Advertisement

Non-Equilibrium and Equilibrium Boundary Layers without Pressure Gradient

  • Takatsugu Kameda
  • Shinsuke Mochizuki
  • Hideo Osaka
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 4)

Abstract

The effect of the friction parameter ω, defined as the ratio of the friction velocity to the free stream velocity, has been investigated on mean velocity fields for non-equilibrium and equilibrium boundary layers developing under zero pressure gradient. The wall shear stress was measured by a drag balance using a floating element device with a zero displacement mechanism. For the equilibrium boundary layer, the local skin friction coefficient is independent of two parameters, both the streamwise distance and the Reynolds number, based on the momentum thickness, and the boundary layer thickness is proportional to the streamwise distance. On the other hand, for the non-equilibrium boundary layer, the local skin friction coefficient depends on the above two parameters. The wake parameters for both boundary layers approach constant values, which depend on the surface condition, for high Reynolds numbers. From analysis using both the momentum integral equation and Coles’s wake law, the wake parameter for the equilibrium boundary layer is uniquely expressed as a function of the friction parameter. However, for the non-equilibrium boundary layer, the wake parameter depends on the friction parameter as well as the growth rate of the boundary layer thickness.

Keywords

equilibrium boundary layer rough surface drag balance friction parameter wake parameter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tennekes H, Lumley JL (1972) A First Course in Turbulence The MIT PressGoogle Scholar
  2. 2.
    Rotta JC (1962) Turbulent Boundary Layer in Incompressible Flow Second Edi‐tion Pergamon PressGoogle Scholar
  3. 3.
    Furuya Y, Fujita H (1966) Trans JSME 32-237:725-733Google Scholar
  4. 4.
    Osaka H, Kameda T, Mochizuki S (1998) JSME Int JB 41-1:123-129Google Scholar
  5. 5.
    Kameda T, Osaka H, Mochizuki S (1998) 13th Australasian Fluid Mechanics Conference:357-360Google Scholar
  6. 6.
    Krogstad P‐A, Antonia RA, Browne LWB (1992) J Fluid Mech 245:599-617CrossRefGoogle Scholar
  7. 7.
    Lewkowicz AK (1982) Z Flugwiss Weltramforsch 6:261-266zbMATHGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Takatsugu Kameda
    • 1
  • Shinsuke Mochizuki
    • 2
  • Hideo Osaka
    • 2
  1. 1.Department of Mechanical Engineering, Graduate School of Science and EngineeringYamaguchi UniversityUbeJapan
  2. 2.Yamaguchi UniversityJapan

Personalised recommendations