Myosins pp 353-373 | Cite as

Myosin VII

  • Aziz El-Amraoui
  • Amel Bahloul
  • Christine Petit
Part of the Proteins and Cell Regulation book series (PROR, volume 7)


Class VII myosins are among the most widely expressed myosins in the animal kingdom. They also have a broad tissue expression. Vertebrates and some invertebrates possess two different myosins VII, myosin VIIa and myosin VIIb, which may differ in their kinetic properties. Defects in myosin VIIa cause phenotypic anomalies in Drosophila, zebrafish, mouse and humans. In humans, loss-of-function mutations in the myosin VIIa gene cause Usher syndrome type I, a dual sensory defect that combines sensorineural deafness and retinitis pigmentosa leading to blindness. Some progress has been made in the characterization of the enzymatic properties of the myosin VII head domain, leading to the view that myosin VIIa may both exert tension at given subcellular emplacements, and move cargos (molecules or organelles) along actin filaments. The formation of myosin VII dimers in vivo, however, remains to be shown. Based on the analysis of mutant phenotypes and the deciphering of myosin VIIa-associated molecular networks, some of the roles played by myosin VIIa in the developing inner ear and the retina have been elucidated. In the inner ear sensory cells, myosin VIIa probably acts as a conveyer of several Usher syndrome proteins that are involved in the differentiation of the hair bundle, the structure receptive to sound or acceleration. In the retina, myosin VIIa transports melanosomes and phagosomes in pigment epithelium cells, and opsins in photoreceptor cells.


myosin VIIa Usher I syndrome shaker-1 hair bundle protein trafficking melanosomes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adato, A., Lefevre, G., Delprat, B., Michel, V., Michalski, N., Chardenoux, S., Weil, D., El-Amraoui, A. and Petit, C. (2005a). Usherin, the defective protein in Usher syndrome type IIA, is likely to be a component of interstereocilia ankle links in the inner ear sensory cells. Hum. Mol. Genet. 14, 3921–3932.CrossRefGoogle Scholar
  2. Adato, A., Michel, V., Kikkawa, Y., Reiners, Y., Alagramam, K. N., Weil, D., Yonekawa, H., Wolfrum, U., El-Amraoui, A. and Petit, C. (2005b). Interactions in the Usher syndrome type 1 proteins network. Hum. Mol. Genet. 14, 347–356.CrossRefGoogle Scholar
  3. Ahmed, Z. M., Goodyear, R., Riazuddin, S., Lagziel, A., Legan, P.K., Behra, M., Burgess, S. M., Lilley, K.S., Wilcox, E.R., Riazuddin, S., Griffith, A.J., Frolenkov, G.I., Belyantseva, I. A., Richardson, G. P., and Friedman, T. B. (2006). The tip-link antigen, a protein associated with the transduction complex of sensory hair cells, is protocadherin-15.J. Neurosci. 26, 7022–7034.PubMedCrossRefGoogle Scholar
  4. Ali, M. Y., Krementsova, E. B., Kennedy, G. G., Mahaffy, R., Pollard, T. D., Trybus, K. M. and Warshaw, D. M. (2007). Myosin Va maneuvers through actin intersections and diffuses along microtubules. Proc Natl Acad Sci USA 104, 4332–4336.PubMedCrossRefGoogle Scholar
  5. Baker, J. P. and Titus, M. A. (1997). A family of unconventional myosins from the nematode Caenorhabditis elegans. J. Mol. Biol. 272, 523–535.PubMedCrossRefGoogle Scholar
  6. Berg, J. S., Powell, B. C. and Cheney, R. E. (2001). A millennial myosin census. Mol. Biol. Cell 12, 780–794.PubMedGoogle Scholar
  7. Biehlmaier, O., Hodel, C. and Neuhauss, S.C.F. (2005). The visual mutant zebrafish mariner: a model system for human Usher syndrome 1B. ARVO Meeting Abstract 46, 1673.Google Scholar
  8. Boéda, B., El-Amraoui, A., Bahloul, A., Goodyear, R., Daviet, L., Blanchard, S., Perfettini, I., Fath, K. R., Shorte, S., Reiners, J. et al. (2002). Myosin VIIa, harmonin and cadherin 23, three Usher I gene products that cooperate to shape the sensory hair cell bundle. EMBO J. 21, 6689–6699.PubMedCrossRefGoogle Scholar
  9. Burnside, B. and Laties, A. M. (1979). Pigment movement and cellular contractility in the retinal pigment epithelium. In: Zinn KM, Marmor MF (eds) The Retinal Pigment Epithelium. Harvard University Press, Cambridge, pp 175–191.Google Scholar
  10. Chen, Z. Y., Hasson, T., Kelley, P. M., Schwender, B. J., Schwartz, M. F., Ramakrishnan, M., Kimberling, W. J., Mooseker, M. S. and Corey, D. P. (1996). Molecular cloning and domain structure of human myosin-VIIa, the gene product defective in Usher syndrome 1B. Genomics 36, 440–448.PubMedCrossRefGoogle Scholar
  11. Chen, Z. Y., Hasson, T., Zhang, D. S., Schwender, B. J., Derfler, B. H., Mooseker, M. S. and Corey, D. P. (2001). Myosin-VIIb, a novel unconventional myosin, is a constituent of microvilli in transporting epithelia. Genomics 72, 285–296.PubMedCrossRefGoogle Scholar
  12. Cheney, R. E., Riley, M. A. and Mooseker, M. S. (1993). Phylogenetic analysis of the myosin superfamily. Cell Motil. Cytoskeleton 24, 215–223.PubMedCrossRefGoogle Scholar
  13. Cohen, A. I. (1963). Vertebrate retinal cells and their organization. Biol. rev. Cambridge Philos. Soc. 38, 427–459.Google Scholar
  14. Corey, D. P. and Hudspeth, A. J. (1983). Kinetics of the receptor current in bullfrog saccular hair cells. J. Neurosci. 3, 962–976.PubMedGoogle Scholar
  15. Delprat, B., Michel, V., Goodyear, R., Yamasaki, Y., Michalski, N., El-Amraoui, A., Perfettini, I., Legrain, P., Richardson, G., Hardelin, J. P. et al. (2005). Myosin XVa and whirlin, two deafness gene products required for hair bundle growth, are located at the stereocilia tips and interact directly. Hum. Mol. Genet. 14, 401–410.PubMedCrossRefGoogle Scholar
  16. Desnos, C., Schonn, J.-S., Huet, S., Tran, V. S., El-Amraoui, A., Raposo, G., Fanget, I., Chapuis, C., Ménasché, G., de Saint Basile, G. et al. (2003). Rab27A and its effector MyRIP link secretory granules to F-actin and control their motion towards release sites. J. Cell Biol. 163, 559–570.Google Scholar
  17. El-Amraoui, A., Sahly, I., Picaud, S., Sahel, J., Abitbol, M. and Petit, C. (1996). Human Usher IB/mouse shaker-1; the retinal phenotype discrepancy explained by the presence/absence of myosin VIIA in the photoreceptor cells. Hum. Mol. Genet. 5, 1171–1178.PubMedCrossRefGoogle Scholar
  18. El-Amraoui, A., Schonn, J.-S., Kússel-Andermann, P., Blanchard, S., Desnos, C., Henry, J.-P., Wolfrum, U., Darchen, F. and Petit, C. (2002). MyRIP, a novel Rab effector, enables myosin VIIa recruitment to retinal melanosomes. EMBO Rep. 3, 463–470.PubMedCrossRefGoogle Scholar
  19. El-Amraoui, A. and Petit, C. (2005). Usher I syndrome: unravelling the mechanisms that underlie the cohesion of the growing hair bundle in inner ear sensory cells. J. Cell Sci. 118, 4593–4603.PubMedCrossRefGoogle Scholar
  20. Ernest, S., Rauch, G.-J., Haffter, P., Geisler, R., Petit, C. and Nicolson, T. (2000). Mariner is defective in myosin VIIA: a zebrafish model for human hereditary deafness. Hum. Mol. Genet. 9, 2189–2196.Google Scholar
  21. Etournay, R., El-Amraoui, A., Bahloul, A., Blanchard, S., Roux, I., Pézeron, G., Michalski, N., Daviet, L., Hardelin, J-P., Legrain, P. and Petit, C. (2005). PHR1, an integral membrane protein of the inner ear sensory cells, directly interacts with myosin 1c and myosin VIIa. J. Cell Sci. 118, 2891-2899.Google Scholar
  22. Etournay, R., Zwaenepoel, I., Perfettini, I., Legrain, P., Petit, C., and El-Amraoui, A. (2007). Shroom2, a myosin VIIa- and actin-binding protein, directly interacts with ZO-1 at tight junctions. J. Cell Sci. 120, 2838–28500.PubMedCrossRefGoogle Scholar
  23. Fettiplace, R. (2006). Active hair bundle movements in auditory hair cells. J. Physiol. 576, 2929–36.CrossRefGoogle Scholar
  24. Foth, B. J., Goedecke, M. C. and Soldati, D. (2006). New insights into myosin evolution and classification. Proc. Natl Acad. Sci. USA 103, 3681–3686.PubMedCrossRefGoogle Scholar
  25. Fukuda, M. and Kuroda, T. S. (2002). Slac2-c (synaptotagmin-like protein homologue lacking C2 domains-c), a novel linker protein that interacts with Rab27, myosin Va/VIIa, and actin. J. Biol. Chem. 277, 43096–43103.PubMedCrossRefGoogle Scholar
  26. Futter, C. E. (2006). The molecular regulation of organelle transport in mammalian retinal pigment epithelial cells. Pigment Cell Res 19, 104–111.PubMedCrossRefGoogle Scholar
  27. Futter, C. E., Ramalho, J. S., Jaissle, G. B., Seeliger, M. W. and Seabra, M. C. (2004). The role of Rab27a in the regulation of melanosome distribution within retinal pigment epithelial cells. Mol. Biol. Cell 15, 2264–2275.PubMedCrossRefGoogle Scholar
  28. Gibbs, D., Kitamoto, J. and Williams, D. S. (2003). Abnormal phagocytosis by retinal pigmented epithelium that lacks myosin VIIa, the Usher syndrome 1B protein. Proc. Natl Acad. Sci. USA 100, 6481–6486.PubMedCrossRefGoogle Scholar
  29. Gibbs, D., Azarian, S. M., Lillo, C., Kitamoto, J., Klomp, A. E., Steel, K. P., Libby, R. T. and Williams, D. S. (2004). Role of myosin VIIa and Rab27a in the motility and localization of RPE melanosomes. J. Cell Sci. 117, 6473–6483.PubMedCrossRefGoogle Scholar
  30. Gibson, F., Walsh, J., Mburu, P., Varela, A., Brown, K. A., Antonio, M., Beisel, K. W., Steel, K. P. and Brown, S. D. (1995). A type VII myosin encoded by the mouse deafness gene shaker-1. Nature 374, 62–64.PubMedCrossRefGoogle Scholar
  31. Goodyear, R. and Richardson, G. (1999). The ankle-link antigen: an epitope sensitive to calcium chelation associated with the hair-cell surface and the calycal processes of photoreceptors. J. Neurosci. 19, 3761–3772.PubMedGoogle Scholar
  32. Goodyear, R. J., Marcotti, W., Kros, C. J. and Richardson, G. P. (2005). Development and properties of stereociliary link types in hair cells of the mouse cochlea. J. Comp. Neurol. 485, 75–85.PubMedCrossRefGoogle Scholar
  33. Hasson, T., Heintzelman, M. B., Santos-Sacchi, J., Corey, D. P. and Mooseker, M. S. (1995). Expression in cochlea and retina of myosin VIIa, the gene product defective in Usher syndrome type 1B. Proc. Natl Acad. Sci. USA 92, 9815–9819.PubMedCrossRefGoogle Scholar
  34. Hasson, T., Gillespie, P. G., Garcia, J. A., MacDonald, R. B., Zhao, Y., Yee, A. G., Mooseker, M. S. and Corey, D. P. (1997). Unconventional myosins in inner-ear sensory epithelia. J. Cell Biol. 137, 1287–1307.PubMedCrossRefGoogle Scholar
  35. Henn, A. and De La Cruz, E. M. (2005). Vertebrate myosin VIIb is a high duty ratio motor adapted for generating and maintaining tension. J. Biol. Chem. 280, 39665–39676.Google Scholar
  36. Holt, J. R., Gillespie, S. K., Provance, D. W., Shah, K., Shokat, K. M., Corey, D. P., Mercer, J. A. and Gillespie, P. G. (2002). A chemical-genetic strategy implicates myosin-1c in adaptation by hair cells. Cell 108, 371–381.PubMedCrossRefGoogle Scholar
  37. Howard, J., Roberts, W. M. and Hudspeth, A. J. (1988). Mechanoelectrical transduction by hair cells. Annu. Rev. Biophys. Biophys. Chem. 17, 99–124.PubMedCrossRefGoogle Scholar
  38. Hudspeth, A. J., Choe, Y., Mehta, A. D. and Martin, P. (2000). Putting ion channels to work: mechanoelectrical transduction, adaptation, and amplification by hair cells. Proc. Natl Acad. Sci. USA 97, 11765–11772.PubMedCrossRefGoogle Scholar
  39. Inoue, A. and Ikebe, M. (2003). Characterization of the motor activity of mammalian myosin VIIA. J. Biol. Chem. 278, 5478–5487.PubMedCrossRefGoogle Scholar
  40. Kalloniatis, M. and Fletcher, E. L. (2005). Retinal degeneration: challenge and opportunity. Clin. Exp. Optom. 88, 265–266.PubMedCrossRefGoogle Scholar
  41. Kiehart, D. P., Franke, J. D., Chee, M. K., Montague, R. A., Chen, T. L., Roote, J. and Ashburner, M. (2004). Drosophila crinkled, Mutations of Which Disrupt Morphogenesis and Cause Lethality, Encodes Fly Myosin VIIA. Genetics 168, 1337–1352.PubMedCrossRefGoogle Scholar
  42. Klomp, A. E., Teofilo, K., Legacki, E. and Williams, D. S. (2007). Analysis of the linkage of MYRIP and MYO7A to melanosomes by RAB27A in retinal pigment epithelial cells. Cell Motil. Cytoskeleton. 64, 474–487.PubMedCrossRefGoogle Scholar
  43. Knetsch, M. L., Uyeda, T. Q. and Manstein, D. J. (1999). Disturbed communication between actin- and nucleotide-binding sites in a myosin II with truncated 50/20-kDa junction. J. Biol. Chem. 274, 20133–20138.PubMedCrossRefGoogle Scholar
  44. Knight, P. J., Thirumurugan, K., Xu, Y., Wang, F., Kalverda, A. P., Stafford, W. F., 3rd, Sellers, J. R. and Peckham, M. (2005). The predicted coiled-coil domain of myosin 10 forms a novel elongated domain that lengthens the head. J. Biol. Chem. 280, 34702–34708.PubMedCrossRefGoogle Scholar
  45. Kollmar, M. (2006). Thirteen is enough: the myosins of Dictyostelium discoideum and their light chains. BMC Genomics 7, 183.Google Scholar
  46. Kremer, H., van Wijk, E., Marker, T., Wolfrum, U. and Roepman, R. (2006). Usher syndrome: molecular links of pathogenesis, proteins and pathways. Hum. Mol. Genet. 15 Spec No 2, R262–270.Google Scholar
  47. Krendel, M. and Mooseker, M. S. (2005). Myosins: tails (and heads) of functional diversity. Physiology (Bethesda) 20, 239–251.Google Scholar
  48. Kros, C. J., Marcotti, W., van Netten, S. M., Self, T. J., Libby, R. T., Brown, S. D., Richardson, G. P. and Steel, K. P. (2002). Reduced climbing and increased slipping adaptation in cochlear hair cells of mice with Myo7a mutations. Nat. Neurosci. 5, 41–47.PubMedCrossRefGoogle Scholar
  49. Kuroda, T. S. and Fukuda, M. (2005). Functional analysis of Slac2-c/MyRIP as a linker protein between melanosomes and myosin VIIa. J. Biol. Chem. 280, 28015–28022.PubMedCrossRefGoogle Scholar
  50. Kussel-Andermann, P., El-Amraoui, A., Safieddine, S., Hardelin, J. P., Nouaille, S., Camonis, J., and Petit, C. (2000a). Unconventional myosin VIIA is a novel A-kinase-anchoring protein. J. Biol. Chem. 275: 29654–29659.Google Scholar
  51. Kussel-Andermann, P., El-Amraoui, A., Safieddine, S., Nouaille, S., Perfettini, I., Lecuit, M., Cossart, P., Wolfrum, U. and Petit, C. (2000b). Vezatin, a novel transmembrane protein, bridges myosin VIIA to the cadherin-catenins complex. EMBO J. 19, 6020–6029.CrossRefGoogle Scholar
  52. Lillo, C., Kitamoto, J. and Williams, D. S. (2006). Roles and interactions of usher 1 proteins in the outer retina. Adv. Exp. Med. Biol. 572, 341–348.PubMedCrossRefGoogle Scholar
  53. Liu, X., Vansant, G., Udovichenko, I. P., Wolfrum, U. and Williams, D. S. (1997). Myosin VIIa, the product of the Usher 1B syndrome gene, is concentrated in the connecting cilia of photoreceptor cells. Cell Motil. Cytoskeleton 37, 240–252.PubMedCrossRefGoogle Scholar
  54. Liu, X., Ondek, B. and Williams, D. S. (1998). Mutant myosin VIIa causes defective melanosome distribution in the RPE of shaker-1 mice. Nat. Genet. 19, 117–118.PubMedCrossRefGoogle Scholar
  55. Liu, X., Udovichenko, I. P., Brown, S. D., Steel, K. P. and Williams, D. S. (1999). Myosin VIIa participates in opsin transport through the photoreceptor cilium. J. Neurosci. 19, 6267–6274.PubMedGoogle Scholar
  56. Mburu, P., Liu, X. Z., Walsh, J., Saw, D., Jr., Cope, M. J., Gibson, F., Kendrick-Jones, J., Steel, K. P. and Brown, S. D. (1997). Mutation analysis of the mouse myosin VIIA deafness gene. Genes Funct. 1, 191–203.PubMedGoogle Scholar
  57. McGee, J., Goodyear, R. J., McMillan, D. R., Stauffer, E. A., Holt, J. R., Locke, K. G., Birch, D. G., Legan, P. K., White, P. C., Walsh, E. J. et al. (2006). The very large G-protein-coupled receptor VLGR1: a component of the ankle link complex required for the normal development of auditory hair bundles. J. Neurosci. 26, 6543–6553.PubMedCrossRefGoogle Scholar
  58. Michalski, N., Michel, V., Bahloul, A., Lefévre, G., Chardenoux, S., Yagi, H., Weil, D., Hardelin, J.-P., Sato, M. and Petit, C. (2007). Molecular characterization of the ankle link complex in cochlear hair cells and its role in the hair bundle functioning. J. Neurosci. 27, 6478–6488.PubMedCrossRefGoogle Scholar
  59. Michel, V., Goodyear, R. J., Weil, D., Marcotti, W., Perfettini, I., Wolfrum, U., Kros, C. J., Richardson, G. P. and Petit, C. (2005). Cadherin 23 is a component of the sensory hair bundle’s transient lateral links in the developing cochlea. Dev. Biol. 280, 281–294.PubMedCrossRefGoogle Scholar
  60. Pearson, M. A., Reczek, D., Bretscher, A. and Karplus, P. A. (2000). Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain. Cell 101, 259–270.PubMedCrossRefGoogle Scholar
  61. Petit, C. (2001). Usher syndrome: from genetics to pathogenesis. Annu. Rev. Genomics Hum. Genet. 2, 271–297.PubMedCrossRefGoogle Scholar
  62. Reiners, J., Reidel, B., El-Amraoui, A., Boéda, B., Huber, I., Petit, C. and Wolfrum, U. (2003). Differential distribution of harmonin isoforms and their possible role in Usher-1 protein complexes in mammalian photoreceptor cells. Invest. Ophthalmol. Vis. Sci. 44, 5006–5015.PubMedCrossRefGoogle Scholar
  63. Reiners, J., van Wijk, E., Marker, T., Zimmermann, U., Jurgens, K., te Brinke, H., Overlack, N., Roepman, R., Knipper, M., Kremer, H. et al. (2005). Scaffold protein harmonin (USH1C) provides molecular links between Usher syndrome type 1 and type 2. Hum. Mol. Genet. 14, 3933–3943.Google Scholar
  64. Reiners, J. and Wolfrum, U. (2006). Molecular analysis of the supramolecular usher protein complex in the retina. Harmonin as the key protein of the Usher syndrome. Adv. Exp. Med. Biol. 572, 349–353.Google Scholar
  65. Reiners, J., Nagel-Wolfrum, K., Jurgens, K., Marker, T. and Wolfrum, U. (2006). Molecular basis of human Usher syndrome: deciphering the meshes of the Usher protein network provides insights into the pathomechanisms of the Usher disease. Exp. Eye Res. 83, 97–119.PubMedCrossRefGoogle Scholar
  66. Richards, T. A. and Cavalier-Smith, T. (2005). Myosin domain evolution and the primary divergence of eukaryotes. Nature 436, 1113–1118.Google Scholar
  67. Sahly, I., El-Amraoui, A., Abitbol, M., Petit, C. and Dufier, J.-L. (1997). Expression of myosin VIIA during mouse embryogenesis. Anat. Embryol. 196, 159–170.PubMedCrossRefGoogle Scholar
  68. Schraermeyer, U., Peters, S., Thumann, G., Kociok, N. and Heimann, K. (1999). Melanin granules of retinal pigment epithelium are connected with the lysosomal degradation pathway. Exp. Eye Res. 68, 237–245.PubMedCrossRefGoogle Scholar
  69. Self, T., Mahony, M., Fleming, J., Walsh, J., Brown, S. D. and Steel, K. P. (1998). Shaker-1 mutations reveal roles for myosin VIIA in both development and function of cochlear hair cells. Development 125, 557–566.PubMedGoogle Scholar
  70. Senften, M., Schwander, M., Kazmierczak, P., Lillo, C., Shin, J. B., Hasson, T., Geleoc, G. S., Gillespie, P. G., Williams, D., Holt, J. R. et al. (2006). Physical and functional interaction between protocadherin 15 and myosin VIIa in mechanosensory hair cells. J. Neurosci 26, 2060–2071.PubMedCrossRefGoogle Scholar
  71. Siemens, J., Kazmierczak, P., Reynolds, A., Sticker, M., Littlewood-Evans, A. and Muller, U. (2002). The Usher syndrome proteins cadherin 23 and harmonin form a complex by means of PDZ-domain interactions. Proc. Natl Acad. Sci. USA 99, 14946–14951.PubMedCrossRefGoogle Scholar
  72. Siemens, J., Lillo, C., Dumont, R. A., Reynolds, A., Williams, D. S., Gillespie, P. G. and Muller, U. (2004). Cadherin 23 is a component of the tip link in hair-cell stereocilia. Nature 428, 950–955.PubMedCrossRefGoogle Scholar
  73. Soni, L. E., Warren, C. M., Bucci, C., Orten, D. J. and Hasson, T. (2005). The unconventional myosin-VIIa associates with lysosomes. Cell Motil. Cytoskeleton 62, 13–26.PubMedCrossRefGoogle Scholar
  74. Sweeney, H. L. and Houdusse, A. (2007). What can myosin VI do in cells? Curr. Opin. Cell Biol. 19, 57–66.PubMedCrossRefGoogle Scholar
  75. Thompson, R. F. and Langford, G. M. (2002). Myosin superfamily evolutionary history. Anat. Rec. 268, 276–289.PubMedCrossRefGoogle Scholar
  76. Titus, M. A. (1999). A class VII unconventional myosin is required for phagocytosis. Curr. Biol. 9, 1297–1303.PubMedCrossRefGoogle Scholar
  77. Todi, S. V., Franke, J. D., Kiehart, D. P. and Eberl, D. F. (2005). Myosin VIIA defects, which underlie the Usher 1B syndrome in humans, lead to deafness in Drosophila. Curr. Biol. 15, 862–868.PubMedCrossRefGoogle Scholar
  78. Todorov, P. T., Hardisty, R. E. and Brown, S. D. (2001). Myosin VIIA is specifically associated with calmodulin and microtubule-associated protein-2B (MAP-2B). Biochem. J. 354, 267–274.PubMedCrossRefGoogle Scholar
  79. Tuxworth, R. I., Weber, I., Wessels, D., Addicks, G. C., Soll, D. R., Gerisch, G. and Titus, M. A. (2001). A role for myosin VII in dynamic cell adhesion. Curr. Biol. 11, 318–329.PubMedCrossRefGoogle Scholar
  80. Tzolovsky, G., Millo, H., Pathirana, S., Wood, T., and Bownes, M. (2002). Identification and phylogenetic analysis of Drosophila melanogaster myosins. Mol. Biol. Evol.19,1041–1052.Google Scholar
  81. Udovichenko, I. P., Gibbs, D. and Williams, D. S. (2002). Actin-based motor properties of native myosin VIIa. J. Cell Sci. 115, 445–450.PubMedGoogle Scholar
  82. Velichkova, M., Guttman, J., Warren, C., Eng, L., Kline, K., Vogl, A. W. and Hasson, T. (2002). A human homologue of Drosophila kelch associates with myosin-VIIa in specialized adhesion junctions. Cell Motil. Cytoskeleton 51, 147–164.PubMedCrossRefGoogle Scholar
  83. Watanabe, S., Ikebe, R. and Ikebe, M. (2006). Drosophila myosin VIIA is a high duty ratio motor with a unique kinetic mechanism. J. Biol. Chem. 281, 7151–7160.PubMedCrossRefGoogle Scholar
  84. Weber, K. L., Sokac, A. M., Berg, J. S., Cheney, R. E. and Bement, W. M. (2004). A microtubule-binding myosin required for nuclear anchoring and spindle assembly. Nature 431, 325–329.PubMedCrossRefGoogle Scholar
  85. Weil, D., Blanchard, S., Kaplan, J., Guilford, P., Gibson, F., Walsh, J., Mburu, P., Varela, A., Levilliers, J., Weston, M. D. et al. (1995). Defective myosin VIIA gene responsible for Usher syndrome type 1B. Nature 374, 60–61.PubMedCrossRefGoogle Scholar
  86. Weil, D., El-Amraoui, A., Masmoudi, S., Mustapha, M., Kikkawa, Y., Lainé, S., Delmaghani, S., Adato, A., Nadifi, S., Ben Zina, Z., Hamel, C., Gal, A., Ayadi, H., Yonekawa, H., and Petit, C. (2003). Usher syndrome type 1 G (USH1G) is caused by mutations in the gene encoding SANS, a protein that associates with the USH1C protein, harmonin. Hum. Mol. Genet. 12,463-471.Google Scholar
  87. Weil, D., Levy, G., Sahly, I., Levi-Acobas, F., Blanchard, S., El-Amraoui, A., Crozet, F., Philippe, H., Abitbol, M. and Petit, C. (1996). Human myosin VIIA responsible for the Usher 1B syndrome: a predicted membrane-associated motor protein expressed in developing sensory epithelia. Proc. Natl Acad. Sci. USA 93, 3232–3237.PubMedCrossRefGoogle Scholar
  88. Williams, D. S., Linberg, K. A., Vaughan, D. K., Fariss, R. N. and Fisher, S. K. (1988). Disruption of microfilament organization and deregulation of disk membrane morphogenesis by cytochalasin D in rod and cone photoreceptors. J. Comp Neurol. 272, 161–176.PubMedCrossRefGoogle Scholar
  89. Wolfrum, U., Liu, X., Schmitt, A., Udovichenko, I. P. and Williams, D. S. (1998). Myosin VIIa as a common component of cilia and microvilli. Cell Motil. Cytoskeleton 40, 261–271.PubMedCrossRefGoogle Scholar
  90. Wolfrum, U. and Schmitt, A. (1999). Evidence for myosin VIIa-driven transport of rhodopsin in the plasma membrane of the photoreceptor-connecting cilium. In Retinal Degenerative Diseases and Experimental Therapy, (eds J. G. Hollyfield and e. al), pp. 3–14. New York: Kluwer Academic/Plenum Publ.Google Scholar
  91. Wolfrum, U. and Schmitt, A. (2000). Rhodopsin transport in the membrane of the connecting cilium of mammalian photoreceptor cells. Cell Motil. Cytoskeleton 46, 95–107.PubMedCrossRefGoogle Scholar
  92. Yang, Y., Kovacs, M., Xu, Q., Anderson, J. B. and Sellers, J. R. (2005). Myosin VIIB from Drosophila is a high duty ratio motor. J. Biol. Chem. 280, 32061–32068.PubMedCrossRefGoogle Scholar
  93. Yang, Y., Kovacs, M., Sakamoto, T., Zhang, F., Kiehart, D. P. and Sellers, J. R. (2006). Dimerized Drosophila myosin VIIa: a processive motor. Proc. Natl Acad. Sci. USA 103, 5746–5751.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Aziz El-Amraoui
    • 1
  • Amel Bahloul
    • 1
  • Christine Petit
    • 1
  1. 1.Unité de Génétique des Déficits SensorielsFrance

Personalised recommendations