Advertisement

Myosins pp 441-467 | Cite as

Myosin XVA

  • Erich T. Boger
  • Gregory I. Frolenkov
  • Thomas B. Friedman
  • Inna A. Belyantseva
Part of the Proteins and Cell Regulation book series (PROR, volume 7)

Abstract

Mutations of MYO15A are associated with deafness in humans. In the shaker 2 mouse (Myo15a sh2), a missense mutation in the motor domain of myosin XVa causes deafness and circling behavior, and is morphologically characterized by abnormally short stereocilia bundles on the apical surface of inner ear hair cells that also lack the characteristic staircase architecture. The precise architecture of the stereocilia bundle is considered essential for normal hearing in vertebrates. Abnormally short stereocilia also result from a mutation of whirlin, a scaffolding protein that contains three PDZ domains and is a protein partner of myosin XVa. In inner ear hair cells, endogenous myosin XVa and whirlin are both present at the tips of developing and mature tereocilia, overlapping with the site of actin polymerization. Transfection of GFP-whirlin into Whrnwi hair cells or GFP-myosin XVa into Myo15a sh2 hair cells reinitiates stereocilia elongation and restores the wild-type architecture to the hair bundle. This elongation process occurs when myosin XVa interacts through its C-terminal class 1 PDZ-ligand with the third PDZ domain of whirlin and delivers whirlin to the tips of stereocilia. Thus, the programmed elongation of stereocilia to a predetermined height depends on the function of myosin XVa. Stereocilia tips are also the sites of certain components of the mechanotransduction complex. Electrophysiological analysis of hair-cell mechanotransduction in Myo15a sh2 and Whrn wi mice shows that targeting and function of the mechanotransduction complex in young postnatal mice does not depend upon programmed stereocilia elongation and staircase formation of the hair bundle mediated by the myosin XVa-whirlin complex.

Keywords

Myosin XVa myosin deafness hearing stereocilia hair cell 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson D. W., Probst F. J., Belyantseva I. A., Fridell R. A., Beyer L. , Martin D. M., Wu D. , Kachar B. , Friedman T. B., Raphael Y. , and Camper S. A. (2000). The motor and tail regions of myosin XV are critical for normal structure and function of auditory and vestibular hair cells. Hum Mol Genet 9, 1729–38.PubMedCrossRefGoogle Scholar
  2. Avraham K. B., Hasson T. , Steel K. P., Kingsley D. M., Russell L. B., Mooseker M. S., Copeland N. G., and Jenkins N. A. (1995). The mouse Snell’s waltzer deafness gene encodes an unconventional myosin required for structural integrity of inner ear hair cells. Nat Genet 11, 369–75.PubMedCrossRefGoogle Scholar
  3. Balla T. (2005). Inositol-lipid binding motifs: signal integrators through protein-lipid and protein-protein interactions. J Cell Sci 118, 2093–104.PubMedCrossRefGoogle Scholar
  4. Battelle B. A., Dabdoub A. , Malone M. A., Andrews A. W., Cacciatore C. , Calman B. G., Smith W. C., and Payne R. (2001). Immunocytochemical localization of opsin, visual arrestin, myosin III, and calmodulin in Limulus lateral eye retinular cells and ventral photoreceptors. J Comp Neurol 435, 211–25.PubMedCrossRefGoogle Scholar
  5. Belyantseva I. A., Boger E. T., and Friedman T. B. (2003a). Myosin XVa localizes to the tips of inner ear sensory cell stereocilia and is essential for staircase formation of the hair bundle. Proc Natl Acad Sci U S A 100, 13958–63.CrossRefGoogle Scholar
  6. Belyantseva I. A., Boger E. T., Naz S. , Frolenkov G. I., Sellers J. R., Ahmed Z. M., Griffith A. J., and Friedman T. B. (2005). Myosin-XVa is required for tip localization of whirlin and differential elongation of hair-cell stereocilia. Nat Cell Biol 7, 148–56.PubMedCrossRefGoogle Scholar
  7. Belyantseva I. A., Labay V. , Boger E. T., Griffith A. J., and Friedman T. B. (2003b). Stereocilia: the long and the short of it. Trends Mol Med 9, 458–61.CrossRefGoogle Scholar
  8. Berg J. S., and Cheney R. E. (2002). Myosin-X is an unconventional myosin that undergoes intrafilopodial motility. Nat Cell Biol 4, 246–50.PubMedCrossRefGoogle Scholar
  9. Berg J. S., Derfler B. H., Pennisi C. M., Corey D. P., and Cheney R. E. (2000). Myosin-X, a novel myosin with pleckstrin homology domains, associates with regions of dynamic actin. J Cell Sci 113 Pt 19, 3439–51.Google Scholar
  10. Berg J. S., Powell B. C., and Cheney R. E. (2001). A millennial myosin census. Mol Biol Cell 12, 780–94.PubMedGoogle Scholar
  11. Beyer L. A., Odeh H. , Probst F. J., Lambert E. H., Dolan D. F., Camper S. A., Kohrman D. C., and Raphael Y. (2000). Hair cells in the inner ear of the pirouette and shaker 2 mutant mice. J Neurocytol 29, 227–40.PubMedCrossRefGoogle Scholar
  12. Biemesderfer D., Mentone S. A., Mooseker M. , and Hasson T. (2002). Expression of myosin VI within the early endocytic pathway in adult and developing proximal tubules. Am J Physiol Renal Physiol 282, F785–94.Google Scholar
  13. Boger E. T., Sellers J. R., and Friedman T. B. (2001). Human myosin XVBP is a transcribed pseudogene. J Muscle Res Cell Motil 22, 477–83.PubMedCrossRefGoogle Scholar
  14. Bohil A. B., Robertson B. W., and Cheney R. E. (2006). Myosin-X is a molecular motor that functions in filopodia formation. Proc Natl Acad Sci U S A 103, 12411–6.PubMedCrossRefGoogle Scholar
  15. Brown K. A., Janjua A. H., Karbani G. , Parry G. , Noble A. , Crockford G. , Bishop D. T., Newton V. E., Markham A. F., and Mueller R. F. (1996). Linkage studies of non-syndromic recessive deafness (NSRD) in a family originating from the Mirpur region of Pakistan maps DFNB1 centromeric to D13S175. Hum Mol Genet 5, 169–73.PubMedCrossRefGoogle Scholar
  16. Clark R., Ansari M. A., Dash S. , Geeves M. A., and Coluccio L. M. (2005). Loop 1 of transducer region in mammalian class I myosin, Myo1b, modulates actin affinity, ATPase activity, and nucleotide access. J Biol Chem 280, 30935–42.PubMedCrossRefGoogle Scholar
  17. Delprat B., Michel V. , Goodyear R. , Yamasaki Y. , Michalski N. , El-Amraoui A., Perfettini I. , Legrain P. , Richardson G. , Hardelin J. P., and Petit C. (2005). Myosin XVa and whirlin, two deafness gene products required for hair bundle growth, are located at the stereocilia tips and interact directly. Hum Mol Genet 14, 401–10.PubMedCrossRefGoogle Scholar
  18. Denk W., Holt J. R., Shepherd G. M., and Corey D. P. (1995). Calcium imaging of single stereocilia in hair cells: localization of transduction channels at both ends of tip links. Neuron 15, 1311–21.PubMedCrossRefGoogle Scholar
  19. DeRosier D. J., and Tilney L. G. (2000). F-actin bundles are derivatives of microvilli: What does this tell us about how bundles might form? J Cell Biol 148, 1–6.PubMedCrossRefGoogle Scholar
  20. Dose A. C., and Burnside B. (2000). Cloning and chromosomal localization of a human class III myosin. Genomics 67, 333–42.PubMedCrossRefGoogle Scholar
  21. Dose A. C., and Burnside B. (2002). A class III myosin expressed in the retina is a potential candidate for Bardet-Biedl syndrome. Genomics 79, 621–4.PubMedCrossRefGoogle Scholar
  22. Dumont R. A., Zhao Y. D., Holt J. R., Bahler M. , and Gillespie P. G. (2002). Myosin-I isozymes in neonatal rodent auditory and vestibular epithelia. J Assoc Res Otolaryngol 3, 375–89.PubMedCrossRefGoogle Scholar
  23. Ebermann I., Scholl H. P. N., Issa P. C., Becirovic E. , Lamprecht J. , Jurklies B. , Millan J. M., Aller E. , Mitter D. , and Bolz H. (2007) A novel gene for usher syndrome type 2 : mutations in the long isofrom of whirlin are associated with retinitis pigmentosa and sensorineural hearing loss. Hum Genet 121, 203–11.Google Scholar
  24. el-Amraoui A., Sahly I. , Picaud S. , Sahel J. , Abitbol M. , and Petit C. (1996). Human Usher 1B/mouse shaker-1: the retinal phenotype discrepancy explained by the presence/absence of myosin VIIA in the photoreceptor cells. Hum Mol Genet 5, 1171–8.PubMedCrossRefGoogle Scholar
  25. Fleming J., Rogers M. J., Brown S. D., and Steel K. P. (1994). Linkage analysis of the whirler deafness gene on mouse chromosome 4. Genomics 21, 42–8.PubMedCrossRefGoogle Scholar
  26. Foth B. J., Goedecke M. C., and Soldati D. (2006). New insights into myosin evolution and classification. Proc Natl Acad Sci U S A 103, 3681–6.PubMedCrossRefGoogle Scholar
  27. Frey S., Richter R. P., and Gorlich D. (2006). FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties. Science 314, 815–7.PubMedCrossRefGoogle Scholar
  28. Friedman T. B., and Griffith A. J. (2003). Human nonsyndromic sensorineural deafness. Annu Rev Genomics Hum Genet 4, 341–402.PubMedCrossRefGoogle Scholar
  29. Friedman T. B., Liang Y. , Weber J. L., Hinnant J. T., Barber T. D., Winata S. , Arhya I. N., and Asher J. H., Jr. (1995). A gene for congenital, recessive deafness DFNB3 maps to the pericentromeric region of chromosome 17. Nat Genet 9, 86–91.PubMedCrossRefGoogle Scholar
  30. Frolenkov G. I., Belyantseva I. A., Friedman T. B., and Griffith A. J. (2004). Genetic insights into the morphogenesis of inner ear hair cells. Nat Rev Genet 5, 489–98.PubMedCrossRefGoogle Scholar
  31. Furusawa T., Ikawa S. , Yanai N. , and Obinata M. (2000). Isolation of a novel PDZ-containing myosin from hematopoietic supportive bone marrow stromal cell lines. Biochem Biophys Res Commun 270, 67–75.PubMedCrossRefGoogle Scholar
  32. Gillespie P. G., and Walker R. G. (2001). Molecular basis of mechanosensory transduction. Nature 413, 194–202.PubMedCrossRefGoogle Scholar
  33. Gorman S. W., Haider N. B., Grieshammer U. , Swiderski R. E., Kim E. , Welch J. W., Searby C. , Leng S. , Carmi R. , Sheffield V. C., and Duhl D. M. (1999). The cloning and developmental expression of unconventional myosin IXA (MYO9A) a gene in the Bardet-Biedl syndrome (BBS4) region at chromosome 15q22–q23. Genomics 59, 150–60.PubMedCrossRefGoogle Scholar
  34. Grewal P. K., Jones A. M., Maconochie M. , Lemmers R. J., Frants R. R., and Hewitt J. E. (1999). Cloning of the murine unconventional myosin gene Myo9b and identification of alternative splicing. Gene 240, 389–98.PubMedCrossRefGoogle Scholar
  35. Griffith A. J., and Friedman T. B. (1999). Making sense out of sound. Nat Genet 21, 347–9.PubMedCrossRefGoogle Scholar
  36. Hamada K., Shimizu T. , Matsui T. , Tsukita S. , and Hakoshima T. (2000). Structural basis of the membrane-targeting and unmasking mechanisms of the radixin FERM domain. Embo J 19, 4449–62.PubMedCrossRefGoogle Scholar
  37. Harris B. Z., and Lim W. A. (2001). Mechanism and role of PDZ domains in signaling complex assembly. J Cell Sci 114, 3219–31.PubMedGoogle Scholar
  38. Hasson T. (1997). Unconventional myosins, the basis for deafness in mouse and man. Am J Hum Genet 61, 801–5.PubMedGoogle Scholar
  39. Holme R. H., Kiernan B. W., Brown S. D., and Steel K. P. (2002). Elongation of hair cell stereocilia is defective in the mouse mutant whirler. J Comp Neurol 450, 94–102.PubMedCrossRefGoogle Scholar
  40. Holt J. R., Gillespie S. K., Provance D. W., Shah K. , Shokat K. M., Corey D. P., Mercer J. A., and Gillespie P. G. (2002). A chemical-genetic strategy implicates myosin-1c in adaptation by hair cells. Cell 108, 371–81.PubMedCrossRefGoogle Scholar
  41. Howard J., and Hudspeth A. J. (1988). Compliance of the hair bundle associated with gating of mechanoelectrical transduction channels in the bullfrog’s saccular hair cell. Neuron 1, 189–99.PubMedCrossRefGoogle Scholar
  42. Hudspeth A. J. (1989). How the ear’s works work. Nature 341, 397–404.PubMedCrossRefGoogle Scholar
  43. Hudspeth A. J. (1992). Hair-bundle mechanics and a model for mechanoelectrical transduction by hair cells. Soc Gen Physiol Ser 47, 357–70.PubMedGoogle Scholar
  44. Hung A. Y., and Sheng M. (2002). PDZ domains: structural modules for protein complex assembly. J Biol Chem 277, 5699–702.PubMedCrossRefGoogle Scholar
  45. Kanzaki S., Beyer L. , Karolyi I. J., Dolan D. F., Fang Q. , Probst F. J., Camper S. A., and Raphael Y. (2006). Transgene correction maintains normal cochlear structure and function in 6-month-old Myo15a mutant mice. Hear Res 214, 37–44.PubMedCrossRefGoogle Scholar
  46. Karolyi I. J., Probst F. J., Beyer L. , Odeh H. , Dootz G. , Cha K. B., Martin D. M., Avraham K. B., Kohrman D. , Dolan D. F., Raphael Y. , and Camper S. A. (2003). Myo15 function is distinct from Myo6, Myo7a and pirouette genes in development of cochlear stereocilia. Hum Mol Genet 12, 2797–805.PubMedCrossRefGoogle Scholar
  47. Kay B. K., Williamson M. P., and Sudol M. (2000). The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains. Faseb J 14, 231–41.PubMedGoogle Scholar
  48. Kelley C. A., Takahashi M. , Yu J. H., and Adelstein R. S. (1993) An insert of seven amino acids confers functional differences between smooth muscle myosins from the intestines and vasculature. J Biol Chem 268, 12848–12854.Google Scholar
  49. Kikkawa Y., Mburu P. , Morse S. , Kominami R. , Townsend S. , and Brown S. D. (2005). Mutant analysis reveals whirlin as a dynamic organizer in the growing hair cell stereocilium. Hum Mol Genet 14, 391–400.PubMedCrossRefGoogle Scholar
  50. Kim K. Y., Kovacs M. , Kawamoto S. , Sellers J. R., and Adelstein R. S. (2005). Disease-associated mutations and alternative splicing alter the enzymatic and motile activity of nonmuscle myosins II-B and II-C. J Biol Chem 280, 22769–75.PubMedCrossRefGoogle Scholar
  51. Kros C. J., Marcotti W. , van Netten S. M., Self T. J., Libby R. T., Brown S. D., Richardson G. P., and Steel K. P. (2002). Reduced climbing and increased slipping adaptation in cochlear hair cells of mice with Myo7a mutations. Nat Neurosci 5, 41–7.Google Scholar
  52. La Rosa S., Capella C. , and Lloyd R. V. (2002). Localization of myosin XVA in endocrine tumors of gut and pancreas. Endocr Pathol 13, 29–37.PubMedCrossRefGoogle Scholar
  53. Lee S. J., and Montell C. (2004). Light-dependent translocation of visual arrestin regulated by the NINAC myosin III. Neuron 43, 95–103.PubMedCrossRefGoogle Scholar
  54. Lenoir M., Puel J. L., and Pujol R. (1987). Stereocilia and tectorial membrane development in the rat cochlea. A SEM study. Anat Embryol (Berl) 175, 477–87.CrossRefGoogle Scholar
  55. Liang Y., Wang A. , Belyantseva I. A., Anderson D. W., Probst F. J., Barber T. D., Miller W. , Touchman J. W., Jin L. , Sullivan S. L., Sellers J. R., Camper S. A., Lloyd R. V., Kachar B. , Friedman T. B., and Fridell R. A. (1999). Characterization of the human and mouse unconventional myosin XV genes responsible for hereditary deafness DFNB3 and shaker 2. Genomics 61, 243–58.PubMedCrossRefGoogle Scholar
  56. Liang Y., Wang A. , Probst F. J., Arhya I. N., Barber T. D., Chen K. S., Deshmukh D. , Dolan D. F., Hinnant J. T., Carter L. E., Jain P. K., Lalwani A. K., Li X. C., Lupski J. R., Moeljopawiro S. , Morell R. , Negrini C. , Wilcox E. R., Winata S. , Camper S. A., and Friedman T. B. (1998). Genetic mapping refines DFNB3 to 17p11.2, suggests multiple alleles of DFNB3, and supports homology to the mouse model shaker-2. Am J Hum Genet 62, 904–15.PubMedCrossRefGoogle Scholar
  57. Liburd N., Ghosh M. , Riazuddin S. , Naz S. , Khan S. , Ahmed Z. , Riazuddin S. , Liang Y. , Menon P. S., Smith T. , Smith A. C., Chen K. S., Lupski J. R., Wilcox E. R., Potocki L. , and Friedman T. B. (2001). Novel mutations of MYO15A associated with profound deafness in consanguineous families and moderately severe hearing loss in a patient with Smith-Magenis syndrome. Hum Genet 109, 535–41.PubMedCrossRefGoogle Scholar
  58. Lin-Jones J., Parker E. , Wu M. , Dose A. , and Burnside B. (2004). Myosin 3A transgene expression produces abnormal actin filament bundles in transgenic Xenopus laevis rod photoreceptors. J Cell Sci 117, 5825–34.PubMedCrossRefGoogle Scholar
  59. Lloyd R. V., Vidal S. , Jin L. , Zhang S. , Kovacs K. , Horvath E. , Scheithauer B. W., Boger E. T., Fridell R. A., and Friedman T. B. (2001). Myosin XVA expression in the pituitary and in other neuroendocrine tissues and tumors. Am J Pathol 159, 1375–82.PubMedGoogle Scholar
  60. Mburu P., Kikkawa Y. , Townsend S. , Romero R. , Yonekawa H. , and Brown S. D. (2006). Whirlin complexes with p55 at the stereocilia tip during hair cell development. Proc Natl Acad Sci U S A 103, 10973–8.PubMedCrossRefGoogle Scholar
  61. Mburu P., Mustapha M. , Varela A. , Weil D. , El-Amraoui A., Holme R. H., Rump A. , Hardisty R. E., Blanchard S. , Coimbra R. S., Perfettini I. , Parkinson N. , Mallon A. M., Glenister P. , Rogers M. J., Paige A. J., Moir L. , Clay J. , Rosenthal A. , Liu X. Z., Blanco G. , Steel K. P., Petit C. , and Brown S. D. (2003). Defects in whirlin, a PDZ domain molecule involved in stereocilia elongation, cause deafness in the whirler mouse and families with DFNB31. Nat Genet 34, 421–8.PubMedCrossRefGoogle Scholar
  62. Murphy C. T., and Spudich J. A. (1999). The sequence of the myosin 50–20K loop affects myosin’s affinity for actin throughout the actin-myosin ATPase cycle and its maximum ATPase activity. Biochem 38, 3785–3792.CrossRefGoogle Scholar
  63. Murphy C. T., and Spudich J. A. (2000). Variable surface loops and myosin activity: accessories to a motor. J Muscle Res Cell Motil 21, 139–51.PubMedCrossRefGoogle Scholar
  64. Mustapha M., Beyer L. , Izumikawa M. , Dolan D. F., Raphael R. , and Camper S. A. (2007). Genetic analysis of myosin 15 and whirlin interaction in hearing. (in press)Google Scholar
  65. Mustapha M., Chouery E. , Chardenoux S. , Naboulsi M. , Paronnaud J. , Lemainque A. , Megarbane A. , Loiselet J. , Weil D. , Lathrop M. , and Petit C. (2002). DFNB31, a recessive form of sensorineural hearing loss, maps to chromosome 9q32–34. Eur J Hum Genet 10, 210–2.PubMedCrossRefGoogle Scholar
  66. Nal N., Ahmed Z. M., Erkal E. , Alper O. , Lüleci G., Dinç O., Chattaraj P. , S. R., Boger E. T., Kabra M. , Ghosh M. , Riazuddin S. , Morell R. J., and Friedman T. B. (2007). Mutational spectrum of MYO15A : the large N-terminal extension of myosin XVa is required for hearing. Hum Mut 28(10), 1014–1019.Google Scholar
  67. Niggli V. (2001). Structural properties of lipid-binding sites in cytoskeletal proteins. Trends Biochem Sci 26, 604–11.PubMedCrossRefGoogle Scholar
  68. Odeh H., Hagiwara N. , Skynner M. , Mitchem K. L., Beyer L. A., Allen N. D., Brilliant M. H., Lebart M. C., Dolan D. F., Raphael Y. , and Kohrman D. C. (2004). Characterization of two transgene insertional mutations at pirouette, a mouse deafness locus. Audiol Neurootol 9, 303–14.PubMedCrossRefGoogle Scholar
  69. Oliver T. N., Berg J. S., and Cheney R. E. (1999). Tails of unconventional myosins. Cell Mol Life Sci 56, 243–57.PubMedCrossRefGoogle Scholar
  70. Osborne M. P., Comis S. D., and Pickles J. O. (1984). Morphology and cross-linkage of stereocilia in the guinea-pig labyrinth examined without the use of osmium as a fixative. Cell Tissue Res 237, 43–8.PubMedGoogle Scholar
  71. Park H., Li A. , Chen L. Q., Houdusse A. , Selvin P. R., and Sweeney H. L. (2007). The unique insert at the end of the myosin VI motor is the sole determinant of directionality. Proc Natl Acad Sci U S A 104, 778–83.PubMedCrossRefGoogle Scholar
  72. Pearson M. A., Reczek D. , Bretscher A. , and Karplus P. A. (2000). Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain. Cell 101, 259–70.PubMedCrossRefGoogle Scholar
  73. Pickles J. O., Comis S. D., and Osborne M. P. (1984). Cross-links between stereocilia in the guinea pig organ of Corti, and their possible relation to sensory transduction. Hear Res 15, 103–12.PubMedCrossRefGoogle Scholar
  74. Probst F. J., Chen K. S., Zhao Q. , Wang A. , Friedman T. B., Lupski J. R., and Camper S. A. (1999). A physical map of the mouse shaker-2 region contains many of the genes commonly deleted in Smith-Magenis syndrome (del17p11.2p11.2). Genomics 55, 348–52.PubMedCrossRefGoogle Scholar
  75. Probst F. J., Fridell R. A., Raphael Y. , Saunders T. L., Wang A. , Liang Y. , Morell R. J., Touchman J. W., Lyons R. H., Noben-Trauth K., Friedman T. B., and Camper S. A. (1998). Correction of deafness in shaker-2 mice by an unconventional myosin in a BAC transgene. Science 280, 1444–7.PubMedCrossRefGoogle Scholar
  76. Richards T. A., and Cavalier-Smith T. (2005). Myosin domain evolution and the primary divergence of eukaryotes. Nature 436, 1113–8.PubMedCrossRefGoogle Scholar
  77. Roth B., and Bruns V. (1992). Postnatal development of the rat organ of Corti. II. Hair cell receptors and their supporting elements. Anat Embryol (Berl) 185, 571–81.Google Scholar
  78. Rzadzinska A. K., Schneider M. E., Davies C. , Riordan G. P., and Kachar B. (2004). An actin molecular treadmill and myosins maintain stereocilia functional architecture and self-renewal. J Cell Biol 164, 887–97.PubMedCrossRefGoogle Scholar
  79. Salamon M., Millino C. , Raffaello A. , Mongillo M. , Sandri C. , Bean C. , Negrisolo E. , Pallavicini A. , Valle G. , Zaccolo M. , Schiaffino S. , and Lanfranchi G. (2003). Human MYO18B, a novel unconventional myosin heavy chain expressed in striated muscles moves into the myonuclei upon differentiation. J Mol Biol 326, 137–49.PubMedCrossRefGoogle Scholar
  80. Schneider M. E., Belyantseva I. A., Azevedo R. B., and Kachar B. (2002). Rapid renewal of auditory hair bundles. Nature 418, 837–8.PubMedCrossRefGoogle Scholar
  81. Schneider M. E., Dose A. C., Salles F. T., Chang W. , Erickson F. L., Burnside B. , and Kachar B. (2006). A new compartment at stereocilia tips defined by spatial and temporal patterns of myosin IIIa expression. J Neurosci 26, 10243–52.PubMedCrossRefGoogle Scholar
  82. Self T., Mahony M. , Fleming J. , Walsh J. , Brown S. D., and Steel K. P. (1998). Shaker-1 mutations reveal roles for myosin VIIA in both development and function of cochlear hair cells. Development 125, 557–66.PubMedGoogle Scholar
  83. Self T., Sobe T. , Copeland N. G., Jenkins N. A., Avraham K. B., and Steel K. P. (1999). Role of myosin VI in the differentiation of cochlear hair cells. Dev Biol 214, 331–41.PubMedCrossRefGoogle Scholar
  84. Snell G. D., and Law L. W. (1939). A linkage between shaker-2 and wavy-2 in the house mouse. J Hered 30, 447.Google Scholar
  85. Sousa A. D., Berg J. S., Robertson B. W., Meeker R. B., and Cheney R. E. (2006). Myo10 in brain: developmental regulation, identification of a headless isoform and dynamics in neurons. J Cell Sci 119, 184–94.PubMedCrossRefGoogle Scholar
  86. Sousa A. D., and Cheney R. E. (2005). Myosin-X: a molecular motor at the cell’s fingertips. Trends Cell Biol 15, 533–9.PubMedCrossRefGoogle Scholar
  87. Spudich J. A. (1994). How molecular motors work. Nature 372, 515–8.PubMedCrossRefGoogle Scholar
  88. Stauffer E. A., Scarborough J. D., Hirono M. , Miller E. D., Shah K. , Mercer J. A., Holt J. R., and Gillespie P. G. (2005). Fast adaptation in vestibular hair cells requires myosin-1c activity. Neuron 47, 541–53.PubMedCrossRefGoogle Scholar
  89. Stepanyan R., Belyantseva I. A., Griffith A. J., Friedman T. B., and Frolenkov G. I. (2006). Auditory mechanotransduction in the absence of functional myosin-XVa. J Physiol 576, 801–8.PubMedCrossRefGoogle Scholar
  90. Sweeney H. L., Rosenfeld S. R., Brown F. , Faust L. , Smith J. , Xing J. , Stein L. A., and Sellers J. R. (1998) Kinetic tuning of myosin via a flexible loop adjacent to the nucleotide binding pocket. J Biol Chem 273, 6262–6270.Google Scholar
  91. Tatham A. S., and Shewry P. R. (2000). Elastomeric proteins: biological roles, structures and mechanisms. Trends Biochem Sci 25, 567–71.PubMedCrossRefGoogle Scholar
  92. Tilney L. G., Bonder E. M., and DeRosier D. J. (1981). Actin filaments elongate from their membrane-associated ends. J Cell Biol 90, 485–94.Google Scholar
  93. Tilney L. G., Cotanche D. A., and Tilney M. S. (1992a). Actin filaments, stereocilia and hair cells of the bird cochlea. VI. How the number and arrangement of stereocilia are determined. Development 116, 213–26.Google Scholar
  94. Tilney L. G., Egelman E. H., DeRosier D. J., and Saunder J. C. (1983). Actin filaments, stereocilia, and hair cells of the bird cochlea. II. Packing of actin filaments in the stereocilia and in the cuticular plate and what happens to the organization when the stereocilia are bent. J Cell Biol 96, 822–34.Google Scholar
  95. Tilney L. G., and Tilney M. S. (1986). Functional organization of the cytoskeleton. Hear Res 22, 55–77.PubMedCrossRefGoogle Scholar
  96. Tilney L. G., Tilney M. S., and DeRosier D. J. (1992b). Actin filaments, stereocilia, and hair cells: how cells count and measure. Annu Rev Cell Biol 8, 257–74.CrossRefGoogle Scholar
  97. Tyska M. J., Mackey A. T., Huang J. D., Copeland N. G., Jenkins N. A., and Mooseker M. S. (2005). Myosin-1a is critical for normal brush border structure and composition. Mol Biol Cell 16, 2443–57.PubMedCrossRefGoogle Scholar
  98. Tyska M. J., and Mooseker M. S. (2002). MYO1A (brush border myosin I) dynamics in the brush border of LLC-PK1-CL4 cells. Biophys J 82, 1869–83.PubMedGoogle Scholar
  99. Uversky V. N. (2002). What does it mean to be natively unfolded? Eur J Biochem 269, 2–12.PubMedCrossRefGoogle Scholar
  100. Uversky V. N., Gillespie J. R., and Fink A. L. (2000). Why are "natively unfolded" proteins unstructured under physiologic conditions? Proteins 41, 415–27.PubMedCrossRefGoogle Scholar
  101. Wakabayashi Y., Takahashi Y. , Kikkawa Y. , Okano H. , Mishima Y. , Ushiki T. , Yonekawa H. , and Kominami R. (1998). A novel type of myosin encoded by the mouse deafness gene shaker-2. Biochem Biophys Res Commun 248, 655–9.PubMedCrossRefGoogle Scholar
  102. Walsh T., Walsh V. , Vreugde S. , Hertzano R. , Shahin H. , Haika S. , Lee M. K., Kanaan M. , King M. C., and Avraham K. B. (2002). From flies’ eyes to our ears: mutations in a human class III myosin cause progressive nonsyndromic hearing loss DFNB30. Proc Natl Acad Sci U S A 99, 7518–23.PubMedCrossRefGoogle Scholar
  103. Wang A., Liang Y. , Fridell R. A., Probst F. J., Wilcox E. R., Touchman J. W., Morton C. C., Morell R. J., Noben-Trauth K., Camper S. A., and Friedman T. B. (1998). Association of unconventional myosin MYO15 mutations with human nonsyndromic deafness DFNB3. Science 280, 1447–51.PubMedCrossRefGoogle Scholar
  104. Weber K. L., Sokac A. M., Berg J. S., Cheney R. E., and Bement W. M. (2004). A microtubule-binding myosin required for nuclear anchoring and spindle assembly. Nature 431, 325–9.PubMedCrossRefGoogle Scholar
  105. Winata S., Arhya I. N., Moeljopawiro S. , Hinnant J. T., Liang Y. , Friedman T. B., and Asher J. H., Jr. (1995). Congenital non-syndromal autosomal recessive deafness in Bengkala, an isolated Balinese village. J Med Genet 32, 336–43.PubMedCrossRefGoogle Scholar
  106. Yamashita R. A., Sellers J. R., and Anderson J. B. (2000). Identification and analysis of the myosin superfamily in Drosophila: a database approach. J Muscle Res Cell Motil 21, 491–505.PubMedCrossRefGoogle Scholar
  107. Zine A., and Romand R. (1996). Development of the auditory receptors of the rat: a SEM study. Brain Res 721, 49–58.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Erich T. Boger
    • 1
  • Gregory I. Frolenkov
    • 2
  • Thomas B. Friedman
    • 1
  • Inna A. Belyantseva
    • 1
  1. 1.Section on Human Genetics, Laboratory of Molecular GeneticsNational Institute on Deafness and Other Communication Disorders, National Institutes of HealthRockvilleUSA
  2. 2.Department of PhysiologyUniversity of KentuckyLexingtonUSA

Personalised recommendations