Skip to main content

The Creatine Kinase Phosphotransfer Network: Thermodynamic and Kinetic Considerations, the Impact of the Mitochondrial Outer Membrane and Modelling Approaches

  • Chapter
Creatine and Creatine Kinase in Health and Disease

Abstract

In this review, we summarize the main structural and functional data on the role of the phosphocreatine (PCr) -- creatine kinase (CK) pathway for compartmentalized energy transfer in cardiac cells. Mitochondrial creatine kinase, MtCK, fixed by cardiolipin molecules in the vicinity of the adenine nucleotide translocator, is a key enzyme in this pathway. Direct transfer of ATP and ADP between these proteins has been revealed both in experimental studies on the kinetics of the regulation of mitochondrial respiration and by mathematical modelling as a main mechanism of functional coupling of PCr production to oxidative phosphorylation. In cells in vivo or in permeabilized cells in situ, this coupling is reinforced by limited permeability of the outer membrane of the mitochondria for adenine nucleotides due to the contacts with cytoskeletal proteins. Due to these mechanisms, at least 80% of total energy is exported from mitochondria by PCr molecules. Mathematical modelling of intracellular diffusion and energy transfer shows that the main function of the PCr -- CK pathway is to connect different pools (compartments) of ATP and, by this way, to overcome the local restrictions and diffusion limitation of adenine nucleotides due to the high degree of structural organization of cardiac cells

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham, M.R., Selivanov, V.A., Hodgson, D.M., Pucar, D., Zingman,L.V., Wieringa, B., Dzeja P. Alekseev, A.E., and Terzic,A., 2002,Coupling of cell energetics with membrane metabolic sensing.Integrative signaling through creatine kinase phosphotransferdisrupted by M-CK gene knock-out. J. Biol. Chem. 277:24427–24434.

    Article  PubMed  CAS  Google Scholar 

  • Aliev, M.K., and Saks, V.A., 1997, Compartmentalised energy transfer incardiomyocytes. Use of mathematical modeling for analysis of invivo regulation of respiration. Biophys. J. 73:428–445.

    Article  PubMed  CAS  Google Scholar 

  • Aliev, M.K., and Saks, V.A., 2003, Analysis of mechanism of workof mitochondrial adenine nucleotide translocase using mathematicalmodels. Biofizika (Russian) 48: 1075–1085.

    CAS  Google Scholar 

  • Aliev, M.K., Dos Santos, P., and Saks, V.A., 2003, Mathematicalmodeling of regulation of oxidative phosphorylation incardiomyocytes. In: Kekelidze, T., and Holtzman, D. (eds.),Creatine Kinase and Brain Energy Metabolism. Function and Disease.IOS Press, Amsterdam, NATO Science Series: Life and BehavioralSciences, Volume 342: 59–79.

    Google Scholar 

  • Ames, A. 3rd, 2000, CNS energy metabolism as related to function. Brain Res. Rev. 34: 42–68.

    Article  PubMed  CAS  Google Scholar 

  • Anflous, K., Armstrong, D.D., and Craigen, W.J., 2001, Alteredmitochondrial sensitivity for ADP and maintenance ofcreatine-stimulated respiration in oxidative striated muscles fromVDAC1-deficient mice. J. Biol. Chem. 276:1954–1960.

    Article  PubMed  CAS  Google Scholar 

  • Appaix, F., Kuznetsov, A.V., Usson, Y., Andrienko, T., Olivares, J.,Kaambre, T., Sikk, P., Margreiter, R., and Saks, V.,2003, Possiblerole of cytoskeleton in intracellular arrangement and regulation ofmitochondria. Exp. Physiol. 88: 175–190.

    Article  PubMed  CAS  Google Scholar 

  • Balaban, R.S., Kantor, H.L., Katz, L.A., and Briggs,R.W., 1986,Relation between work and phosphate metabolite in the in vivopaced mammalian heart. Science 232: 1121–1123.

    Article  PubMed  CAS  Google Scholar 

  • Barbour, R.L., Ribaudo, J., and Chan, S.H.P., 1984, Effect of creatinekinase activity on mitochondrial ADP/ATP transport. Evidence forfunctional interaction. J. Biol. Chem. 259:8246–8251.

    PubMed  CAS  Google Scholar 

  • Belitzer, V.A., and Tsybakova, E.T., 1939, Sur le mécanisme desphosphorylations couplées avec la respiration. Biochimia(Russian) 4: 516–535.

    Google Scholar 

  • Bereiter-Hahn, J., and Voth, M., 1994, Dynamics of mitochondria inliving cells: shape changes, dislocations, fusion, and fission ofmitochondria. Microsc. Res. Tech. 27: 198–219.

    Article  PubMed  CAS  Google Scholar 

  • Bessman, S.P., and Fonyo, A., 1966, The possible role of themitochondrial bound creatine kinase in regulation of mitochondrialrespiration. Biochem. Biophys. Res. Commun. 22:597–602.

    Article  PubMed  CAS  Google Scholar 

  • Bessman, S.P., and Geiger, P., 1981, Transport of energy in muscle: thephosphocreatine shuttle. Science 211: 448–452.

    Article  PubMed  CAS  Google Scholar 

  • Beyer, K., and Klingenberg, M., 1985, ADP/ATP carrier protein from beefheart mitochondria has high amounts of tightly bound cardiolipin,as revealed by 31P nuclear magnetic resonance. Biochemistry 24: 3821–3826.

    Article  PubMed  CAS  Google Scholar 

  • Beyer, K., and Nuscher, B., 1996, Specific cardiolipin bindinginterferes with labeling of sulfhydryl residues in the adenosinediphosphate/adenosine triphosphate carrier protein from beef heartmitochondria. Biochemistry 35: 15784–15790.

    Article  PubMed  CAS  Google Scholar 

  • Boudina, S., Laclau, M.N., Tariosse, L., Daret, D., Gouverneur, G.,Boron-Adele, S., Saks, V.A., and Dos Santos, P., 2002, Alterationof mitochondrial function in a model of chronic ischemia in vivoin rat heart. Am. J. Physiol. 282: H821–H831.

    CAS  Google Scholar 

  • Brustovetsky, N., Becker, A., Klingenberg, M., and Bamberg, E., 1996,Electrical currents associated with nucleotide transport by thereconstituted mitochondrial ADP/ATP carrier. Proc. Natl.Acad. Sci. U.S.A. 93: 664–668.

    Article  PubMed  CAS  Google Scholar 

  • Burelle, Y., and Hochachka, P.W., 2002, Endurance training inducesmuscle-specific changes in mitochondrial function in skinnedmuscle fibers. J. Appl. Physiol. 92:2429–2438.

    PubMed  Google Scholar 

  • Burklen, T.S., Schlattner, U., Homayouni, R., Gough, K., Rak, M.,Szeghalmi, A., and Wallimann, T., 2006, The creatine kinase/creatineconnection to Alzheimer’s disease: CK-inactivation, APP-CK complexesand focal creatine deposits. J. Biomed. Biotechnol. 2006: 1–11.

    Article  CAS  Google Scholar 

  • Capetanaki, Y., 2002, Desmin cytoskeleton: a potential regulator ofmuscle mitochondrial behavior and function. TrendsCardiovasc. Med. 12: 339–348.

    CAS  Google Scholar 

  • Carrasco, A.J., Dzeja, P.P., Alekseev, A.E., Pucar, D., Zingman, L.V.,Abraham, M.R., Hodgson, D., Bienengraeber, M., Puceat, M.,Janssen, E., Wieringa, B., and Terzic, A., 2001, Adenylate kinasephosphotransfer communicates cellular energetic signals toATP-sensitive potassium channels. Proc. Natl. Acad. Sci.U.S.A. 98: 7623–7628.

    Article  PubMed  CAS  Google Scholar 

  • Cleland, W.W., 1963, The kinetics of enzyme-catalyzed reactions withtwo or more substrates or products. I. Nomenclature and rateequations. Biochim. Biophys. Acta 67: 104–137.

    Article  PubMed  CAS  Google Scholar 

  • Colombini, M., 2004, VDAC: the channel at the interface betweenmitochondria and the cytosol. Mol. Cell. Biochem. 256:107–115.

    Article  PubMed  Google Scholar 

  • Crawford, R.M., Ranki, H.J., Botting, C.H., Budas, G.R., and Jovanovic,A., 2002, Creatine kinase is physically associated with thecardiac ATP-sensitive K+ channel in vivo. FASEBJ. 16: 102–104.

    CAS  Google Scholar 

  • De Furia, R.A., Ingwall, J.S., Fossel, E., and Dygert,M., 1980, Theintegration of isoenzymes for energy distribution. In: Jacobus,W.E., and Ingwall, J.S. (eds.), Heart creatine kinase, Williams& Wilkins, Baltimore-London, pp. 135–142.

    Google Scholar 

  • Dolder, M., Walzel, B., Speer, O., Schlattner, U., and Wallimann, T.,2003, Inhibition of the mitochondrial permeability transition bycreatine kinase substrates. Requirement for microcompartmentation.J. Biol. Chem. 278: 17760–17766.

    Article  PubMed  CAS  Google Scholar 

  • Dos Santos, P., Aliev, M.K., Diolez, P., Duclos, F., Bonoron-Adele, S.,Besse, P., Canioni, P., Sikk, P., and Saks, V.A., 2000, Metaboliccontrol of contractile performance in isolated perfused rat heart.Analysis of experimental data by reaction:diffusion mathematicalmodel. J. Mol. Cell. Cardiol. 32: 1703–1734.}

    Article  PubMed  CAS  Google Scholar 

  • Duyckaerts, C., Sluse-Coffart, C.M., Fux,J.P., Sluse, F.E., and Liebecq, C., 1980, Kinetic mechanism of theexchanges catalysed by the adenine nucleotide carrier. Eur. J.Biochem. 106: 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Dzeja, P.P., Zeleznikar, R.J., and Goldberg, N.D., 1998, Adenylatekinase: kinetic behaviour in intact cells indicates it is integralto multiple cellular processes. Mol. Cell. Biochem. 184: 169–182.

    Article  PubMed  CAS  Google Scholar 

  • Dzeja, P., and Terzic, A., 2003, Phosphotransfer networks and cellularenergetics. J. Exp. Biol. 206: 2039–2047.

    Article  PubMed  CAS  Google Scholar 

  • Epand, R.F., Tokarska-Schlattner, M., Schlattner, U., Wallimann, T.,and Epand, R.M., 2007, Cardiolipin clusters and membrane domainformation induced by mitochondrial proteins. J. Mol. Biol. 365: 968–980.

    Article  PubMed  CAS  Google Scholar 

  • Epand, R.F., Schlattner, U., Wallimann, T., Lacombe, M.L., and Epand,R.M., 2006, Novel lipid transfer property of two mitochondrialproteins that bridge the inner and outer membranes. Biophys.J. 92: 126–137.

    Article  PubMed  CAS  Google Scholar 

  • Eppenberger, H.M., Dawson, D.M., and Kaplan, N.O., 1967, Thecomparative enzymology of creatine kinases. J. Biol. Chem. 242: 204–209.

    PubMed  CAS  Google Scholar 

  • Fontaine, E.M., Keriel, C., Lantuejoul, S., Rigoulet, M., Leverve,X.M., and Saks, V.A., 1995, Cytoplasmic cellular structurescontrol permeability of outer mitochondrial membrane for ADP andoxidative phosphorylation in rat liver cells. Biochem.Biophys. Res. Commun. 213: 138–146.

    Article  PubMed  CAS  Google Scholar 

  • Fritz-Wolf, K., Schnyder, T., Wallimann, T., and Kabsch, W., 1996,Structure of mitochondrial creatine kinase. Nature 381: 341–345.

    Article  PubMed  CAS  Google Scholar 

  • Gellerich, F., and Saks, V.A., 1982, Control of heart mitochondrialoxygen consumption by creatine kinase: the importance of enzymelocalization. Biochem. Biophys. Res. Commun. 105:1473–1481.

    Article  PubMed  CAS  Google Scholar 

  • Gellerich, F.N., Schlame, M., Bohnensack, R., and Kunz, W., 1987,Dynamic compartmentation of adenine nucleotides in themitochondrial intermembrane space of rat-heart mitochondria. Biochim. Biophys. Acta 890: 117–126.

    Article  PubMed  CAS  Google Scholar 

  • Gellerich, F.N., Kapischke, M., Kunz, W., Neumann, W., Kuznetsov, A.,Brdiczka, D., and Nicolay, K., 1994, The influence of thecytosolic oncotic pressure on the permeability of themitochondrial outer membrane for ADP: implications for the kineticproperties of mitochondrial creatine kinase and for ADP channelinginto the intermembrane space. Mol. Cell. Biochem. 133/134: 85–104.

    Article  Google Scholar 

  • Gellerich, F.N., Laterveer, F.D., Korzeniewski, B., Zierz, S., andNicolay, K., 1998, Dextran strongly increases the Michaelisconstants of oxidative phosphorylation and of mitochondrialcreatine kinase in heart mitochondria. Eur. J. Biochem. 254: 172–180.

    Article  PubMed  CAS  Google Scholar 

  • Gellerich, F.N., Laterveer, F.D., Zierz, S., and Nicolay, K., 2002, Thequantitation of ADP diffusion gradients across the outer membraneof heart mitochondria in the presence of macromolecules. Biochim. Biophys. Acta 1554: 48–56.

    Article  PubMed  CAS  Google Scholar 

  • de Graaf, R.A., van Kranenburg, A., and Nicolay, K., 2000, In vivo31P-NMR diffusion spectroscopy of ATP and phosphocreatine inrat skeletal muscle. Biophys J. 78: 1657–1664.

    PubMed  Google Scholar 

  • de Groof, A.J., Smeets, B., Groot Koerkamp, M.J., Mul, A.N., Janssen,E.E., Tabak, H.F., and Wieringa, B., 2001, Changes in mRNAexpression profile underlie phenotypic adaptations in creatinekinase-deficient muscles. FEBS Lett. 506: 73–78.

    Article  PubMed  Google Scholar 

  • Gropp, T., Brustovetsky, N., Klingenberg, M., Müller, V., Fendler,K., and Bamberg, E., 1999, Kinetics of electrogenic transport bythe ADP/ATP carrier. Biophys. J. 77: 714–726.

    PubMed  CAS  Google Scholar 

  • Haas, R.C., and Strauss, A.W., 1990, Separate nuclear genes encodesarcomere-specific and ubiquitous human mitochondrial creatinekinase isoenzymes. J. Biol. Chem. 265:6921–6927.

    PubMed  CAS  Google Scholar 

  • Hornemann, T., Stolz, M., and Wallimann, T., 2000, Isoenzyme-specificinteraction of muscle-type creatine kinase with the sarcomericM-line is mediated by NH2-terminal lysine charge-clamps. J. Cell Biol. 149: 1225–1234.

    Article  PubMed  CAS  Google Scholar 

  • Hornemann, T., Kempa, S., Himmel, M., Hayess, K., Furst, D.O., andWallimann, T., 2003, Muscle-type creatine kinase interacts withcentral domains of the M-band proteins myomesin and M-protein.J. Mol. Biol. 332: 877–887.

    Article  PubMed  CAS  Google Scholar 

  • Huang, S.G., Odoy, S., and Klingenberg, M., 2001, Chimers of two fusedADP/ATP carrier monomers indicate a single channel for ADP/ATPtransport. Arch. Biochem. Biophys. 394: 67–75.

    Article  PubMed  CAS  Google Scholar 

  • Huber, T., Klingenberg, M., and Beyer, K., 1999, Binding of nucleotidesby mitochondrial ADP/ATP carrier as studied by 1H nuclearmagnetic resonance spectroscopy. Biochemistry 38:762–769.

    Article  PubMed  CAS  Google Scholar 

  • Jacobus, W.E., and Lehninger, A.L., 1973, Creatine kinase of ratmitochondria. Coupling of creatine phosphorylation to electrontransport. J. Biol. Chem. 248: 4803–4810.

    PubMed  CAS  Google Scholar 

  • Jacobus, W.E., and Saks, V.A., 1982, Creatine kinase of heartmitochondria: changes in its kinetic properties induced bycoupling to oxidative phosphorylation. Arch. Biochem.Biophys. 219: 167–178.

    Article  PubMed  CAS  Google Scholar 

  • Janssen, E., Terzic, A., Wieringa, B., and Dzeja, P., 2003, Impairedintracellular energy communication in muscles from creatine kinaseand adenylate kinase (M-CK/AK1) double knock-out mice. J.Biol. Chem. 278: 30441–30449.

    Article  PubMed  CAS  Google Scholar 

  • Jezek, P., and Hlavata, L., 2005, Mitochondria in homeostasis ofreactive oxygen species in cell, tissues and organism. Intl.J. Biochem. 37: 2478–2503.

    Article  CAS  Google Scholar 

  • Kaasik, A., Veksler, V., Boehm, E., Novotova, M., Minajeva, A., andVentura-Clapier, R., 2001, Energetic crosstalk between organelles.Architectural integration of energy production and utilization.Circ. Res. 89: 153–159.

    Article  PubMed  CAS  Google Scholar 

  • Kay, L., Li, Z., Mericskay, M., Olivares, J., Tranqui, L., Fontaine,E., Tiivel, T., Sikk, P., Kaambre, T., Samuel, J.L., Rappaport, L.,Usson, Y., Leverve, X., Paulin, D., and Saks, V.A., 1997, Study ofregulation of mitochondrial respiration in vivo. An analysis ofinfluence of ADP diffusion and possible role of cytoskeleton. Biochim. Biophys. Acta 1322:41–59.

    Google Scholar 

  • Kay, L., Nicolay, K., Wieringa, B., Saks, V., and Wallimann, T., 2000,Direct evidence for the control of mitochondrial respiration bymitochondrial creatine kinase in oxidative muscle cells in situ.J. Biol. Chem. 275: 6937–6944.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy, H.J., Pouli, A.E., Ainscow, E.K., Jouaville, L.S., Rizzuto,R., and Rutter, G.A., 1999, Glucose generates sub-plasma membraneATP microdomains in single islet beta-cells. Potential role forstrategically located mitochondria. J. Biol. Chem. 274: 13281–13291.

    Article  PubMed  CAS  Google Scholar 

  • Khuchua, Z.A., Qin, W., Boero, J., Cheng, J., Payne, R.M., Saks, V.A.,and Strauss, A.W., 1998, Octamer formation by cardiac sarcomericmitochondrial creatine kinase is mediated by charged N-terminalresidues. J. Biol. Chem. 273: 22990–22996.

    Article  PubMed  CAS  Google Scholar 

  • Kim, I.H., and Lee, H.J., 1987, Oxidative phosphorylation of creatineby respiring pig heart mitochondria in the absence of addedadenine nucleotides. Biochem. Int. 14:103–110.

    PubMed  CAS  Google Scholar 

  • Klingenberg, M., 1964, Muskelmitochondrien. In: Kramer,K., Krayer, O.,Lehnartz, E., Muralt, A., and Weber, H.H. (eds.), Ergebnisse derPhysiologie, Biologischen Chemie und ExperimentellenPharmakologie, Springer Verlag,Berlin-Göttingen-Heidelberg-New York, Vol. 55,pp. 131–189.

    Google Scholar 

  • Korge, P., Byrd, S.K., and Campbell, K.B., 1993, Functional couplingbetween sarcoplasmic-reticulum-bound creatine kinase and Ca2 + ATPase. Eur. J. Biochem. 213: 973–980.

    Article  PubMed  CAS  Google Scholar 

  • Korge, P., and Campbell, K.B., 1994, Local ATP regeneration isimportant for sarcoplasmic reticulum Ca2 + pump function.Am. J. Physiol. 267: C357–366.

    Google Scholar 

  • Kramer, R., and Palmieri, F., 1992, Metabolic carriers in mitochondria.In: Molecular Mechanisms in Bioenergetics (Ernster, L.,ed.), Elsevier Science Publishers, pp. 359–384.

    Google Scholar 

  • Krause, S.M., and Jacobus, W.E., 1992, Specific enhancement of thecardiac myofibrillar ATPase activity by bound creatine kinase.J. Biol. Chem. 267: 2480–2486.

    PubMed  CAS  Google Scholar 

  • Krippeit-Drews, P., Backer, M., Dufer, M., and Drews, G., 2003,Phosphocreatine as a determinant of KATP channelactivity in pancreatic β -cells. Pflugers Arch. 445: 556–562.

    PubMed  CAS  Google Scholar 

  • Kummel, L., 1988, Ca,MgATPase activity of permeabilized rat heart cellsand its functional coupling to oxidative phosphorylation in thecells. Cardiovasc. Res. 22: 359–367.

    PubMed  CAS  Google Scholar 

  • Kuznetsov, A.V., and Saks, V.A., 1986, Affinity modification ofcreatine kinase and ATP-ADP translocase in heart mitochondria:determination of their molar stoichiometry. Biochem. Biophys.Res. Commun. 134: 359–366.

    Article  PubMed  CAS  Google Scholar 

  • Kuznetsov, A.V., Tiivel, T., Sikk, P., Kaambre, T., Kay, L., Daneshrad,Z., Rossi, A., Kadaja, L., Peet, N., Seppet, E., and Saks, V.A.,1996, Striking difference between slow and fast twitch muscles inthe kinetics of regulation of respiration by ADP in the cells invivo. Eur. J. Biochem. 241: 909–915.

    Article  PubMed  CAS  Google Scholar 

  • Lederer, W.J., and Nichols, C.G., 1989, Nucleotide modulation of theactivity of rat heart ATP-sensitive K+ channels in isolatedmembrane patches. J. Physiol. 419: 193–211.

    PubMed  CAS  Google Scholar 

  • Liobikas, J., Kopustinskiene, D.M., and Toleikis, A., 2001, Whatcontrols the outer mitochondrial membrane permeability for ADP:facts for and against the oncotic pressure. Biochim. Biophys.Acta 1505: 220–225.

    Article  PubMed  CAS  Google Scholar 

  • Lorenz, E., and Terzic, A., 1999, Physical association betweenrecombinant cardiac ATP-sensitive K+ channel subunits Kir.6and SUR2A. J. Mol. Cell. Cardiol. 31: 425–434.

    Article  PubMed  CAS  Google Scholar 

  • McLeish, M.J., and Kenyon, G.L., 2005, Relating structure to mechanismin creatine kinase. Crit. Rev. Biochem. Mol. Biol. 40:1–20.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, L.E., Machado, L.B., Santiago, A.P.S.A., da-Silva, S., DeFelice, F.G., Holub, O., Oliviera, M., and Galina, A., 2006,Mitochondrial creatine kinase activity prevents reactive oxygenspecies generation: Antioxidant role of mitochondrialkinase-dependent ADP re-cycling activity. J. Biol. Chem. 281: 29916–29928.

    Article  PubMed  CAS  Google Scholar 

  • Minajeva, A., Ventura-Clapier, R., and Veksler, V., 1996, Ca2 + uptake by cardiac sarcoplasmic reticulum ATPase in situ stronglydepends on bound creatine kinase. Pflugers Arch. 432:904–912.

    Article  PubMed  CAS  Google Scholar 

  • Muller, M., Moser, R., Cheneval, D., and Carafoli, E., 1985,Cardiolipin is the membrane receptor for mitochondrial creatinephosphokinase. J. Biol. Chem. 260: 3839–3843.

    PubMed  CAS  Google Scholar 

  • Neely, J.R., Liebermeister, H., Battersby, E.J., and Morgan, H.E.,1967, Effect of pressure development on oxygen consumption byisolated rat heart. Am. J. Physiol. 212:804–814.

    PubMed  CAS  Google Scholar 

  • Neely, J.R., Denton, R.M., England, P.J., and Randle, P.J., 1972, Theeffects of increased heart work on the tricarboxylate cycle andits interactions with glycolysis in the perfused rat heart. Biochem. J. 128: 147–159.

    PubMed  CAS  Google Scholar 

  • Neely, J.R., and Morgan, H.E., 1974, Relationship between carbohydrateand lipid metabolism and the energy balance of heart muscle Annu. Rev. Physiol. 63: 413–459.

    Article  Google Scholar 

  • Novotova, M., Pavlovieova, M., Veksler, V., Ventura-Clapier, R., andZahradnik, I., 2006, Ultrastructural remodeling of fast skeletalmuscle fibers induced by invalidation of creatine kinase. Am.J. Physiol. Cell Physiol. 291: C1279–1285.

    Article  CAS  Google Scholar 

  • Nury, H., Dahout-Gonzalez, C., Trezeguet, V., Lauquin, G.J., Brandolin,G., and Pebay-Peyroula, E., 2006, Relations between structure andfunction of the mitochondrial ADP/ATP carrier. Annu. Rev.Biochem. 75: 713–741.

    Article  CAS  Google Scholar 

  • Nury, H., Dahout-Gonzalez, C., Trezeguet, V., Lauquin, G., Brandolin,G., and Pebay-Peyroula, E., 2005, Structural basis forlipid-mediated interactions between mitochondrial ADP/ATP carriermonomers. FEBS Lett. 579: 6031–6036.

    Article  PubMed  CAS  Google Scholar 

  • Ogut, O., and Brozovich, F.V., 2003, Creatine phosphate consumption andthe actomyosin crossbridge cycle in cardiac muscles. Circ.Res. 93: 54–60.

    Article  PubMed  CAS  Google Scholar 

  • Opie, L.H., 1998, The Heart. Physiology, from Cell toCirculation. Lippincott-Raven Publishers, Philadelphia, USA, pp. 43–63.

    Google Scholar 

  • Pebay-Peyroula, E., Dahout-Gonzalez, C., Trézéguet, V.,Lauquin, G., and Brandolin, G., 2003, Structure of mitochondrialADP/ATP carrier in complex with carboxyatractyloside. Nature 426: 39–44.

    Article  PubMed  CAS  Google Scholar 

  • Rao, J.K., Bujacz, G., and Wlodawer, A., 1998, Crystal structure ofrabbit muscle creatine kinase. FEBS Lett. 439:133–137.

    Article  PubMed  CAS  Google Scholar 

  • Qin, W., Khuchua, Z., Cheng, J., Boero, J., Payne, R.M, and Strauss,A.W., 1998, Molecular characterization of the creatine kinases andsome historical perspectives. Mol. Cell. Biochem. 184:153–167.

    Article  PubMed  CAS  Google Scholar 

  • Rossi, A.M., Eppenberger, H.M., Volpe, P., Cotrufo, R., and Wallimann,T., 1990, Muscle-type MM creatine kinase is specifically bound tosarcoplasmic reticulum and can support Ca2 + uptake andregulate local ATP/ADP ratios. J. Biol. Chem. 265:5258–5266.

    PubMed  CAS  Google Scholar 

  • Saks, V.A., Chernousova, G.B., Voronkov, U.I., Smirnov, V.N., andChazov, E.I., 1974, Study of energy transport mechanism inmyocardial cells. Circ. Res. 35: 138–149.

    PubMed  Google Scholar 

  • Saks, V.A., Chernousova, G.B., Gukovsky, D.E., Smirnov, V.N., andChazov, E.I., 1975, Studies of energy transport in heart cells.Mitochondrial isoenzyme of creatine phosphokinase: kineticproperties and regulatory action of Mg2 + ions. Eur. J.Biochem. 57: 273–290.

    Article  PubMed  CAS  Google Scholar 

  • Saks, V.A., Lipina, N.V., Sharov, V.G., Smirnov, V.N., Chazov, E.I.,and Grosse, R., 1977, The localization of the MM isoenzyme ofcreatine phosphokinase on the surface membrane of myocardial cellsand its functional coupling to ouabain-inhibited (Na+ , K+ )-ATPase. Biochim. Biophys. Acta 465:550–558.

    Article  PubMed  CAS  Google Scholar 

  • Saks, V.A., Kuznetsov, A.V., Kupriyanov, V.V., Miceli, M.V., andJacobus, W.E., 1985, Creatine kinase of rat heart mitochondria.The demostration of functional coupling to oxidativephosphorylation in an inner membrane-matrix preparation. J.Biol. Chem. 260: 7757–7764.

    PubMed  CAS  Google Scholar 

  • Saks, V.A., Kapelko, V.I., Kupriyanov, V.V., Kuznetsov, A.V., Lakomkin,V.L., Veksler, V.I., Sharov, V.G., Javadov, S.A., Seppet, E.K., andKairane, C., 1989, Quantitative evaluation of relationship betweencardiac energy metabolism and post-ischemic recovery of contractilefunction. J. Mol. Cell. Cardiol. 21: 67–78.

    Article  PubMed  Google Scholar 

  • Saks, V.A., Belikova, Y.O., and Kuznetsov, A.V., 1991, In vivoregulation of mitochondrial respiration in cardiomyocytes:specific restrictions for intracellular diffusion of ADP. Biochim. Biophys. Acta 1074: 302–311.

    PubMed  CAS  Google Scholar 

  • Saks, V.A., Vasilyeva, E., Belikova, Yu.O., Kuznetsov, A.V., Lyapina,S., Petrova, L., and Perov, N.A., 1993, Retarded diffusion of ADPin cardiomyocytes: possible role of mitochondrial outer membraneand creatine kinase in cellular regulation of oxidativephosphorylation. Biochim. Biophys. Acta 1144:134–148.

    Article  PubMed  CAS  Google Scholar 

  • Saks, V.A., Khuchua, Z.A., Vasilyeva, E.V., Belikova, Yu.O., andKuznetsov, A., 1994, Metabolic compartmentation and substratechanneling in muscle cells. Role of coupled creatine kinases invivo regulation of cellular respiration - a synthesis. Mol.Cell. Biochem. 133/134: 155–192.

    Article  Google Scholar 

  • Saks, V.A., Kuznetsov, A.V., Khuchua, Z.A., Vasilyeva, E.V., Belikova,J.O., Kesvatera, T., and Tiivel, T., 1995, Control ofcellular respiration in vivo by mitochondrial outer membrane andby creatine kinase. A new speculative hypothesis: possibleinvolvement of mitochondrial-cytoskeleton interactions. J.Mol. Cell. Cardiol. 27: 625–645.

    Article  PubMed  CAS  Google Scholar 

  • Saks, V.A., and Aliev, M.K., 1996, Is there the creatine kinaseequilibrium in working heart cells? Biochem. Biophys. Res.Commun. 227: 360–367.

    Article  PubMed  CAS  Google Scholar 

  • Saks, V.A., Kaambre, T., Sikk, P., Eimre, M., Orlova, E., Paju, K.,Piirsoo, A., Appaix, F., Kay, L., Regiz-Zagrosek, V., Fleck, E.,and Seppet, E., 2001, Intracellular energetic units in red musclecells. Biochem. J. 356: 643–657.

    Article  PubMed  CAS  Google Scholar 

  • Saks, V., Kuznetsov, A.V., Andrienko, T., Usson, Y., Appaix, F.,Guerrero, K., Kaambre, T., Sikk, P., Lemba, M., and Vendelin, M., 2003, Heterogeneity of ADP diffusion and regulation of respirationin cardiac cells. Biophys. J. 84: 3436–3456.

    PubMed  CAS  Google Scholar 

  • Saks, V.A., Vendelin, M., Aliev, M.K.,Kekelidze, T., and Engelbrecht, J., 2006a, Mechanisms and modelingof energy transfer between intracellular compartments. In: Handbook of Neurochemistry and Molecular Neurobiology, 3rdedition, vol. 5, Neuronal Energy Utilization (Dienel, G., andGibson, G., eds.), Springer-Verlag, Berlin-Heidelberg, pp. 1–46.

    Google Scholar 

  • Saks, V., Dzeja, P., Schlattner, U., Vendelin, M., Terzic, A., andWallimann, T., 2006b, Cardiac system bioenergetics: metabolicbasis of Frank-Starling law. J. Physiol. 571:253–273.

    Article  CAS  Google Scholar 

  • Sasaki, N., Sato, T., Marban, E., and O’Rourke, B., 2001, ATPconsumption by uncoupled mitochondria activates sarcolemmalKATP channels in cardiac myocytes. Am. J.Physiol. 280: H1882–H1888.

    CAS  Google Scholar 

  • Sata, M., Sugiura, S., Yamashita, H., Momomura, S.I., and Serizawa, T.,1996, Coupling between myosin ATPase cycle and creatine kinasecycle facilitates cardiac actomyosin sliding in vitro: a clue tomechanical dysfunction during myocardial ischemia. Circulation 93: 310–317.

    PubMed  CAS  Google Scholar 

  • Schlattner, U., Forstner, M., Eder, M., Stachowiak, O., Fritz-Wolf, K.,and Wallimann, T., 1998, Functional aspects of the X-ray structureof mitochondrial creatine kinase: a molecular physiology approach.Mol. Cell. Biochem. 184: 125–140.

    Article  PubMed  CAS  Google Scholar 

  • Schlattner, U., Eder, M.,Dolder, M., Khuchua, Z.A., Strauss, A.W., and Wallimann, T., 2000,Divergent enzyme kinetics and structural properties of the two humanmitochondrial creatine kinase isoenzymes. Biol. Chem. 381: 1063–1070.

    Article  PubMed  CAS  Google Scholar 

  • Schlattner, U., Gehring, F.,Vernoux, N., Tokarska-Schlattner, M., Neumann, D., Marcillat, O.,Vial, C., and Wallimann, T., 2004, C-terminal lysines determinephospholipid interaction of sarcomeric mitochondrial creatinekinase. J. Biol. Chem. 279: 24334–24342.

    Article  PubMed  CAS  Google Scholar 

  • Schlattner, U., Tokarska-Schlattner,M., and Wallimann, T., 2006, Mitochondrial creatine kinase in humanhealth and disease. Biochim. Biophys. Acta 1762:164–180.

    PubMed  CAS  Google Scholar 

  • Schlattner, U., and Wallimann, T., 2000, Octamers of mitochondrialcreatine kinase differ in stability and membrane binding. J. Biol. Chem. 275: 17314–17320.

    Article  PubMed  CAS  Google Scholar 

  • Schlattner, U., Dolder, M.,Wallimann, T., and Tokarska-Schlattner, M., 2001, Mitochondrialcreatine kinase and mitochondrial outer membrane porin show a directinteraction that is modulated by calcium. J. Biol. Chem. 276: 48027–48030.

    PubMed  CAS  Google Scholar 

  • Schlattner,U., and Wallimann T., 2004, Metabolite channeling: creatine kinasemicrocompartments. In: Encyclopedia of Biological Chemistry(Lennarz, W.J., and Lane, M.D., eds.), Academic Press, New York,USA, pp. 646–651.

    Google Scholar 

  • Schlattner, U., and Wallimann, T., 2006, Molecular structure andfunction of mitochondrial creatine kinases. In: Creatine kinase –biochemistry, physiology, structure and function (Uversky, V.N.,ed.), Nova Science Publishers, New York, USA, pp. 123–170.

    Google Scholar 

  • Stachowiak, O., Schlattner, U.,Dolder, M., and Wallimann, T., 1998, Oligomeric state and membranebinding behaviour of creatine kinase isoenzymes: implications forcellular function and mitochondrial structure. Mol. Cell.Biochem. 184: 141–151.

    Article  PubMed  CAS  Google Scholar 

  • Schlegel, J., Wyss, M., Schurch, U., Schnyder, T., Quest, A., Wegmann,G., Eppenberger, H.M., and Wallimann, T., 1988a, Mitochondrialcreatine kinase from cardiac muscle and brain are two distinctisoenzymes but both form octameric molecules. J. Biol.Chem. 263: 16963–16969.

    CAS  Google Scholar 

  • Schlegel, J., Zurbriggen, B., Wegmann, G., Wyss, M., Eppenberger, H.M.,and Wallimann, T., 1988b, Native mitochondrial creatine kinase formsoctameric structures. I. Isolation of two interconvertiblemitochondrial creatine kinase forms, dimeric and octamericmitochondrial creatine kinase: characterization, localization, andstructure-function relationships. J. Biol. Chem. 263:16942–16953.

    CAS  Google Scholar 

  • Schnyder, T., Rojo, M.,Furter, R., and Wallimann, T., 1994, The structure of mitochondrialcreatine kinase and its membrane binding properties. Mol. Cell.Biochem. 133/134: 115–123.

    Article  Google Scholar 

  • Scholte, H.R., 1973, On the triple localization of creatine kinase inheart and skeletal muscle cells of the rat: evidence for theexistence of myofibrillar and mitochondrial isoenzymes. Biochim. Biophys. Acta 305: 413–427.

    Article  PubMed  CAS  Google Scholar 

  • Selivanov, V.A., Alekseev, A.E., Hodgson, D.M., Dzeja, P.P., andTerzic, A., 2004, Nucleotide-gated KATP channelsintegrated with creatine and adenylate kinases: Amplification,tuning and sensing of energetic signals in the compartmentalizedcellular environment. Mol. Cell. Biochem. 256/257:243–256.

    Article  CAS  Google Scholar 

  • Seppet, E., Kaambre, T., Sikk, P., Tiivel, T., Vija, H., Kay, L.,Appaix, F., Tonkonogi, M., Sahlin, K., and Saks, V.A., 2001,Functional complexes of mitochondria with MgATPases of myofibrilsand sarcoplasmic reticulum in muscle cells. Biochim. Biophys.Acta 1504: 379–395.

    Article  PubMed  CAS  Google Scholar 

  • Sharov, V.G., Saks, V.A., Smirnov, V. N., and Chazov, E.I., 1977, Anelectron microscopic histochemical investigation of creatinephosphokinase in heart cells. Biochim. Biophys. Acta 468: 495–501.

    Article  PubMed  CAS  Google Scholar 

  • Soboll, S., Conrad, A., and Hebisch, S., 1994, Influence ofmitochondrial creatine kinase on themitochondrial/extramitochondrial distribution of high energyphosphates in muscle tissue: evidence for the leak in the creatineshuttle. Mol. Cell. Biochem. 133/134: 105–115.

    Article  Google Scholar 

  • Spindler, M., Niebler, R., Remkes, H., Horn, M., Lanz, T., andNeubauer, S., 2002, Mitochondrial creatine kinase is criticallynecessary for normal myocardial high-energy phosphate metabolism.Am. J. Physiol. 283: H680–H687.

    CAS  Google Scholar 

  • Spindler, M., Meyer, K., Stromer, H., Leupold, A., Boehm, E., Wagner,H., and Neubauer, S., 2004, Creatine kinase-deficient heartsexhibit increased susceptibility to ischemia-reperfusion injuryand impaired calcium homeostasis. Am. J. Physiol. 287:H1039–H1045.

    CAS  Google Scholar 

  • Stanley, W.C., Recchia, F.A., and Lopaschuk, G.D., 2005, Myocardialsubstrate metabolism in the normal and failing heart. Physiol. Rev. 85: 1093–1129.

    Article  PubMed  CAS  Google Scholar 

  • Steeghs, K., Benders, A., Oerlemans, F., de Haan, A., Heerschap, A.,Ruitenbeek, W., Jost, C., van Deursen, J., Perryman, B., Pette, D.,Bruckwilder, M., Koudijs, J., Jap, P., Veerkamp, J., andWieringa, B., 1997, Altered Ca2 + responses in muscles withcombined mitochondrial and cytosolic creatine kinase deficiencies.Cell 89: 93–103.

    Article  PubMed  CAS  Google Scholar 

  • Taegtmeyer, H., Wilson, C.R., Razeghi, P., and Sharma, S., 2005,Metabolic energetics and genetics in the heart. Ann. N. Y.Acad. Sci. 1047: 208–218.

    Article  PubMed  CAS  Google Scholar 

  • Veksler, V.I., Kuznetsov, A.V., Anflous, K., Mateo, P., van Deursen,J., Wieringa, B., and Ventura-Clapier, R., 1995, Musclecreatine-kinase deficient mice. II Cardiac and skeletal musclesexhibit tissue-specific adaptation of the mitochondrial function.J. Biol. Chem. 270: 19921–19929.

    Article  PubMed  CAS  Google Scholar 

  • Vendelin, M., Kongas, O., and Saks, V., 2000, Regulation ofmitochondrial respiration in heart cells analyzed byreaction-diffusion model of energy transfer. Am. J. Physiol.Cell Physiol. 278: C747–C764.

    PubMed  CAS  Google Scholar 

  • Vendelin, M., Lemba, M., and Saks, V.A., 2004a, Analysis of functionalcoupling: mitochondrial creatine kinase and adenine nucleotidetranslocase. Biophys. J. 87: 696–713.

    Article  CAS  Google Scholar 

  • Vendelin, M., Eimre, M., Seppet, E., Peet, N., Andrienko, T., Lemba,M., Engelbrecht, J., Seppet, E.K., and Saks, V.A., 2004b,Intracellular diffusion of adenosine phosphates is locallyrestricted in cardiac muscle. Mol. Cell. Biochem. 256/257: 229–241.

    Article  CAS  Google Scholar 

  • Vendelin, M., Beraud, N., Guerrero, K., Andrienko, T., Kuznetsov, A.V,Olivares, J., Kay, L., and Saks, V.A., 2005, Mitochondrial regulararrangement in muscle cells: a ‘‘crystal-like’’ pattern. Am.J. Physiol. Cell Physiol. 288: C757–C767.

    Article  PubMed  CAS  Google Scholar 

  • Ventura-Clapier, R., Mekhfi, H., and Vassort, G., 1987, Role ofcreatine kinase in force development in chemically skinned ratcardiac muscle. J. Gen. Physiol. 89: 815–837.

    Article  PubMed  CAS  Google Scholar 

  • Ventura-Clapier, R., Kuznetsov, A., Veksler, V., Boehm, E., andAnflous, K., 1998, Functional coupling of creatine kinases inmuscles: species and tissue specificity. Mol. Cell. Biochem. 184: 231–247.

    Article  PubMed  CAS  Google Scholar 

  • Ventura-Clapier, R., Kaasik, A., and Veksler, V., 2004, Structural and functional adaptations of striated muscles to CK deficiency.Mol. Cell. Biochem. 256: 29–41.

    Article  PubMed  Google Scholar 

  • Vial, C., Godinot, C., and Gautheron, D., 1972, Membranes: creatinekinase (E.C.2.7.3.2.) in pig heart mitochondria. Properties androle in phosphate potential regulation. Biochimie 54:843–852.

    Article  PubMed  CAS  Google Scholar 

  • Wallimann, T., Schlosser, T., and Eppenberger, H., 1984, Function ofM-line-bound creatine kinase as intramyofibrillar ATP regeneratorat the receiving end of the phosphorylcreatine shuttle in muscle.J. Biol. Chem. 259: 5238–5246.

    PubMed  CAS  Google Scholar 

  • Wallimann, T., Wyss, M., Brdiczka, D., Nicolay, K., and Eppenberger,H.M., 1992, Intracellular compartmentation, structure and functionof creatine kinase isoenzymes in tissues with high and fluctuatingenergy demands: the ‘phosphocreatine circuit’ for cellular energyhomeostasis. Biochem. J. 281: 21–40.

    PubMed  CAS  Google Scholar 

  • Wallimann, T., and Hemmer, W., 1994, Creatine kinase in non-muscletissues and cells. Mol. Cell. Biochem. 133/134:193–220.

    Article  Google Scholar 

  • Wallimann, T., Dolder, M., Schlattner, U., Eder, M., Hornemann, T.,O’Gorman, E., Ruck, A., and Brdiczka, D., 1998, Some new aspectsof creatine kinase (CK): compartmentation, structure, function andregulation for cellular and mitochondrial bioenergetics andphysiology. Biofactors 8: 229–234.

    PubMed  CAS  Google Scholar 

  • Wegmann, G., Zanolla, E., Eppenberger, H.M., and Wallimann, T., 1992,In situ compartmentation of creatine kinase in intact sarcomericmuscle: the acto-myosin overlap zone as a molecular sieve. J.Muscle Res. Cell Motil. 13: 420–435.

    Article  PubMed  CAS  Google Scholar 

  • Weiss, J.N., and Lamp, S.T., 1987, Glycolysis preferentially inhibitsATP-sensitive K+ channels in isolated guinea pig cardiacmyocytes. Science 238: 67–69.

    Article  PubMed  CAS  Google Scholar 

  • Weiss, J.N., Ling, Y., and Qu, Z., 2006, Network perspectives ofcardiovascular metabolism. J. Lipid Res. 47:2355–2366.

    Article  PubMed  CAS  Google Scholar 

  • Williamson, J.R., Ford, C., Illingworth, J., and Safer, B., 1976,Coordination of citric acid cycle activity with electron transportflux. Circ. Res. 38: 39–51.

    Google Scholar 

  • Williamson, J.R., 1979, Mitochondrial function in the heart. Annu. Rev. Physiol. 41:485-506.

    Article  PubMed  CAS  Google Scholar 

  • Wyss, M., and Kaddurah-Daouk, R., 2000, Creatine and creatininemetabolism. Physiol. Rev. 80: 1107–1213.

    PubMed  CAS  Google Scholar 

  • Yagi, K., and Mase, R., 1962, Coupled reaction of creatine kinase andmyosin A-adenosine triphosphatase. J. Biol. Chem. 237:397–403.

    PubMed  CAS  Google Scholar 

  • Yang, Z., and Steele, D.S., 2002, Effects of phosphocreatine on SRregulation in isolated saponin-permeabilised rat cardiac myocytes.J. Physiol. 539: 767–777.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, G., Somasundaram, T., Blanc, E., Parthasarathy, G., Ellington, W.R., and Chapman, M.S., 1998,Transition state structure of arginine kinase: implications for catalysis of bimolecular reactions. Proc.Natl. Acad. Sci. U.S.A. 95: 8449–8454.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Saks, V. et al. (2007). The Creatine Kinase Phosphotransfer Network: Thermodynamic and Kinetic Considerations, the Impact of the Mitochondrial Outer Membrane and Modelling Approaches. In: Salomons, G.S., Wyss, M. (eds) Creatine and Creatine Kinase in Health and Disease. Subcellular Biochemistry, vol 46. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6486-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6486-9_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6485-2

  • Online ISBN: 978-1-4020-6486-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics