Myosins pp 35-54 | Cite as

Myosin Structure

  • Kenneth C. Holmes
Part of the Proteins and Cell Regulation book series (PROR, volume 7)


Myosin II, the myosin which has provided the most biochemical and structural data, is dimeric consisting of a long coiled-coil region with the motor domain flexibly attached to the N-terminal end of the coiled-coil. The motor domain (subfragment 1, S1, or cross-bridge) is obtained by proteolytic cleavage of myosin. S1 is a minimal model for the transport of actin filaments by myosin. S1 contains the ATPase, the actin-binding site which is regulated by ATP binding, and a long lever arm, which moves actin past myosin by a swinging motion. The lever arm is buttressed by two calmodulin-like light chains. X-ray crystallography of S1 and S1 prepared without the lever arm shows that the backbone of the molecule is a seven-stranded β-sheet. The active site is very similar to the G-proteins and contains a P-loop and switch 1 and switch 2 elements. Moreover,the motor domain can be found in three conformations that correspond with three of the four states predicted by the Lymn-Taylor cross-bridge cycle. The rotation of the lever arm (power stroke) is coupled to changes in the relative positions of switch 2 and the P-loop after ATP binding. This rotation is reversed on products release (the power stroke). The movement of switch 1, which accompanies ATP binding, is coupled with an opening or closing of a cleft in the actin-binding site, which leads to large changes in the actin affinity. Myosin V yields crystallographic data on the strong actin-binding form of the cross-bridge. Strong binding to actin is accompanied by a bending of the central β-sheet, which enables products release and hence induces the power stroke. All myosins probably use the same mechanism.


myosin crystal structure motor domain ATPase lever arm P–loop 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anson, M. Geeves, M. A., Kurzawa, S. E. and Manstein, D. J. (1996). Myosin motors with artificial lever arms. Embo J 15, 6069–74.PubMedGoogle Scholar
  2. Applegate, D. and Reisler, E. (1984). Nucleotide-induced changes in the proteolytically sensitive regions of myosin subfragment 1. Biochemistry 23, 4779–84.PubMedCrossRefGoogle Scholar
  3. Balint, M., Wolf, I., Tarcsafalvi, A., Gergely, J. and Sreter, F. A. (1978) Location of SH-1 and SH-2 in the heavy chain segment of heavy meromyosin. Arch Biochem Biophys 190: 793–799.PubMedCrossRefGoogle Scholar
  4. Cooke, R. (1986). The Mechanism of Muscle Contraction. CRC Crit Rev Biochem 21: 53–118.PubMedGoogle Scholar
  5. Coureux, P. D., Sweeney, H. L. and Houdusse, A. (2004). Three myosin V structures delineate essential features of chemo-mechanical transduction. Embo J 23, 4527–37.PubMedCrossRefGoogle Scholar
  6. Coureux, P. D., Wells, A. L., Menetrey, J., Yengo, C. M., Morris, C. A., Sweeney, H. L. and Houdusse, A. (2003). A structural state of the myosin V motor without bound nucleotide. Nature 425, 419–23.PubMedCrossRefGoogle Scholar
  7. Dominguez, R., Freyzon, Y., Trybus, K. M. and Cohen, C. (1998). Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state. Cell 94, 559–71.PubMedCrossRefGoogle Scholar
  8. Fischer, S., Windshugel, B., Horak, D., Holmes, K. C. and Smith, J. C. (2005). Structural mechanism of the recovery stroke in the myosin molecular motor. Proc Natl Acad Sci U S A 102, 6873–8.PubMedCrossRefGoogle Scholar
  9. Fisher, A. J., Smith, C. A., Thoden, J. B., Smith, R., Sutoh, K., Holden, H. M. and Rayment, I. (1995). X-ray structures of the myosin motor domain of Dictyostelium discoideum complexed with MgADP.BeFx and MgADP.AlF4-. Biochemistry 34: 8960–72.PubMedCrossRefGoogle Scholar
  10. Foth, B. J., Goedecke, M. C. and Soldati, D. (2006). New insights into myosin evolution and classification. Proc Natl Acad Sci U S A 103, 3681–6.PubMedCrossRefGoogle Scholar
  11. Fujita-Becker, S., Tsiavaliaris, G., Ohkura, R., Shimada, T., Manstein, D. J. and Sutoh, K. (2006). Functional characterization of the N-terminal region of myosin-2. J Biol Chem 281, 36102–9.PubMedCrossRefGoogle Scholar
  12. Geeves, M. A. and Holmes, K. C. (1999). Structural mechanism of muscle contraction. Annu Rev Biochem 68, 687–728.PubMedCrossRefGoogle Scholar
  13. Geeves, M. A. and Holmes, K. C. (2005). The molecular mechanism of muscle contraction. Adv Protein Chem 71, 161–93.PubMedGoogle Scholar
  14. Gourinath, S., Himmel, D. M., Brown, J. H., Reshetnikova, L., Szent-Gyorgyi, A. G. and Cohen, C. (2003). Crystal structure of scallop Myosin s1 in the pre-power stroke state to 2.6 a resolution: flexibility and function in the head. Structure (Camb) 11, 1621–7.CrossRefGoogle Scholar
  15. Gulick, A. M., Bauer, C. B., Thoden, J. B. and Rayment, I. (1997) X-ray structures of the MgADP, MgATPgammaS, and MgAMPPNP complexes of the Dictyostelium discoideum myosin motor domain. Biochemistry 36, 11619–28.PubMedCrossRefGoogle Scholar
  16. Hodge, T. and Cope, M. J. (2000). A myosin family tree. J Cell Sci 113 Pt 19, 3353–4.PubMedGoogle Scholar
  17. Holmes, K. C. (1996). Muscle proteins–their actions and interactions. Curr Opin Struct Biol 6, 781–9.PubMedCrossRefGoogle Scholar
  18. Holmes, K. C. (1997). The swinging lever-arm hypothesis of muscle contraction. Curr Biol 7,R112–8.PubMedCrossRefGoogle Scholar
  19. Holmes, K. C., Angert, I., Kull, F. J., Jahn, W. and Schroder, R. R. (2003). Electron cryo-microscopy shows how strong binding of myosin to actin releases nucleotide. Nature 425, 423–7.PubMedCrossRefGoogle Scholar
  20. Holmes, K. C., Popp, D., Gebhard, W. and Kabsch, W. (1990). Atomic model of the actin filament. Nature 347, 44–9.PubMedCrossRefGoogle Scholar
  21. Holmes, K. C., Schroder, R. R., Sweeney, H. L. and Houdusse, A. (2004). The structure of the rigor complex and its implications for the power stroke. Philos Trans R Soc Lond B Biol Sci 359, 1819–28.PubMedCrossRefGoogle Scholar
  22. Hozumi, T. and Muhlrad, A. (1981). Reactive lysyl of myosin subfragment 1: location on the 27K fragment and labeling properties. Biochemistry 20, 2945–50.PubMedCrossRefGoogle Scholar
  23. Huxley, A. F. and Simmons, R. (1971). Proposed Mechanism of Force Generation in Striated Muscle. Nature (Lond.) 233, 533–538.CrossRefGoogle Scholar
  24. Huxley, H. E. (1957). The double array of filaments in cross-striated muscle. Biophysic. and Biochem. Cytol. 3, 631–648.CrossRefGoogle Scholar
  25. Huxley, H. E. (1969). The Mechanism of Muscular Contraction. Science 164: 1356–1366.PubMedCrossRefGoogle Scholar
  26. Kollmar, M., Durrwang, U., Kliche, W., Manstein, D. J. and Kull, F. J. (2002). Crystal structure of the motor domain of a class-I myosin. Embo J 21, 2517–25.PubMedCrossRefGoogle Scholar
  27. Kron, S. J. and Spudich, J. A. (1986). Fluorescent actin filaments move on myosin fixed to a glass surface. Proc Natl Acad Sci U S A 83, 6272–6.PubMedCrossRefGoogle Scholar
  28. Lymn, R. W. and Taylor, E. W. (1971). Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry 10, 4617–24.PubMedCrossRefGoogle Scholar
  29. Margossian, S. S. and Lowey, S. (1982). Preparation of myosin and its subfragments from rabbit skeletal muscle. Methods in Enzymology 85, 55–71.PubMedCrossRefGoogle Scholar
  30. Menetrey, J., Bahloul, A., Wells, A. L., Yengo, C. M., Morris, C. A., Sweeney, H. L. and Houdusse, A. (2005). The structure of the myosin VI motor reveals the mechanism of directionality reversal. Nature 435, 779–85.PubMedCrossRefGoogle Scholar
  31. Moore, P. B., Huxley, H. E. and DeRosier, D. J. (1970). Three-dimensional reconstruction of F-actin, thin filaments and decorated thin filaments. Journal of Molecular Biology 50, 279–95.PubMedCrossRefGoogle Scholar
  32. Mornet, D., Bertrand, R., Pantel, P., Audemard, E. and Kassab, R. (1981). Structure of the acto-myosin interface. Nature (Lond.) 292. 301–306.CrossRefGoogle Scholar
  33. Park, H., Li, A., Chen, L. Q., Houdusse, A., Selvin, P. R. and Sweeney, H. L. (2007). The unique insert at the end of the myosin VI motor is the sole determinant of directionality. Proc Natl Acad Sci U S A 104, 778–83.PubMedCrossRefGoogle Scholar
  34. Purcell, T. J., Morris, C., Spudich, J. A. and Sweeney, H. L. (2002). Role of the lever arm in the processive stepping of myosin V. Proc Natl Acad Sci U S A 99, 14159–64.PubMedCrossRefGoogle Scholar
  35. Rayment, I., Holden, H. M., Whittaker, M., Yohn, C. B., Lorenz, M., Holmes, K. C. and Milligan, R. A. (1993b). Structure of the actin-myosin complex and its implications for muscle contraction. Science 261: 58–65.CrossRefGoogle Scholar
  36. Rayment, I., Rypniewski, W. R., Schmidt-Base, K., Smith, R., Tomchick, D. R., Benning, M. M., Winkelmann, D. A., Wesenberg, G. and Holden, H. M. (1993a). Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261, 50–8.CrossRefGoogle Scholar
  37. Reedy, M. K., Holmes, K. C. and Tregear, R. T. (1965). Induced changes in orientation of the cross-bridges of glycerinated insect flight muscle. Nature 207, 1276–80.PubMedCrossRefGoogle Scholar
  38. Reubold, T. F., Eschenburg, S., Becker, A., Kull, F. J. and Manstein, D. J. (2003). A structural model for actin-induced nucleotide release in myosin. Nat Struct Biol 10: 826–30.PubMedCrossRefGoogle Scholar
  39. Risal, D., Gourinath, S., Himmel, D. M., Szent-Gyorgyi, A. G. and Cohen, C. (2004). Myosin subfragment 1 structures reveal a partially bound nucleotide and a complex salt bridge that helps couple nucleotide and actin binding. Proc Natl Acad Sci U S A 101, 8930–5.PubMedCrossRefGoogle Scholar
  40. Sleep, J. A. and Hutton, R. L. (1978). Actin mediated release of ATP from a myosin-ATP complex. Biochemistry 17: 5423–30.PubMedCrossRefGoogle Scholar
  41. Smith, C. A. and Rayment, I. (1996a). Active site comparisons highlight structural similarities between myosin and other P-loop proteins. Biophys. J. 70, 1590–1602.CrossRefGoogle Scholar
  42. Smith, C. A. and Rayment, I. (1996b). X-ray structure of the magnesium(ii).ADP.vanadate complex of the dictyostelium-discoideum myosin motor domain to 1.9Å resolution. Biochemistry 35, 5404–5417.CrossRefGoogle Scholar
  43. Spudich, J. A. (1994). How molecular motors work. Nature 372, 515–8.PubMedCrossRefGoogle Scholar
  44. Sweeney, H. L. and Houdusse, A. (2004). The motor mechanism of myosin V: insights for muscle contraction. Philos Trans R Soc Lond B Biol Sci 359, 1829–41.PubMedCrossRefGoogle Scholar
  45. Sweeney, H. L. and Houdusse, A. (2007) What can myosin VI do in cells? Curr Opin Cell Biol 19, 57–66.PubMedCrossRefGoogle Scholar
  46. Szent-Györgyi, A. G. (1953) Meromyosins, the subunits of myosin. Arch Biochem Biophys 42, 305–320.Google Scholar
  47. Tsiavaliaris, G., Fujita-Becker, S. and Manstein, D. J. (2004). Molecular engineering of a backwards-moving myosin motor. Nature 427, 558–61.PubMedCrossRefGoogle Scholar
  48. Uyeda, T. Q., Abramson, P. D. and Spudich, J. A. (1996). The neck region of the myosin motor domain acts as a lever arm to generate movement. Proc Natl Acad Sci U S A 93, 4459–64.PubMedCrossRefGoogle Scholar
  49. Vale, R. D. and Milligan, R. A. (2000). The way things move: looking under the hood of molecular motor proteins. Science 288, 88–95.PubMedCrossRefGoogle Scholar
  50. Wells, A. L., Lin, A. W., Chen, L. Q., Safer, D., Cain, S. M., Hasson, T., Carragher, B. O., Milligan, R. A. and Sweeney, H. L. (1999). Myosin VI is an actin-based motor that moves backwards. Nature 401, 505–8.PubMedCrossRefGoogle Scholar
  51. Yang, Y., Gourinath, S., Kovacs, M., Nyitray, L., Reutzel, R., Himmel, D. M., O’Neall Hennessey, E., Reshetnikova, L., Szent-Gyorgyi, A. G., Brown, J. H. and Cohen, C. (2007). Rigor-like structures from muscle myosins reveal key mechanical elements in the transduction pathways of this allosteric motor. Structure 15, 553–64.PubMedCrossRefGoogle Scholar
  52. Yengo, C. M., De la Cruz, E. M., Chrin, L. R., Gaffney, D. P. and Berger, C. L. (2002). Actin-induced closure of the actin-binding cleft of smooth muscle myosin. Journal of Biological Chemistry 277, 24114–24119.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Kenneth C. Holmes
    • 1
  1. 1.Department of BiophysicsMax Planck Institut für medizinische ForschungGERMANY

Personalised recommendations