Advertisement

Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size

  • Marten Scheffer
  • Egbert H. van Nes
Part of the Developments in Hydrobiology book series (DIHY, volume 196)

Abstract

Shallow lakes have become the archetypical example of ecosystems with alternative stable states. However, since the early conception of that theory, the image of ecosystem stability has been elaborated for shallow lakes far beyond the simple original model. After discussing how spatial heterogeneity and fluctuation of environmental conditions may affect the stability of lakes, we review work demonstrating that the critical nutrient level for lakes to become turbid is higher for smaller lakes, and seems likely to be affected by climatic change too. We then show how the image of just two contrasting states has been elaborated. Different groups of primary producers may dominate shallow lakes, and such states dominated by a particular group may often represent alternative stable states. In tropical lakes, or small stagnant temperate waters, freefloating plants may represent an alternative stable state. Temperate shallow lakes may be dominated alternatively by charophytes, submerged angiosperms, green algae or cyanobacteria. The change of the lake communities along a gradient of eutrophication may therefore be seen as a continuum in which gradual species replacements are interrupted at critical points by more dramatic shifts to a contrasting alternative regime dominated by different species. The originally identified shift between a clear and a turbid state remains one of the more dramatic examples, but is surely not the only discontinuity that can be observed in the response of these ecosystems to environmental change.

Keywords

Shallow Lake Water Hyacinth Regime Shift Submerged Macrophyte Temperate Lake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Best, E.P.H., 1987. The submerged macrophytes in Lake Maarsseveen I, the Netherlands: changes in species composition and biomass over a six-year period. Hydrobiology Bulletin 21: 55–60.CrossRefGoogle Scholar
  2. Blindow, I., 1992. Longand short-term dynamics of submerged macrophytes in two shallow eutrophic lakes. Freshwater Biology 28: 15–27.CrossRefGoogle Scholar
  3. Blindow, I., A. Hargeby & G. Andersson, 2002. Seasonal changes of mechanisms maintaining clear water in a shallow lake with abundant Chara vegetation. Aquatic Botany 72: 315–334.CrossRefGoogle Scholar
  4. Blindow, I., G. Andersson, A. Hargeby & S. Johansson, 1993. Long-term pattern of alternative stable states in two shallow eutrophic lakes. Freshwater Biology 30: 159–167.CrossRefGoogle Scholar
  5. Carpenter, S. R., 2005. Eutrophication of aquatic ecosystems: bistability and soil phosphorus. Proceedings of the National Academy of Science of the United States of America 102: 10002–10005.CrossRefGoogle Scholar
  6. Chambers, P. A., E. E. Prepas, M. L. Bothwell & H. R. Hamilton, 1989. Roots versus shoots in nutrient uptake by aquatic macrophytes in flowing waters. Candian Journal of Fisheries and Aquatic Sciences 46: 435–439.CrossRefGoogle Scholar
  7. Dahl, T. E., 1990, Wetland losses in the United States, 1780’s to 1980’s. U.S. Department of the Interior, Fish and Wildlife Service, Washington DC.Google Scholar
  8. De Roos, A. M. & L. Persson, 2002. Size-dependent lifehistory traits promote catastrophic collapses of top predators. Proceedings of the National Academy of Science of the United States of America 99: 12907–12912.CrossRefGoogle Scholar
  9. DeAngelis, D. L., & L. J. Gross, 1992, Individual-based models and approaches in ecology. Chapman and Hall, New York, 1–525.Google Scholar
  10. Dumont, H. J., 1994. On the diversity of the cladocera in the tropics. Hydrobiologia 272: 27–38.CrossRefGoogle Scholar
  11. Engel, S. & S. A. Nichols, 1994. Aquatic macrophyte growth in a turbid windswept lake. Journal of Fresh-water Ecology 9: 97–109.Google Scholar
  12. Folke, C., S. Carpenter, B. Walker, M. Scheffer, T. Elmqvist, L. Gunderson & C. S. Holling, 2004. Regime shifts, resilience, and biodiversity in ecosystem management. Annual Review of Ecology Evolution and Systematics 35: 557–581.CrossRefGoogle Scholar
  13. George, D. G., 2000. The impact of regional-scale changes in the weather on the long-term dynamics of Eudiaptomus and Daphnia in Esthwaite Water, Cumbria. Freshwater Biology 45: 111–121.CrossRefGoogle Scholar
  14. Gopal, B., 1987, Water hyacinth. Elsevier, New York.Google Scholar
  15. Goulder, R., 1969. Interactions between the rates of production of a freshwater macrophyte and phytoplankton in a pond. Oikos 20: 300–309.CrossRefGoogle Scholar
  16. Grace, J. B. & L. J. Tilly, 1976. Distribution and abundance of submerged macrophytes, including Myriophyllum spicatum L. (Angiospermae), in a cooling reservoir. Archiv für Hydrobiologie 77: 475–487.Google Scholar
  17. Grift, R. E., A. D. Buijse, W. L. T. Van Densen & J. G. P. Klein Breteler, 2001. Restoration of the river-floodlain interaction: benefits for the fish community in the River Rhine. Archiv für Hydrobiologie 135: 173–185.Google Scholar
  18. Gunderson, L. & C. S. Holling, 2001. Panarchy: understanding transformations in human and natural systems. Island Press, Washington.Google Scholar
  19. Hargeby, A., G. Andersson, I. Blindow & S. Johansson, 1994. Trophic web structure in a shallow eutrophic lake during a dominance shift from phytoplankton to submerged macrophytes. Hydrobiologia 280: 83–90.CrossRefGoogle Scholar
  20. Hastings, A., 2004. Transients: the key to long-term ecological understanding? Trends in Ecology & Evolution 19: 39–45.CrossRefGoogle Scholar
  21. Hershey, A. E., G. M. Gettel, M. E. McDonald, M. C. Miller, H. Mooers, W. J. O‘Brien, J. Pastor, C. Richards & J. A. Schuldt, 1999. A geomorphic-trophic model for landscape control of Arctic lake food webs. Bioscience 49: 887–897.CrossRefGoogle Scholar
  22. Holling, C. S., 1973. Resilience and stability of ecological systems. Annual Review of Ecology and Systematics 4: 1–23.CrossRefGoogle Scholar
  23. Huisman, J. & F. J. Weissing, 1999. Biodiversity of plankton by species oscillations and chaos. Nature 402: 407–410.CrossRefGoogle Scholar
  24. Hutchinson, G. E., 1975, A treatise on limnology. Vol. III, limnological botany. John Wiley & Sons, New York.Google Scholar
  25. Janse, J. H. & P. J. T. M. Van Puijenbroek, 1998. Effects of eutrophication in drainage ditches. Environmental Pollution 102: 547–552.CrossRefGoogle Scholar
  26. Jeppesen, E., 1998. The ecology of shallow lakes Trophic Interactions in the Pelagial. University of Copenhagen, Silkeborg, 358.Google Scholar
  27. Jeppesen, E., M. Sondergaard & J. P. Jensen, 2003. Climate warming and regime shifts in lake food webs-some comments. Limnology and Oceanography 48: 1346–1349.Google Scholar
  28. Jeppesen, E., M. Sondergaard, M. Sondergaard, & K. Kristoffersen, 1998, Structuring role of submerged macrophytes in lakes. Springer-Verlag, New York.Google Scholar
  29. Jeppesen, E., J. P. Jensen, M. Søndergaard, T. Lauridsen, L. J. Pedersen & L. Jensen, 1997. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342: 151–164.CrossRefGoogle Scholar
  30. Jeppesen, E., M. Sondergaard, N. Mazzeo, M. Meerhoff, C. Branco, V. Huszar & F. Scasso, 2005. Lake restoration and biomanipulation in temperate lakes: relevance for subtropical and tropical lakes. In Reddy, M. V. (ed.), Restoration and Management of Tropical Eutrophic Lakes. Science Publishers.Google Scholar
  31. Lammens, E. H. R. R., M. L. Meijer, E. H. Van Nes & M. S. Van den Berg, 2004. Effects of commercial fishery on the bream population and the expansion of Chara aspera in Lake Veluwe. Ecological Modelling 177: 233–244.CrossRefGoogle Scholar
  32. Lewontin, R. C., 1969. The meaning of stability. Diversity and stability in ecological systems: report of a symposium held May 26–28. 13–24.Google Scholar
  33. MacArthur, R. H., & E. O. Wilson, 1967, The theory of island biogeography. Princeton University Press, Princeton, 203.Google Scholar
  34. Magnuson, J. J., W. M. Tonn, A. Banerjee, J. Toivonen, O. Sanchez & M. Rask, 1998. Isolation vs. extinction in the assembly of fishes in small northern lakes. Ecology 79: 2941–2956.Google Scholar
  35. May, R. M., 1977. Thresholds and breakpoints in ecosystems with a multiplicity of stable states. Nature 269: 471–477.CrossRefGoogle Scholar
  36. McKinnon, S. L. & S. F. Mitchell, 1994. Eutrophication and black swan (Cygnus atratus Latham) populations: tests of two simple relationships. Hydrobiologia 279–280: 163–170.CrossRefGoogle Scholar
  37. Mehra, A., M. E. Farago, D. K. Banerjee & K. B. Cordes, 1999. The water hyacinth: an environmental friend or pest? A review. Resource Environmental Biotechnology 2: 255–281.Google Scholar
  38. Meijer, M. L., A. J. Raat & R. W. Doef, 1989. Restoration by biomanipulation of Lake Bleiswijkse Zoom the Netherlands first results. Hydrobiology Bulletin 23: 49–58.CrossRefGoogle Scholar
  39. Mitchell, S. F., 1989. Primary production in a shallow eutrophic lake dominated alternately by phytoplankton and by submerged macrophytes. Aquatic Botany 33: 101–110.CrossRefGoogle Scholar
  40. Monteith, D. T., C. D. Evans & B. Reynolds, 2000. Are temporal variations in the nitrate content of UK upland freshwaters linked to the North Atlantic Oscillation? Hydrological Processes 14: 1745–1749.CrossRefGoogle Scholar
  41. Moss, B., 1988, Ecology of fresh waters, 2nd edn. Man & Medium. Blackwell Scientific, Oxford, 1–400.Google Scholar
  42. Moss, B., J. Stansfield & K. Irvine, 1990. Problems in the restoration of a hypertrophic lake by diversion of a nutrient-rich inflow. Verhandlungen Internationale Vereinigung Theoretisch Angewandte Limnologie 24: 568–572.Google Scholar
  43. Mur, L. R., H. J. Gons & L. Van Liere, 1977. Some experiments on competition between green-algae and bluegreen bacteria in light-limited environments. FEMS Microbiology Letters 1: 335–338.CrossRefGoogle Scholar
  44. Mur, L. R., H. Schreurs & P. Visser, 1993. How to control undesirable cyanobacterial dominance. In Giussani, G. & C. Callieri (eds), Proceedings of the 5th international conference on the conservation and management of lakes, Stresa, Italy, 565–569.Google Scholar
  45. Nelson, T. A., 1997. Interannual variance in a subtidal eelgrass community. Aquatic Botany 56: 245–252.CrossRefGoogle Scholar
  46. Perrow, M. R., B. Moss & J. Stansfield, 1994. Trophic interactions in a shallow lake following a reduction in nutrient loading — A long-term study. Hydrobiologia 276: 43–52.CrossRefGoogle Scholar
  47. Phillips, G. L., D. Eminson & B. Moss, 1978. A mechanism to account for macrophyte decline in progressively eutrophicated fresh waters. Aquatic Botany 4: 103–126.CrossRefGoogle Scholar
  48. Portielje, R. & R. M. M. Roijackers, 1995. Primary succession of aquatic macrophytes in experimental ditches in relation to nutrient input. Aquatic Botany 50: 127–140.CrossRefGoogle Scholar
  49. Rip, W.J., M. Ouboter, B. Beltman & E. H. Van Nes, 2005. Oscillation of a shallow lake ecosystem upon reduction in external phosphorus load. Archiv fur Hydrobiologie 164: 387–409.CrossRefGoogle Scholar
  50. Robach, F., S. Merlin, T. Rolland & M. Tremolieres, 1996. Ecophysiological approach of water quality bioindi-cating using aquatic plant materials: the role of phosphorus. Ecologie-Brunoy 27: 203–214.Google Scholar
  51. Rooney, N. & J. Kalff, 2000. Inter-annual variation in submerged macrophyte community biomass and distribution: the influence of temperature and lake morphometry. Aquatic Botany 68: 321–335.CrossRefGoogle Scholar
  52. Sas, H., 1989, Lake restoration by reduction of nutrient loading: expectations, experiences, extrapolations. Academia Verlag Richarz, St. Augustin, 1–497.Google Scholar
  53. Scasso, F., N. Mazzeo, J. Gorga, C. Kruk, G. Lacerot, J. Clemente, D. Fabian & S. Bonilla, 2001. Limnological changes in a sub-tropical shallow hypertrophic lake during its restoration: two years of a whole-lake experiment. Aquatic Conservation-Marine Freshwater Ecosystem 11: 31–44.CrossRefGoogle Scholar
  54. Scheffer, M., 1991. Should we expect strange attractors behind plankton dynamics: And if so, should we bother? Journal of Plankton Research 13: 1291–1306.CrossRefGoogle Scholar
  55. Scheffer, M., 1998. Ecology of shallow lakes. Chapman and Hall, London, 0–357.Google Scholar
  56. Scheffer, M. & S. R. Carpenter, 2003. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends in Ecology & Evolution 18: 648–656.CrossRefGoogle Scholar
  57. Scheffer, M., M. R. De Redelijkheid & F. Noppert, 1992. Distribution and dynamics of submerged vegetation in a chain of shallow eutrophic lakes. Aquatic Botany 42: 199–216.CrossRefGoogle Scholar
  58. Scheffer, M., S. Rinaldi, Y. A. Kuznetsov & E. H. Van Nes, 1997a. Seasonal dynamics of Daphnia and algae explained as a periodically forced predator-prey system. Oikos 80: 519–532.CrossRefGoogle Scholar
  59. Scheffer, M., D. Straile, E. H. Van Nes & H. Hosper, 2001a. Climatic warming causes regime shifts in lake food webs. Limnology and Oceanography 46: 1780–1783.CrossRefGoogle Scholar
  60. Scheffer, M., S. H. Hosper, M. L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology and Evolution 8: 275–279.CrossRefGoogle Scholar
  61. Scheffer, M., S. Rinaldi, A. Gragnani, L. R. Mur & E. H. Van Nes, 1997b. On the dominance of filamentous cyanobacteria in shallow, turbid lakes. Ecology 78: 272–282.CrossRefGoogle Scholar
  62. Scheffer, M., S. R. Carpenter, J. A. Foley, C. Folke & B. Walker, 2001. Catastrophic shifts in ecosystems. Nature 413: 591–596.PubMedCrossRefGoogle Scholar
  63. Scheffer, M., M. S. Van den Berg, A. W. Breukelaar, C. P. M. Breukers, H. Coops, R. W. Doef & M. L. Meijer, 1994. Vegetated areas with clear water in turbid shallow lakes. Aquatic Botany 49: 193–196.CrossRefGoogle Scholar
  64. Scheffer, M., S. Szabo, A. Gragnani, E. H. van Nes, S. Rinaldi, N. Kautsky, J. Norberg, R. M. M. Roijackers & R. J. M. Franken, 2003. Floating plant dominance as a stable state. Proceedings of the National Academy of Science of the United States of America 100: 4040–4045.CrossRefGoogle Scholar
  65. Scheffer, M., G. J. Van Geest, K. Zimmer, E. Jeppesen, M. Sondergaard, M. G. Butler, M. A. Hanson, S. Declerck & L. De Meester, 2006. Small habitat size and isolation can promote species richness: second-order effects on biodiversity in shallow lakes and ponds. Oikos 112: 227–231.CrossRefGoogle Scholar
  66. Schelske, C. L. & P. Brezonik, 1992. Can Lake Apopka be restored? In Maurizi, S. & F. Poillon (eds), Restoration of Aquatic Ecosystems. National Academic Press, Washington D.C.: 393–398.Google Scholar
  67. Sculthorpe, C. D., 1967, The biology of aquatic vascular plants. Edward Arnold Ltd., London.Google Scholar
  68. Simons, J., M. Ohm, R. Daalder, P. Boers & W. Rip, 1994. Restoration of Botshol (the Netherlands) by reduction of external nutrient load-recovery of a characean community, dominated by Chara connivens. Hydrobiologia 276: 243–253.Google Scholar
  69. Sommer, U., 1986. The periodicity of phytoplankton in Lake Constance (Bodensee) in comparison to other deep lakes of central Europe. Hydrobiologia 138: 1–8.CrossRefGoogle Scholar
  70. Sondergaard, M., E. Jeppesen & J. P. Jensen, 2005. Pond or lake: does it make any difference? Archiv Fur Hydrobiologie 162: 143–165.CrossRefGoogle Scholar
  71. Straile, D., 2002. North Atlantic Oscillation synchronizes food-web interactions in central European lakes. Proceedings of the Royal Society of Edinburgh. Section B (Biological Sciences) 269: 391–395.Google Scholar
  72. Strogatz, S. H., 1994, Nonlinear dynamics and chaos — with applications to physics, biology, chemistry and engineering. Addison-Wesley Publishing Company, Reading, 1–498.Google Scholar
  73. Tonn, W.M. & J. J. Magnuson, 1982. Patterns in the species composition and richness of fish assemblages in northern Wisconsin Lakes. Ecology 63: 1149–1166.CrossRefGoogle Scholar
  74. Van den Berg, M. S., 1999. A comparative study of the use of inorganic carbon resources by Chara aspera and Potamogeton pectinatus. In Van den Berg, M. S. (ed.), Charophyte recolonization in shallow lakes-processes, ecological effects and implications for lake management. Thesis Vrije Universiteit Amsterdam, 57–67.Google Scholar
  75. Van den Berg, M. S., H. Coops, J. Simons & A. De Keizer, 1998a. Competition between Chara aspera and Pota-mogeton pectinatus as a function of temperature and light. Aquatic Botany 60: 241–250.CrossRefGoogle Scholar
  76. Van den Berg, M. S., M. Scheffer, E. H. Van Nes & H. Coops, 1999. Dynamics and stability of Chara sp and Potamogeton pectinatus in a shallow lake changing in eutrophication level. Hydrobiologia 409: 335–342.CrossRefGoogle Scholar
  77. Van den Berg, M. S., H. Coops, M. L. Meijer, M. Scheffer & J. Simons, 1998b. Clear water associated with a dense Cham vegetation in the shallow and turbid Lake Veluwemeer, the Netherlands. In Jeppesen, E., M. Sondergaard, M. Sondergaard & K. Kristoffersen (eds), Structuring Role of Submerged Macrophytes in Lakes. Springer-Verlag, New York, 339–352.Google Scholar
  78. Van Donk, E. & R. D. Gulati, 1995. Transition of a lake to turbid state six years after biomanipulation: mechanisms and pathways. Water Science and Technology 32: 197–206.Google Scholar
  79. Van Donk, E., R. D. Gulati, A. Iedema & J. T. Meulemans, 1993. Macrophyte-related shifts in the nitrogen and phosphorus contents of the different trophic levels in a biomanipulated shallow lake. Hydrobiologia 251: 19–26.CrossRefGoogle Scholar
  80. Van Geest, G. J., H. Coops, M. Scheffer & E. H. van Nes, in press. Transient macrophyte dominance in lakes with fluctuating water levels. Ecosystems.Google Scholar
  81. Van Geest, G. J., F. Roozen, H. Coops, R. M. M. Roijackers, A. D. Buijse, E. Peeters & M. Scheffer, 2003. Vegetation abundance in lowland flood plan lakes determined by surface area, age and connectivity. Freshwater Biology 48: 440–454.CrossRefGoogle Scholar
  82. Van Nes, E. H. & M. Scheffer, 2005. Implications of spatial heterogeneity for regime shifts in ecosystems. Ecology 86: 1797–1807.CrossRefGoogle Scholar
  83. Van Nes, E. H., W. J. Rip & M. Scheffer, in press. A theory for cyclic shifts between alternative states in shallow lakes. Ecosystems.Google Scholar
  84. Van Nes, E. H., M. Scheffer, M. S. Van den Berg & H. Coops, 2002. Dominance of charophytes in eutrophic shallow lakes — when should we expect it to be an alternative stable state? Aquatic Botany 72: 275–296.CrossRefGoogle Scholar
  85. Van Nes, E. H., M. Scheffer, M. S. Van den Berg & H. Coops, 2003. Charisma: a spatial explicit simulation model of submerged macrophytes. Ecological Modelling 159: 103–116.CrossRefGoogle Scholar
  86. Wallsten, M. & P. O. Forsgren, 1989. The effects of increased water level on aquatic macrophytes. Journal of Aquatic Plant Management 27: 32–37.Google Scholar
  87. Walters, C. & J. F. Kitchell, 2001. Cultivation/depensation effects on juvenile survival and recruitment: implications for the theory of fishing. Canadian Journal of Fisheries and Aquatic Sciences 58: 39–50.CrossRefGoogle Scholar
  88. Weyhenmeyer, G. A., 2001. Warmer winters: are planktonic algal populations in Sweden’s largest lakes affected? Ambio 30: 565–571.PubMedCrossRefGoogle Scholar
  89. Williams, P., M. Whitfield, J. Biggs, S. Bray, G. Fox, P. Nicolet & D. Sear, 2004. Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biological Conservation 115: 329–341.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Marten Scheffer
    • 1
  • Egbert H. van Nes
    • 1
  1. 1.Department of Aquatic Ecology and Water Quality ManagementWageningen UniversityWageningenThe Netherlands

Personalised recommendations