Remote Sensing of Terrestrial Primary Production and Carbon Cycle

  • Maosheng Zhao
  • Steven W. Running
The objective of this chapter is to review the historical development of and the recent advances in the application of satellite remote sensing data for estimating terrestrial gross and net primary production (GPP and NPP), while also monitoring carbon cycle related ecosystem dynamics and changes.We achieve this objective by separating the topic into five sections:
  1. 1.

    A review of the history of using satellite data to study the carbon cycle, concentrating on using the Normalized Difference Vegetation Index (NDVI) and its derived Fraction of Photosynthetically Active Radiation (FPAR) and Leaf Area Index (LAI) for biomass and NPP estimations

  2. 2.

    A description of recent advances in the application of Moderate Resolution Imaging Spectroradiometer (MODIS) data to estimates of GPP and NPP, along with related findings using MODIS Land Surface Temperature (LST) and the Enhanced Vegetation Index (EVI)

  3. 3.

    A discussion of the application of long-term satellite data to the study of terrestrial ecosystems, including phenology monitoring, changes in regional carbon storage resulting from land use change, carbon flux changes induced by climate change, disturbance detection, and validation of ecosystem models

  4. 4.

    A proposed general scheme for applying satellite data to terrestrial ecosystem studies, highlighting the role of modeling

  5. 5.

    A summary that emphasizes the continuity of vegetation monitoring with satellites


The use of remote sensing information for studying terrestrial primary production and the global carbon cycle is significant both for an increased understanding of the earth system and improved management of land and natural resources.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arora VK (2003) Decreased heterotrophic respiration reduced growth in atmospheric CO2 concentration. IGBP Global Change Newsletter 54:21–22Google Scholar
  2. Asrar G, Fuchs M, Kanemasu ET, Hatfield JL (1984) Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in wheat. Agron. J. 76:300–306CrossRefGoogle Scholar
  3. Cao M, Prince SD, Small J, Goetz SJ (2004) Remotely sensed interannual variations and trends in terrestrial net primary productivity 1981-2000. Ecosystems 7:233–242CrossRefGoogle Scholar
  4. Canadell JG, Mooney HA, Baldocchi DD, Berry JA, Ehleringer JR, Field CB, Gower ST, Hollinger DY, Hunt JE, Jackson RB, Running SW, Shaver GR, Steffen W, Trumbore SE, Valentini R, Bond BY (2000) Carbon metabolism of the terrestrial biosphere: a multi-technique approach for improved understanding. Ecosystems 3:115–130CrossRefGoogle Scholar
  5. Cihlar J, Chen JM, Li Z, Huang F, Latifovic R, Dixon R (1998) Can interannual land surface signal be discerned in composite AVHRR data? J. Geophys. Res. 103(D18):23163–23172, doi: 10.1029/98JD00050CrossRefGoogle Scholar
  6. DeFries RS, Houghton RA, Hansen M, Field CB, Skole DL, Townshend J (2002) Carbon emissions from tropical deforestation and regrowth based on satellite observations for the 1980s and 90s. Proc. Natl. Acad. Sci. USA 99(22):14256–14261CrossRefGoogle Scholar
  7. Fan S, Gloor M, Mahlman J, Pacala S, Sarmiento J, Takahashi T, Tans P (1998) A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science 282:442–446CrossRefGoogle Scholar
  8. Fang J, Piao S, Field CB, Pan Y, Guo Q, Zhou L, Peng C, Tao S (2003) Increasing net primary production in China from 1982 to 1999. Front. Ecol. Environ. 1:293–297Google Scholar
  9. Folland CK, Karl TR, Christy JR, Clarke RA, Gruza GV, Jouzel J, Mann ME, Oerlemans J, Salinger MJ, Wang S-W (2001) Observed climate variability and change. In: JT Houghton,Y Ding, DJ Griggs, M Noguer, PJ van der Linden, X Dai, K Maskell, CA Johnson (eds), Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, USA, pp 182–237Google Scholar
  10. Fung I, Tucker CJ, Prentice K (1987) Application of advanced very high resolution radiometer vegetation index to study atmosphere-biosphere exchange of CO. J. Geophys. Res. 92(D3):2999–3015CrossRefGoogle Scholar
  11. Goward SN, Tucker CJ, Dye DG (1985) North American vegetation patterns observed with the NOAA-7 Advanced Very High Resolution Radiometer. Vegetatio 64:3–14CrossRefGoogle Scholar
  12. Gu L, Baldocchi DD, Wofsy SC, Munger JW, Michalsky JJ, Urbanski SP, Boden TA (2003) Response of a deciduous forest to the Mount Pinatubo eruption: enhanced photosynthesis. Science 299:2035–2038CrossRefGoogle Scholar
  13. Guenther B, Xiong X, Salomonson VV, Barnes WL, Young J (2002) On-orbit performance of the earth observing system moderate resolution imaging spectroradiometer; first year of data. Remote Sens. Environ. 83:16–30CrossRefGoogle Scholar
  14. Heinsch FA, Reeves M, Votava P, et al. (2003) User’s Guide: GPP and NPP (MOD17A2/A3) Products, NASA MODIS Land Algorithm, pp 1-57Google Scholar
  15. Heinsch FA, Zhao M, Running SW, et al. (2006) Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations. IEEE Trans. Geosci. Remote Sens. 44(7):1908–1925CrossRefGoogle Scholar
  16. Hicke JA, Asner GP, Randerson JT, Tucker C, Los S, Birdsey R, Jenkins JC, Field CB (2002a) Trends in North American net primary productivity derived from satellite observations, 1982-1998. Global Biogeochem. Cycles 16(2), doi:10.1029/2001GB001550Google Scholar
  17. Hicke JA, Randerson J, Asner G, Randerson J, Tucker C, Los S, Birdsey R, Jenkins J, Field C, Holland E (2002b) Satellite-derived increases in net primary productivity across North America, 1982-1998, Geophys. Res. Lett. 29(10), doi:10.1029/2001GL013578Google Scholar
  18. Houghton RA, Hobbie JE, Melillo JM, et al. (1983) Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: a net release of CO2 to the atmosphere. Ecol. Monogr. 53:235–262CrossRefGoogle Scholar
  19. Huete AR, Didan K, Shimabukuro YE, Ratana R, Saleska SR, Hutyra LR, Yang W, Nemani RR, Myneni R (2006) Amazon rainforests green-up with sunlight in dry season. Geophys. Res. Lett. 33, L06405, doi: 10.1029/2005GL025583CrossRefGoogle Scholar
  20. Ichii K, Matsui Y, Yamaguchi Y, Ogawa K (2001) Comparison of global net primary production trends obtained from satellite-based normalized difference vegetation index and carbon cycle model. Global Biogeochem. Cycles 15(2):351–364, doi: 10.1029/2000GB001296CrossRefGoogle Scholar
  21. Imhoff ML, Bounoua L, Richetts T, Loucks C, Harriss R, Lawrence WT (2004) Global pattern in human consumption of net primary production. Nature 429:870–873CrossRefGoogle Scholar
  22. IPCC (Intergovernmental Panel on Climate Change) (2001) IPCC (Intergovernmental Panel on Climate Change). In: JT Houghton, Y Ding, DJ Griggs, M Noguer, PJ van der Linden, X Dai X (eds), Climate Change 2001: The Scientific Basis Contribution of Working Group I to the Third Assessment Report of the IPCC. Cambridge University Press, Cambridge, United KingdomGoogle Scholar
  23. Justice CO, Townshend JRG, Holben BN, Tucker CJ (1985) Analysis of the phenology of global vegetation using meteorological satellite data. Int. J. Remote Sens. 6:1271–1318CrossRefGoogle Scholar
  24. Justice CO, Townshend JRG, Vermote EF, Masuoka E, Wolfe RE, Saleous N, Roy DP, Morisette JT (2002) An overview of MODIS land data processing and product status. Remote Sens. Environ. 83:3–15CrossRefGoogle Scholar
  25. Keeling CD, Chin JFS, Whorf TP (1996) Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature 382:146–149CrossRefGoogle Scholar
  26. Keeling CD (1998) Rewards and penalties of monitoring the earth. Annu. Rev. Energy Environ. 23:25–82CrossRefGoogle Scholar
  27. Keeling CD, Piper SC, Bacastow RB, Wahlen M, Whorf TP, Heimann M, Meijer HA (2001) Exchange of atmospheric CO2 and 13 CO2 with the terrestrial biosphere and oceans from 1978 to 2000, I. Global aspects. SIO Ref. Ser. 01-06, Scripps Institute of Oceanography, La Jolla, CAGoogle Scholar
  28. Kindermann J, W ürth G, Kohlmaier GH, Badeck F-W (1996) Interannual variation of carbon exchange fluxes in terrestrial ecosystems. Global Biogeochem. Cycles 10(4):737–756, doi: 10.1029/96GB02349CrossRefGoogle Scholar
  29. Krakauer NY, Randerson JT (2003) Do volcanic eruptions enhance or diminish net primary production. Evidence from tree rings. Global Biogeochem. Cycles 17(4):1118, doi:10.1029/2003GB002076CrossRefGoogle Scholar
  30. Kumar M, Monteith JL (1982) Remote sensing of crop growth. In H Smith (ed), Plants and daylight spectrum. Academic Press, London, pp 133–144.Google Scholar
  31. Landsberg JJ, Waring RH (1997) A generalized model of forest productivity using simplified concepts of radiation use efficiency, carbon balance and partitioning. Forest Ecol. Manag. 95:209–228CrossRefGoogle Scholar
  32. Lucht W, Prentice IC, Myneni RB, Sitch S, Friedlingstein P, Cramer W, Bousquet P, Buermann W, Smith B (2002) Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science 296:1687–1689CrossRefGoogle Scholar
  33. Matthews E (2001) Understanding the FRA 2000: Forest Briefing No. 1. World Resource Institute, Washington, DC, p 12Google Scholar
  34. McGuire AD III, Prentice IC, Ramankutty N, Reichenau T, Schloss A, Tian H, Williams LJ, Wittenberg U (2001) Carbon balance of the terrestrial biosphere in the twentieth century: analyses of CO2 , climate and land use effects with four process-based ecosystem models. Global Biogeochem. Cycles 15(1):183–206CrossRefGoogle Scholar
  35. Mildrexler D, Zhao M, Heinsch FA, Running SW (2007) A new satellite based methodology for continental scale disturbance detection. Ecol. Appl. 17(1):235–250CrossRefGoogle Scholar
  36. Milesi C, Hashimoto H, Running SW, Nemani RR (2005) Climate variability, vegetation productivity and people at risk. Global Planet Change 47:221–231CrossRefGoogle Scholar
  37. Monteith JL (1972) Solar radiation and productivity in tropical ecosystems. J. Appl. Ecol. 9:747–766CrossRefGoogle Scholar
  38. Monteith JL (1977) Climate and efficiency of crop production in Britain. Phil. Trans. Royal Soc. Lond. B 281:277–294CrossRefGoogle Scholar
  39. Mu Q, Zhao M, Heinsch FA, Liu M, Tian H, Running SW (2007) Evaluating water stress controls on primary production in biogeochemical and remote sensing based models. J. Geophys. Res. 112,G01012CrossRefGoogle Scholar
  40. Myneni RB, Hall FG, Sellers PJ, Marshak AL (1995) The interpretation of spectral vegetation indexes. IEEE Trans. Geosci. Remote Sens. 33:481–486CrossRefGoogle Scholar
  41. Myneni RB, Nemani RR, Running SW (1997a) Estimation of global leaf area index and absorbed par using radiative transfer models. IEEE Trans. Geosci. Remote Sens. 35:1380–1393CrossRefGoogle Scholar
  42. Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997b) Increase plant growth in the northern high latitudes from 1981-1991. Nature 386:698–702CrossRefGoogle Scholar
  43. Myneni RB, Dong J, Tucker CJ, Kaufmann RK, Kauppi PE, Liski J, Zhou L, Alexeyev V, Hughes MK (2001) A large carbon sink in the woody biomass of northern forests. Proc. Natl. Acad. Sci. USA 98(26):14784–14789CrossRefGoogle Scholar
  44. Nemani RR, Running SW (1989) Estimation of regional surface resistance to evapotranspiration from NDVI and thermal-IR AVHRR data. J. Appl. Meteorol. 28:276–284CrossRefGoogle Scholar
  45. Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RB, Running SW (2003a) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300:1560–1563CrossRefGoogle Scholar
  46. Nemani RR, White MA, Pierce L, Votava P, Coughlan J, Running SW (2003b) Biospheric monitoring and ecological forecasting. Earth Observ. Mag. 12(2):6–8Google Scholar
  47. Potter CS, Randerson JT, Field CB, Matson PA, Vitousek PM, Mooney HA, Klooster SA (1993) Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochem. Cycles 7:811–841CrossRefGoogle Scholar
  48. Potter CS, Klooster S, Myneni R, Genovese V, Tan P, Kumar V (2003a) Continental scale comparisons of terrestrial carbon sinks estimated from satellite data and ecosystem modeling 1982-98. Global Planet. Change 39:201–213CrossRefGoogle Scholar
  49. Potter CS, Tan P, Steinbach M, Klooster S, Kumar V, Myneni R, Genovese V (2003b) Major disturbance events in terrestrial ecosystems detected using global satellite data sets. Global Change Biol. 9(7):1005–1021CrossRefGoogle Scholar
  50. Prentice IC, Heimann M, Sitch S (2000) The carbon balance of the terrestrial biosphere: ecosystem models and atmospheric observations. Ecol. Appl. 10:1553–1573CrossRefGoogle Scholar
  51. Prentice IC, Farquhar GD, Fasham MJR, Goulden ML, Heimann M, Jaramillo VJ, Kheshgi HS, Le Qu ér é C, Scholes RJ, Wallace DWR (2001) The carbon cycle and atmospheric carbon dioxide. In: JT Houghton,Y Ding, DJ Griggs, M Noguer, PJ van der Linden, X Dai, K Maskell, CA Johnson (eds), Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, USA, pp 182–237Google Scholar
  52. Prince SD (1991) A model of regional primary production for use with coarse resolution satellite data. Int. J. Remote Sens. 12:1313–1330CrossRefGoogle Scholar
  53. Prince SD, Goward SN (1995) Global primary production: a remote sensing approach. J. Biogeogr. 22:815–835CrossRefGoogle Scholar
  54. Rahman AF, Sims DA, Cordova VD, El-Masri BZ (2005) Potential of MODIS EVI and surface temperature for directly estimating per-pixel ecosystem C fluxes. Geophys. Res. Lett. 32, L19404, doi:10.1029/2005GL024127CrossRefGoogle Scholar
  55. Randerson JT, Field CB, Fung IY, Tans PP (1999) Increases in early season ecosystem uptake explain recent changes in the seasonal cycle of atmospheric CO2 at high northern latitudes. Geophys. Res. Lett. 26:2765–2768, doi: 10.1029/1999GL900500CrossRefGoogle Scholar
  56. Randerson JT, van der Werf GR, Collatz GJ, Giglio L, Still CJ, Kasibhatla P, Miller JB, White JWC, DeFries RS, Kasischke ES (2005) Fire emissions from C3 and C4 vegetation and their influence on interannual variability of atmospheric CO2 and d13 CO2 . Global Biogeochem. Cycles 19:GB2019CrossRefGoogle Scholar
  57. Reeves MC, Zhao M, Running SW (2006) Applying improved estimates of MODIS productivity to characterize grassland vegetation dynamics. Rangeland Ecol. Manag. 59:1–10CrossRefGoogle Scholar
  58. Roy DP, Jin Y, Lewis PE, Justice CO (2005) Prototyping a global algorithm for systematic fire-affected area mapping using MODIS time series data. Remote Sens. Environ. 97:137–162CrossRefGoogle Scholar
  59. Ruimy A, Saugier B, Dedieu G (1994) Methodology for the estimation of terrestrial net primary production from remotely sensed data. J. Geophys. Res. 99:5263–5283CrossRefGoogle Scholar
  60. Ruimy A, Dedieu G, Saugier B (1996) TURC: a diagnostic model of continental gross primary productivity and net primary productivity. Global Biogeochem. Cycles 10:269–286, doi: 10.1029/96GB00349CrossRefGoogle Scholar
  61. Running SW, Nemani RR (1988) Relating seasonal patterns of the AVHRR vegetation index to simulated photosynthesis and transpiration of forests in different climates. Remote Sens. Environ. 24:347–367CrossRefGoogle Scholar
  62. Running SW, Nemani RR, Peterson DL, Band LE, Potts DF, Pierce LL, Spanner MA (1989) Mapping regional forest evapotranspiration and photosynthesis by coupling satellite data with ecosystem simulation. Ecology 70:1090–1101CrossRefGoogle Scholar
  63. Running SW, Hunt ER (1993) Generalization of a forest ecosystem process model for other biomes, BIOME-BGC, and an application for global-scale models. In JR Ehleringer, CB Field (ed), Scaling physiological processes: leaf to globe. Academic, San Diego, CA, pp 141–158Google Scholar
  64. Running SW, Baldocchi DD, Turner DP, Gower ST, Bakwin PS, Hibbard KA (1999) A global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystem modeling and EOS satellite data. Remote Sens. Environ. 70:108–128CrossRefGoogle Scholar
  65. Running SW, Thornton PE, Nemani RR, Glassy JM (2000) Global terrestrial gross and net primary productivity from the earth observing system. In O Sala, R Jackson, H Mooney (eds), Methods in ecosystem science. Springer, New York, pp 44–57Google Scholar
  66. Running SW, Nemani RR, Heinsch FA, Zhao M, Reeves M, Hashimoto H (2004) A continuous satellite-derived measure of global terrestrial primary productivity: future science and applications. Bioscience 54:547–560CrossRefGoogle Scholar
  67. Running SW, Nemani RR, Townshend J, Baldocchi D (2006) Next generation terrestrial carbon monitoring. American Geophysical Union Monography XX. A tribute to the career of Charles David KeelingGoogle Scholar
  68. Schimel DS, House JI, Hibbard KA, Bousquet P, Ciais P, Peylin P, Braswell BH, Apps MJ, et al. (2001) Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414:169–172CrossRefGoogle Scholar
  69. Sellers PJ (1985) Canopy reflectance, photosynthesis and transpiration. Int. J. Remote Sens. 6:1335–1372CrossRefGoogle Scholar
  70. Sellers PJ (1987) Canopy reflectance, photosynthesis and transpiration. II. The role of biophysics in the linearity of their interdependence. Remote Sens. Environ. 21:143–183Google Scholar
  71. Townshend JRG, Justice CO (1986) Analysis of the dynamics of African vegetation using the normalized difference vegetation index. Int. J. Remote Sens. 7:1435–1445CrossRefGoogle Scholar
  72. Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 8:127–150CrossRefGoogle Scholar
  73. Tucker CJ (1980) A spectral method for determining the percentage of green herbage material in clipped samples. Remote Sens. Environ. 9:175–181CrossRefGoogle Scholar
  74. Tucker CJ, Vanpraet C, Boerwinkel E, Gaston A (1983) Satellite remote sensing of total dry matter production in the Senegalese Sahel. Remote Sens. Environ. 13:461–474CrossRefGoogle Scholar
  75. Tucker CJ, Townshend JRG, Goff TE (1985) African land-cover classification using satellite data. Science 227:369–375CrossRefGoogle Scholar
  76. Tucker CJ, Fung I, Keeling C, Gammon R (1986) Relationship between atmospheric CO2 variations and satellite-derived vegetation index. Nature 319:195–199CrossRefGoogle Scholar
  77. Turner DP, Ritts WD, Cohen WB, Gower ST, Running SW, Zhao M, Costa MH, Kirschbaum A, Ham J, Saleska S, Ahl D (2006) Evaluation of MODIS NPP and GPP products across multiple biomes. Remote Sens. Environ. 102:282–292CrossRefGoogle Scholar
  78. Van der Werf GR, Randersonm JT, Collatz GJ, Giglio L, Kasibhatla P, Arellano A, Olsen S, Kasischke ES (2004) Continental-scale partitioning of fire emissions during the 1997 to 2001 El Niño/La Niña period. Science 303:73–76CrossRefGoogle Scholar
  79. Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Guldberg OH, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395CrossRefGoogle Scholar
  80. Wolfe RE, Nishihama M, Fleig AJ, Kuyper JA, Roy DP, Storey JC, Patt FS (2002) Achieving subpixel geolocation accuracy in support of MODIS land science. Remote Sens. Environ. 83:31–49CrossRefGoogle Scholar
  81. Xiao X, Hollinger D, Aber J, Goltz M, Davidson EA, Zhang Q, Moore III B (2004) Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sens. Environ. 89:519–534CrossRefGoogle Scholar
  82. Xiao X, Hagen S, Zhang Q, Keller M, Moore III B (2006) Detecting leaf phenology of seasonally moist tropical forests in South America with multi-temporal MODIS images. Remote Sens. Environ. 103:465–473CrossRefGoogle Scholar
  83. Zhao M, Neilson R, Yan X, Dong W (2002) Modelling the vegetation of China under changing climate. Acta Geographica Sinica 57(1):28–38Google Scholar
  84. Zhao M, Heinsch FA, Nemani RR, Running SW (2005) Improvements of the MODIS terrestrial gross and net primary production global dataset. Remote Sens. Environ. 95:164–176CrossRefGoogle Scholar
  85. Zhao M, Running SW, Nemani RR (2006a) Sensitivity of Moderate Resolution Imaging Spectrora diometer (MODIS) terrestrial primary production to the accuracy of meteorological reanalyses. J. Geophys. Res. 111:G01002, doi:10.1029/2004JG000004CrossRefGoogle Scholar
  86. Zhao M, Running SW, Heinsh FA, Nemani RR (2006b) Variations of global terrestrial primary production observed by Moderate Resolution Imaging Spectroradiometer (MODIS) from 2000 to 2005. (in preparation)Google Scholar
  87. Zhou L, Tucker CJ, Kaufmann RK, Slayback D, Shabanov NV, Myneni RB (2001) Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J. Geophys. Res. 106:20069–20083CrossRefGoogle Scholar
  88. Zhuang Q, McGuire AD, Melillo JM, Clein JS, Dargaville RJ, Kicklighter DW, Myneni RB, Dong J, Romanovsky VE, Harden J, Hobbie JE (2003) Carbon cycling in extratropical terrestrial ecosystems of the Northern Hemisphere during the 20th Century: a modeling analysis of the influences of soil thermal dynamics. Tellus B 55:751–776CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V 2008

Authors and Affiliations

  • Maosheng Zhao
    • 1
  • Steven W. Running
    • 1
  1. 1.Department of Ecosystem and Conservation ScienceUniversity of MontanaMissoulaUSA

Personalised recommendations