (2002). Crystal structure of the motor domain of a class-I myosin. EMBO J 21(11)2517–25.PubMedCrossRefGoogle Scholar
  97. Korn, E. D., Atkinson, M. A., Brzeska, H., Hammer, J. A. I., Jung, G., and Lynch, T. J. (1988). Structure-function studies on Acanthamoeba myosins IA, IB, and II. J Cell Biochem 36(1)37–50.PubMedCrossRefGoogle Scholar
  98. Korn, E. D., and Hammer, J. A. d. (1990). Myosin I. Curr Opin Cell Biol 2(1)57–61.PubMedCrossRefGoogle Scholar
  99. Krendel, M., Osterweil, E. K., and Mooseker, M. S. (2007). Myosin 1E interacts with synaptojanin-1 and dynamin and is involved in endocytosis. FEBS Lett 581)644–650.PubMedCrossRefGoogle Scholar
  100. Krizek, J., and Bretscher, A. (1987). ATPase activity of the microvillar 110 kDa polypeptide-calmodulin complex is activated in $Mg2 +$ and inhibited in $K+$-EDTA by F-actin. FEBS Lett 225(1–2)269–72.PubMedCrossRefGoogle Scholar
  101. Lechler, T., Jonsdottir, G. A., Klee, S. K., Pellman, D., and Li, R. (2001). A two-tiered mechanism by which Cdc42 controls the localization and activation of an Arp2/3-activating motor complex in yeast. J. Cell Biol 155)261–270.PubMedCrossRefGoogle Scholar
  102. Lechler, T., Shevchenko, A., Shevchenko, A., and Li, R. (2000). Direct involvement of yeast type Imyosins in Cdc42-dependent actin polymerization [see comments]. J Cell Biol 148(2)363–73.PubMedCrossRefGoogle Scholar
  103. Lee, R. J., Egelhoff, T. T., and Spudich, J. A. (1994). Molecular genetic truncation analysis of filament assembly and phosphorylation domains of Dictyostelium myosin heavy chain. J Cell Sci 107(Pt 10)2875–86.PubMedGoogle Scholar
  104. Lee, W.-L., Ostap, E. M., Zot, H. G., and Pollard, T. D. (1999). Organization and ligand binding properties of the tail of Acanthamoeba myosin-IA. J Biol Chem 274)35159–35171.PubMedCrossRefGoogle Scholar
  105. Lewis, J. H., Lin, T., Hokanson, D. E., and Ostap, E. M. (2006). Temperature dependence of nucleotide association and kinetic characterization of Myo1b. Biochemistry 45)11589–11597.PubMedCrossRefGoogle Scholar
  106. Lieto-Trivedi, A., Dash, S., and Coluccio, L. M. (2007). Myosin surface loop 4 modulates association of myosin 1b with actin-tropomyosin. Biochemistry 46)2779–2786.PubMedCrossRefGoogle Scholar
  107. Lin, T., Tang, N., and Ostap, E. M. (2005). Biochemical and motile properties of Myo1b splice isoforms. J Biol Chem 280)41562–41567.PubMedCrossRefGoogle Scholar
  108. Liu, X., Osherov, N., Yamashita, R., Brzeska, H., Korn, E. D., and May, G. S. (2001). Myosin I mutants with only 1% of wild-type actin-activated MgATPase activity retain essential in vivo function(s). Proc Natl Acad Sci U S A 98(16)9122–7.PubMedCrossRefGoogle Scholar
  109. Lynch, T. J., Albanesi, J. P., Korn, E. D., Robinson, E. A., Bowers, B., and Fujisaki, H. (1986). ATPase activities and actin-binding properties of subfragments of Acanthamoeba myosin IA. J Biol Chem 261(36)17156–62.PubMedGoogle Scholar
  110. Matsudaira, P. T., and Burgess, D. R. (1979). Identification and organization of the components in the isolated microvillus cytoskeleton. J. Cell Biol. 83(3)667–73.PubMedCrossRefGoogle Scholar
  111. Matsudaira, P. T., and Burgess, D. R. (1982a). Organization of the cross-filaments in intestinal microvilli. J Cell Biol 92(3)657–64.CrossRefGoogle Scholar
  112. Matsudaira, P. T., and Burgess, D. R. (1982b). Partial reconstruction of the microvillus core bundle: characterization of villin as a $Ca+ +$-dependent, actin-bundling/depolymerization protein. J Cell Biol 92)648–656.CrossRefGoogle Scholar
  113. Mayer, B. J. (2001). SH3 domains: complexity in moderation. J Cell Sci 114)1253–1263.PubMedGoogle Scholar
  114. McGoldrick, C. A., Gruver, C., and May, G. S. (1995). myoA of Aspergillus nidulans encodes an essential myosin I required for secretion and polarized growth. J Cell Biol 128)577–587.Google Scholar
  115. Mermall, V., Post, P. L., and Mooseker, M. S. (1998). Unconventional myosins in cell movement, membrane traffic, and signal transduction. Science 279(5350)527–33.PubMedCrossRefGoogle Scholar
  116. Millar, N. C., and Geeves, M. A. (1983). The limiting rate of the ATP-mediated dissociation of actin from rabbit skeletal muscle myosin subfragment 1. FEBS Lett 160(1–2)141–8.PubMedCrossRefGoogle Scholar
  117. Molloy, J. E., Burns, J. E., Kendrick-Jones, J., Tregear, R. T., and White, D. C. (1995a). Movement and force produced by a single myosin head [see comments]. Nature 378(6553)209–12.CrossRefGoogle Scholar
  118. Molloy, J. E., Burns, J. E., Sparrow, J. C., Tregear, R. T., Kendrick-Jones, J., and White, D. C. (1995b). Single-molecule mechanics of heavy meromyosin and S1 interacting with rabbit or Drosophila actins using optical tweezers. Biophys J 68(4 Suppl), 298S–303S; 303S–305S.Google Scholar
  119. Mooseker, M. S., and Cheney, R. E. (1995). Unconventional myosins. Annu Rev Cell Dev Biol 11)633–75.PubMedCrossRefGoogle Scholar
  120. Mooseker, M. S., Graves, T. A., Wharton, K. A., Falco, N., and Howe, C. L. (1980). Regulation of microvillus structure: calcium-dependent solation and cross-linking of actin filaments in the microvilli of intestinal epithelial cells. J Cell Biol 87809–822.PubMedCrossRefGoogle Scholar
  121. Mooseker, M. S., and Tilney, L. G. (1975). Organization of an actin filament-membrane complex. Filament polarity and membrane attachment in the microvilli of intestinal epithelial cells. J Cell Biol 67(3)725–43.PubMedCrossRefGoogle Scholar
  122. Morgan, N. S., Heintzelman, M. B., and Mooseker, M. S. (1995). Characterization of myosin-IA and myosin-IB, two unconventional myosins associated with the Drosophila brush border cytoskeleton. Dev Biol 172(1)51–71.PubMedCrossRefGoogle Scholar
  123. Morgan, N. S., Skovronsky, D. M., Artavanis-Tsakonas, S., and Mooseker, M. S. (1994). The molecular cloning and characterization of Drosophila melanogaster myosin-IA and myosin-IB. J Mol Biol 239(3)347–56.PubMedCrossRefGoogle Scholar
  124. Mukherjee, T. M., and Staehelin, L. A. (1971). The fine structural organization of the brush border of intestinal epithelial cells. J. Cell Science 8)573–599.PubMedGoogle Scholar
  125. Novak, K. D., Peterson, M. D., Reedy, M. C., and Titus, M. A. (1995). Dictyostelium myosin I double mutants exhibit conditional defects in pinocytosis. J Cell Biol 131(5)1205–21.Google Scholar
  126. Novak, K. D., and Titus, M. A. (1997). Myosin I overexpression impairs cell migration. J Cell Biol 136(3)633–47.PubMedCrossRefGoogle Scholar
  127. Novak, K. D., and Titus, M. A. (1998). The myosin I SH3 domain and TEDS rule phosphorylation site are required for in vivo function. Mol Biol Cell 9(1)75–88.PubMedGoogle Scholar
  128. Nowak, G., Pestic-Dragovich, L., Hozàk, P., Philimonenko, A., Simerly, C., Schatten, G., and de Lanerolle, P. A. (1997). Evidence for the presence of myosin I in the nucleus. J Biol Chem 272)17176–17181.PubMedCrossRefGoogle Scholar
  129. Nyitrai, M., and Geeves, M. A. (2004). Adenosine diphosphate and strain sensitivity in myosin motors. Phil Trans R Soc B 359)1867–1877.PubMedCrossRefGoogle Scholar
  130. Osherov, N., and May, G. S. (2000). In vivo function of class I myosins. Cell Motil Cytoskeleton 47(3)163–173.PubMedCrossRefGoogle Scholar
  131. Ostap, E. M. (2002). 2,3-Butanedione monoxime (BDM) as a myosin inhibitor. J. Muscl. Res. & Cell Motil. 23)305–308.Google Scholar
  132. Ostap, E. M., and Pollard, T. D. (1996a). Biochemical kinetic characterization of the Acanthamoeba myosin-I ATPase. J Cell Biol 132(6)1053–60.CrossRefGoogle Scholar
  133. Ostap, E. M., and Pollard, T. D. (1996b). Overlapping functions of myosin-I isoforms? [comment]. J Cell Biol 133(2)221–4.CrossRefGoogle Scholar
  134. Patel, N., Rudich, A., Khayat, Z. A., Garg, R., and Klip, A. (2003). Intracellular segregation of phosphatidylinositol-3.4,5-trisphosphate by insulin-dependent actin remodeling in L6 skeletal muscle cells. Mol Cell Biol 23)4611–4626.PubMedCrossRefGoogle Scholar
  135. Perreault-Micale, C., Shushan, A. D., and Coluccio, L. M. (2000). Truncation of a mammalian myosin I results in loss of $Ca2 +$-sensitive motility. J Biol Chem 275)21618–21623.PubMedCrossRefGoogle Scholar
  136. Pestic-Dragovich, L., Stojiljkovic, L., Philimonenko, A. A., Nowak, G., Ke, Y., Settlage, R. E., Shabanowitz, J., Hunt, D. F., Hozak, P., and de Lanerolle, P. (2000). A myosin I isoform in the nucleus. Science 290(5490)337–41.PubMedCrossRefGoogle Scholar
  137. Philimonenko, V. V., Zhao, J., Iben, S., Dingova, H., Kysela, K., Hozak, P., and Grummt, I. (2004). Nuclear actin and myosin I are required for RNA polymerase I transcription. Nat Cell Biol 6)1165–1172.PubMedCrossRefGoogle Scholar
  138. Pollard, T. D., Doberstein, S. K., and Zot, H. G. (1991). Myosin-I. Annu Rev Physiol 53)653–81.PubMedCrossRefGoogle Scholar
  139. Pollard, T. D., and Korn, E. D. (1973a). Acanthamoeba myosin. I. Isolation from Acanthamoeba castellanii of an enzyme similar to muscle myosin. J Biol Chem 248(13)4682–90.Google Scholar
  140. Pollard, T. D., and Korn, E. D. (1973b). Acanthamoeba myosin. II. Interaction with actin and with a new cofactor protein required for actin activation of $Mg2 +$ adenosine triphosphatase activity. J Biol Chem 248(13)4691–7.Google Scholar
  141. Raposo, G., Cordonnier, M. N., Tenza, D., Menichi, B., Dürrbach, A., Louvard, D., and Coudrier, E. (1999). Association of myosin I alpha with endosomes and lysosomes in mammalian cells. Mol Biol Cell 10(5)1477–94.PubMedGoogle Scholar
  142. Rayment, I., Holden, H. M., Whittaker, M., Yohn, C. B., Lorenz, M., Holmes, K. C., and Milligan, R. A. (1993a). Structure of the actin-myosin complex and its implications for muscle contraction [see comments]. Science 261(5117)58–65.CrossRefGoogle Scholar
  143. Rayment, I., Rypniewski, W. R., Schmidt-Bäse, K., Smith, R., Tomchick, D. R., Benning, M. M., Winkelmann, D. A., Wesenberg, G., and Holden, H. M. (1993b). Three-dimensional structure of myosin subfragment-1: a molecular motor [see comments]. Science 261(5117)50–8.CrossRefGoogle Scholar
  144. Remmert, K., Olszewski, T. E., Bowers, M. B., Dimitrova, M., Ginsburg, A., and Hammer, J. A. I. (2004). CARMIL is a bona fide capping protein interactant. J Biol Chem 279)3068–3077.PubMedCrossRefGoogle Scholar
  145. Ruppert, C., Godel, J., Müller, R. T., Kroschewski, R., Reinhard, J., and Bähler, M. (1995). Localization of the rat myosin I molecules myr 1 and myr 2 and in vivo targeting of their tail domains. J Cell Sci. 108(Pt 12)3775–86.PubMedGoogle Scholar
  146. Ruppert, C., Kroschewski, R., and Bähler, M. (1993). Identification, characterization and cloning of myr 1, a mammalian myosin-I. J. Cell Biol 120(6)1393–403.PubMedCrossRefGoogle Scholar
  147. Salas-Cortes, L., Ye, F., Tenza, D., Claire, W., Theos, A., Louvard, D., Raposo, G., and Coudrier, E. (2005). Myosin 1b modulates the morphology and the protein transport within multi-vesicular sorting endosomes. J Cell Sci 118)4823–4832.PubMedCrossRefGoogle Scholar
  148. Schwarz, E. C., Neuhaus, E. M., Kistler, C., Henkel, A. W., and Soldati, T. (2000). Dictyostelium myosin IK is involved in the maintenance of cortical tension and affects motility and phagocytosis. J Cell Sci. 113)621–633.Google Scholar
  149. Sherr, E. H., Joyce, M. P., and Greene, L. A. (1993). Mammalian myosin Iα, Iβ and Iγ new widely expressed genes of the myosin I family. J Cell Biol 120(6)1405–16.PubMedCrossRefGoogle Scholar
  150. Skowron, J. F., Bement, W. M., and Mooseker, M. S. (1998a). Human brush border myosin-I and myosin-Ic expression in human intestine and Caco-2BBe cells Cell Motil. Cytoskeleton 41)308–324.CrossRefGoogle Scholar
  151. Skowron, J. F., Bement, W. M., and Mooseker, M. S. (1998b). Human brush border myosin-I and myosin-Ic expression in human intestine and Caco-2BBe cells. Cell Motil Cytoskeleton 41)308–324.CrossRefGoogle Scholar
  152. Sokac, A. M., Schietroma, C., Gundersen, C. B., and Bement, W. M. (2006). Myosin-1c couples assembling actin to membranes to drive compensatory endocytosis. Developmental Cell 11)629–640.PubMedCrossRefGoogle Scholar
  153. Soldati, T. (2003). Unconventional myosins, actin dynamics and endocytosis: A mènage á trois? Traffic 4)358–366.CrossRefGoogle Scholar
  154. Spèder, P., Àdàm, G., and Noselli, S. (2006). Type 1D unconventional myosin controls left-right asymmetry in Drosophila. Nature 440)803–807.PubMedCrossRefGoogle Scholar
  155. Spudich, J. A. (2001). The myosin swinging cross-bridge model. Nat Rev Molec Cell Biol 2)387–391.CrossRefGoogle Scholar
  156. Stafford, W. S., III, Walker, M. L., Trinick, J., and Coluccio, L. M. (2004). Mammalian class I myosin, Myo1b, is monomeric and crosslinks actin as determined by hydrodynamic studies and electron microscopy. Biophys J 88)384–391.PubMedCrossRefGoogle Scholar
  157. Stafford, W. S., III, Walker, M. L., Trinick, J., and Coluccio, L. M. (2005). Mammalian class I myosin, Myo1b, is monomeric and cross-links actin filaments as determined by hydrodynamic studies and electron microscopy. Biophys J 88)384–391.PubMedCrossRefGoogle Scholar
  158. Stauffer, E. A., Scarborough, J. D., Hirono, M., Miller, E. D., Shah, K., Mercer, J. A., Holt, J. R., and Gillespie, P. G. (2005). Fast adaptation in vestibular hair cells requires myosin-1c activity. Neuron 47)541–553.PubMedCrossRefGoogle Scholar
  159. Steyger, P. S., Gillespie, P. G., and Baird, R. A. (1998). Myosin Iβ is located at tip link anchors in vestibular hair bundles. J Neurosci 18(12)4603–15.PubMedGoogle Scholar
  160. Stöffler, H. E., and Bähler, M. (1998). The ATPase activity of Myr3, a rat myosin I, is allosterically inhibited by its own tail domain and by Ca2 + binding to its light chain calmodulin. J Biol Chem 273(23)14605–11.PubMedCrossRefGoogle Scholar
  161. Stöffler, H. E., Honnert, U., Bauer, C. A., Höfer, D., Schwarz, H., Müller, R. T., Drenckhahn, D., and Bähler, M. (1998). Targeting of the myosin-I myr 3 to intercellular adherens type junctions induced by dominant active cdc42 in HeLa cells J Cell Sci 111(Pt 18)2779–88.Google Scholar
  162. Stöffler, H. E., Ruppert, C., Reinhard, J., and Bähler, M. (1995). A novel mammalian myosin I from rat with an SH3 domain localizes to Con A-inducible, F-actin-rich structures at cell-cell contacts. J Cell Biol 129(3)819–30.PubMedCrossRefGoogle Scholar
  163. Swanljung-Collins, H., and Collins, J. H. (1992). Phosphorylation of brush border myosin I by protein kinase C is regulated by Ca(2 + )-stimulated binding of myosin I to phosphatidylserine concerted with calmodulin dissociation. J Biol Chem 267(5)3445–54.PubMedGoogle Scholar
  164. Swanljung-Collins, H., Montibeller, J., and Collins, J. H. (1987). Purification and characterization of the 110-kDa actin- and calmodulin-binding protein from intestinal brush border: a myosin-like ATPase. Methods Enzymol 139)137–48.PubMedCrossRefGoogle Scholar
  165. Swanson, J. A., Johnson, M. T., Beningo, K., Post, P., Mooseker, m., and Araki, N. (1999). A contractile activity that closes phagosomes in macrophages. J Cell Science 112)307–316.PubMedGoogle Scholar
  166. Tang, N., Lin, T., and Ostap, E. M. (2002). Dynamics of Myo1c (Myosin-Iβ) lipid binding and dissociation. J Biol Chem 277(45)42763–42768.PubMedCrossRefGoogle Scholar
  167. Tang, N., and Ostap, E. M. (2001). Motor domain-dependent localization of myo1b (myr-1). Curr. Biol. 11(14), 1131-5.Google Scholar
  168. Temesvari, L. A., Bush, J. M., Peterson, M. D., Novak, K. D., Titus, M. A., and Cardelli, J. A. (1996). Examination of the endosomal and lysosomal pathways in Dictyostelium discoideum myosin I mutants. J Cell Sci 109(Pt 3)663–73.PubMedGoogle Scholar
  169. Titus, M. A., Wessels, D., Spudich, J. A., and Soll, D. (1993). The unconventional myosin encoded by the myoA gene plays a role in Dictyostelium motility. Mol Biol Cell 4)233–246.PubMedGoogle Scholar
  170. Tyska, M. J., Mackey, A. T., Huang, J.-D., Copeland, N. G., Jenkins, N. A., and Mooseker, M. S. (2005). Myosin-1a is critical for normal brush border structure and composition. Molec Biol Cell 16)2443–2457.PubMedCrossRefGoogle Scholar
  171. Tyska, M. J., and Mooseker, M. S. (2002). MYO1A (brush border myosin I) dynamics in the brush border of LLC-PK1-CL4 cells. Biophys J 82)1869–1883.PubMedCrossRefGoogle Scholar
  172. Tyska, M. J., and Mooseker, M. S. (2004). A role for myosin-1A in the localization of a brush border disaccharidase. J Cell Biol 165(3)395–405.PubMedCrossRefGoogle Scholar
  173. Veigel, C., Jontes, J. D., Sparrow, J. C., Milligan, R. A., and Molloy, J. E. (1999). The motor protein myosin-I produces its working stroke in two steps [see comments]. Nature 398(6727)530–3.PubMedCrossRefGoogle Scholar
  174. Verner, K., and Bretscher, A. (1985). Microvillus 110K-calmodulin: Effects of nucleotides on isolated cytoskeletons and the interaction of the purified complex with F-actin. J Cell Biol 100)1455–1465.PubMedCrossRefGoogle Scholar
  175. Wagner, M. C., Barylko, B., and Albanesi, J. P. (1992). Tissue distribution and subcellular localization of mammalian myosin I. J Cell Biol 119(1)163–70.PubMedCrossRefGoogle Scholar
  176. Wagner, M. C., Blazer-Yost, B. L., Boyd-White, J., Srirangam, A., Pennington, J., and Bennett, S. (2005). Expression of the unconventional myosin Myo1c alters sodium transport in M1 collecting ducts cells. Am J Physiol 289), C120–C129.Google Scholar
  177. Wang, F. S., Wolenski, J. S., Cheney, R. E., Mooseker, M. S., and Jay, D. G. (1996). Function of myosin-V in filopodial extension of neuronal growth cones. Science 273(5275)660–3.PubMedCrossRefGoogle Scholar
  178. Wang, Z. Y., Sakai, J., Matsudaira, P. T., Baines, I. C., Sellers, J. R., Hammer, J. A., III, and Korn, E. D. (1997). The amino acid sequence of the light chain of Acanthamoeba myosin IC. J Muscle Res Cell Motil 18(3)395–8.PubMedCrossRefGoogle Scholar
  179. Wessels, D., Murray, J., Jung, G., Hammer, J. A., III, and Soll, D. R. (1991). Myosin IB null mutants of Dictyostelium exhibit abnormalities in motility. Cell Motil Cytoskeleton 20(4)301–15.PubMedCrossRefGoogle Scholar
  180. Whittaker, M., and Milligan, R. A. (1997). Conformational changes due to calcium-induced calmodulin dissociation in brush border myosin I-decorated F-actin revealed by cryoelectron microscopy and image analysis. J Mol Biol 269(4)548–57.PubMedCrossRefGoogle Scholar
  181. Whittaker, M., Wilson-Kubalek, E. M., Smith, J. E., Faust, L., Milligan, R. A., and Sweeney, H. L. (1995). A 35-A movement of smooth muscle myosin on ADP release [see comments]. Nature 378(6558)748–51.PubMedCrossRefGoogle Scholar
  182. Williams, R., and Coluccio, L. M. (1994). Novel 130-kDa rat liver myosin-1 will translocate actin filaments. Cell Motil Cytoskeleton 27(1)41–8.PubMedCrossRefGoogle Scholar
  183. Wolenski, J. S., Hayden, S. M., Forscher, P., and Mooseker, M. S. (1993). Calcium-calmodulin and regulation of brush border myosin-I MgATPase and mechanochemistry. J Cell Biol 122(3)613–21.PubMedCrossRefGoogle Scholar
  184. Xu, P., Mitchelhill, K. I., Kobe, B., Kemp, B. E., and Zot, H. G. (1997). The myosin-I-binding protein Acan125 binds the SH3 domain and belongs to the superfamily of leucine-rich repeat proteins. Proc Natl Acad Sci U S A 94(8)3685–90.PubMedCrossRefGoogle Scholar
  185. Xu, P., Zot, A. S., and Zot, H. G. (1995). Identification of Acan125 as a myosin-I-binding protein present with myosin-I on cellular organelles of Acanthamoeba. J Biol Chem 270(43)25316–9.PubMedCrossRefGoogle Scholar
  186. Yamashita, R. A., and May, G. S. (1998). Constitutive activation of endocytosis by mutation of myoA, the myosin I gene of Aspergillus nidulans. J Biol Chem 273)14644–14648.PubMedCrossRefGoogle Scholar
  187. Yang, C., Pring, M., Wear, M. A., Huang, M., Cooper, J. A., Svitkina, T. M., and Zigmond, S. H. (2005). Mammalian CARMIL inhibits actin filament capping by capping protein. Developmental Cell 9)209–221.PubMedCrossRefGoogle Scholar
  188. Yin, H., and Janmey, P. (2003). Phosphoinositide regulation of the actin cytoskeleton. Ann Rev Physiol 65)761–789.CrossRefGoogle Scholar
  189. Yonemura, S., and Pollard, T. D. (1992). The localization of myosin I and myosin II in Acanthamoeba by fluorescence microscopy. J Cell Sci 102)629–642.PubMedGoogle Scholar
  190. Zhu, T., Beckingham, K., and Ikebe, M. (1998). High affinity $Ca2 +$ binding sites of calmodulin are critical for the regulation of myosin Ibeta motor function. J Biol Chem 273(32)20481–6.PubMedCrossRefGoogle Scholar
  191. Zhu, T., and Ikebe, M. (1994). A novel myosin I from bovine adrenal gland. FEBS Lett 339(1–2)31–6.PubMedCrossRefGoogle Scholar
  192. Zhu, T., Sata, M., and Ikebe, M. (1996). Functional expression of mammalian myosin I beta: analysis of its motor activity. Biochemistry 35(2)513–22.PubMedCrossRefGoogle Scholar
  193. Zot, H. G., Bhaskara, V., and Liu, L. (2000). Acan125 binding to the SH3 domain of Acanthamoeba myosin-1C. Arch Biochem Biophys 375)161–164.PubMedCrossRefGoogle Scholar
  194. Zot, H. G., Doberstein, S. K., and Pollard, T. D. (1992). Myosin-I moves actin filaments on a phospholipid substrate: implications for membrane targeting. J Cell Biol 116(2)367–76.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Lynne M. Coluccio
    • 1
  1. 1.Boston Biomedical Research InstituteWatertownUSA

Personalised recommendations