Advertisement

Fauna Development of Larger Benthic Foraminifera in the Cenozoic of Southeast Asia

  • Willem Renema
Part of the Topics In Geobiology book series (TGBI, volume 29)

The central part of the Indo-West Pacific (IWP) harbours the highest marine biodiversity, but only few data of its origin are available. In this paper the Cenozoic records of large benthic foraminifera are reviewed. Since many groups need species level revision, the occurrences of genera were reviewed based on records from literature. It is acknowledged that using genus level data is susceptible to differences in interpretation between authors, but the observed patterns are tested against morphological disparity and the number of taxa observed in a single locality. The analyses show a longitudinal shift in diversity from the western Tethys in the Eocene to the central IWP in the Miocene and younger. Oligocene faunas were relatively homogenous between these two regions. During the Eocene radiation occurred in the western Tethys, and abundant and often stratigraphically long-ranging species migrated east and reached Indonesia. This pattern reversed from the Late Eocene onwards, continuing in the Oligocene, and especially the Miocene. However, although the same genera were observed in Oligocene deposits from the western and eastern Tethys lineages showing similar morphological trends evolved independently and at different rates in the two regions. The observed patterns compare very well with the availability of suitable habitat in shallow tropical seas, and are fine-tuned by environmental parameters such as temperature and nutrient availability.

Keywords

Late Miocene Middle Miocene Carbonate Platform Benthic Foraminifera Middle Eocene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, C.G., 1965, The foraminifera and stratigraphy of the Melinau Limestone, Sarawak, and its importance in Tertiary correlation, Quarterly Journal of the Geological Society, London 121: 283–338.Google Scholar
  2. Adams, C.G., 1967, Tertiary foraminifera in the Tethyan, American and Indo-Pacific Provinces, in: Adams, C.G. and Ager, D.V. (eds), Aspects of Tehyan Biogeography, Systematics Association, London, pp. 195–217.Google Scholar
  3. Adams, C.G., 1968, A revision of the foraminiferal genus Austrotrillina Parr, Bulletin of the British Museum (Natural History) Geology 16: 73–97.Google Scholar
  4. Adams, C.G., 1970, A reconsideration of the East Indian letter classification of the Tertiary, Bulletin of the British Museum (Natural History) Geology 19: 1–137.Google Scholar
  5. Adams, C.G., 1973, Some Tertiary foraminifera, in: Hallam, A. (ed.), Atlas of Palaeobiology, Elsevier, Amsterdam, pp. 453–471.Google Scholar
  6. Adams, C.G., 1983, Speciation, phylogenesis, tectonism, climate and eustasy: factors in the evolution of Cenozoic larger foraminiferal bioprovinces, in: Sims, R.W., Price, J.H., and Whalley, P.E.S. (eds), Evolution, Time and Space: The Emergence of the Biosphere, Systematics Association Special Volume 23: 255–289.Google Scholar
  7. Adams, C.G., 1984, Neogene larger foraminifera, evolutionary and geological events in the context of datum planes, in: Ikebe, N. and Tsuchi, R. (eds), Pacific Neogene Datum Planes, University of Tokyo Press, Tokyo, pp. 47–67.Google Scholar
  8. Adams, C.G. and Belford, 1974, Foraminiferal biostratigraphy of the Oligocene–Miocene limestones of Christmas Island (Indian Ocean), Palaeontology 17: 475–506.Google Scholar
  9. Adams, C.G. and Frame, P., 1979, Observations on Cycloclypeus (Cycloclypeus) Carpenter and Cycloclypeus (Katacycloclypeus) Tan (Foraminferida), Bulletin of the British Museum (Natural History) Geology 32: 3–17.Google Scholar
  10. Adams, C.G., Lee, D.E. and Rosen, B.R., 1990, Conflicting isotopic and biotic evidence for tropical sea-surface temperatures during the Tertiary, Palaegeography, Palaeoclimatology, Palaeoecology 77: 289–313.CrossRefGoogle Scholar
  11. Bakx, L.A.J., 1932, De genera Fasciolites en Neoalveolina in het Indo-Pacifische gebied, Verhandelingen van het Koninklijk Nederlandsch Geologisch en Mijnbouwkundig Genootschap voor Nederland en Koloniën 9: 205–267.Google Scholar
  12. Banner, F.T. and Hodgkinson, R.L., 1991, A revision of the foraminiferal subfamily Heterostegininae, Revista Española de Micropaleontología 23: 101–140.Google Scholar
  13. Boersma, A., Premoli Silva, I., and Hallock, P., 1998, Trophic models for the well-mixed and poorly mixed warm oceans across the Paleocene/Eocene Epoch boundary, in: Aubry, M.-P., Lucas, S.G., and Berggren, W.A. (eds), Late Paleocene–Early Eocene Climatic and Biotic Events in the Marine and Terrestrial Records. Columbia University Press, New York, pp. 204–213.Google Scholar
  14. Boudagher-Fadel, M.K., 2002, The stratigraphical relationship between planktonic and larger benthic foraminifera in Middle Miocene to Lower Pliocene carbonate facies of Sulawesi, Indonesia, Micropaleontology 48: 153–176.Google Scholar
  15. Boudagher-Fadel, M.K. and Banner, F., 1997, The revision of some genus-group names in Tethyan Lepidocyclininae, Paleopelagos 7: 3–16.Google Scholar
  16. Boudagher-Fadel, M.K. and Banner, F., 1999, Revision of the stratigraphic significance of the Oligocene–Miocene “Letter-Stages”, Revue de Micropaléontologie 42: 93–97.CrossRefGoogle Scholar
  17. Boudagher-Fadel, M.K., Lord, A.R., and Banner, F.T., 2000, Some Miogypsinidae (Foraminiferida) in the Miocene of Borneo and nearby countries, Revue Paléobiology 19: 137–156.Google Scholar
  18. Cahuzac, B.C., 1984, Les faunes de Miogypsinidae d’Aquitaine Méridionale (France), Benthos’83, Pau France, pp. 117–129.Google Scholar
  19. Caudri, C.M.B., 1934, Tertiary Deposits of Sumba, H.J, Paris, Amsterdam.Google Scholar
  20. Caudri, C.M.B., 1939, Lepidocyclinen von Java, Verhandelingen van het Geologisch en Mijnbouwkundig Genootschap voor Nederland en Koloniën 12: 135–237.Google Scholar
  21. Cole, W.S., 1957, Larger foraminifera from Eniwetok drill holes, U.S. Geological Survey Professional Paper 260-V: 743–784.Google Scholar
  22. Cole, W.S., 1975, Concordant age determination by larger and planktonic foraminifera in the Tertiary of the Indo-Pacific region, Journal of Foraminiferal Research 5: 21–39.CrossRefGoogle Scholar
  23. Crotty, K.J. and Engelhardt, D.W., 1993, Larger foraminifera and palynomorphs of the upper Malawa and lower Tonasa Formations, southwestern Sulawesi Island, Indonesia, Proceedings of the International Symposium on Biostratigraphy of Mainland Southeast Asia: Facies and Paleontology, Indonesian Petroleum Association, Jakarta, pp. 71–82.Google Scholar
  24. Dercourt, J., Ricou, L.E. and Vrielynck, B. (eds), 1993, Atlas Tethys Palaeoenvironmental Maps, Gauthier-Villars, Paris.Google Scholar
  25. Diester-Haass, L., 1995, Middle Eocene to early Oligocene paleooceanography of the Antarctic Ocean (Maud Rise, ODP leg 113, site 689): change from a low to a high productivity ocean, Palaegeography, Palaeoclimatology, Palaeoecology 113: 311–334.CrossRefGoogle Scholar
  26. Doornink, H.W., 1932, Tertiary Nummulitidae from Java, Verhandelingen van het Geologisch en Mijnbouwkundig Genootschap voor Nederland en Koloniën 9: 267–315.Google Scholar
  27. Douvillé, H., 1924, Revision des Lepidocyclines, Mémoires de la Société Géologique de France (N.S.) 2: 115 pp, 7 plates.Google Scholar
  28. Drooger, C.W., 1963, Evolutionary trends in Miogypsinidae, in: Koenigswald, G.H.R. von, Emeis, J.D., Buning, W.L., and Wagner, C.G. (eds), Evolutionary Trends in foraminifera, Elsevier, Amsterdam, pp. 315–349.Google Scholar
  29. Drooger, C.W., 1993, Radial foraminifera; morphometrics and evolution, Proceedings of the Royal Academy of Sciences and Arts of the Netherlands, Science Series 41: 242 pp.Google Scholar
  30. Eames, F.E., Banner, F.T., Blow, W.H. and Clarke, W.J., 1962, Fundamentals of Mid-Tertiary Stratigraphical Correlation, Cambridge University Press, Cambridge.Google Scholar
  31. Eames, F.E., Clarke, W.J., Banner, F.T., Smout, A.W.H. and Blow, W.H., 1968, Some larger foraminifera from the Tertiary of Central America, Palaeontology 11: 283–305.Google Scholar
  32. Glaessner, M.F., 1943, Problems of stratigraphic correlation in the Indo-Pacific Region, Proceedings of the Royal Society of Victoria (n.s.) 55: 41–80.Google Scholar
  33. Glaessner, M.F. 1953, Time-stratigraphy and the Miocene epoch, Bulletin of the Geological Society of America 64: 647–658.CrossRefGoogle Scholar
  34. Glaessner, M.F., 1959, Tertiary stratigraphic correlation in the Indo-Pacific region and Australia, Journal of the Geological Society of India 1: 53–67.Google Scholar
  35. van Gorsel, J.T., 1988, Biostratigraphy in Indonesia: methods, pitfalls and new directions, Proceedings of the Indonesian Petroleum Association, 16th Annual Convention, IPA, Jakarta, pp. 275–300.Google Scholar
  36. Govindan, A., 2003, Tertiary larger foraminifera in Indian basins: correlation with standard planktic zones and “letter stages”, Gondwana Geological Magazine 6: 45–78.Google Scholar
  37. Gradstein, F.M., Ogg, J.G. and Smith, A.G., 2005. A geologic timescale 2004, Cambridge University Press, Cambridge, p. 589.Google Scholar
  38. Haak, R. and Postuma, J.A., 1975, The relation between the tropical planktonic foraminiferal zonation and the Tertiary Far East letter classification, Geologie en Mijnbouw 54: 195–198.Google Scholar
  39. Hall, R., 1996, Reconstructing Cenozoic SE Asia, in: Hall, R. and Blundell, D. (eds), Tectonic Evolution of Southeast Asia, Geological Society Special Publication 106: 153–185.CrossRefGoogle Scholar
  40. Hall, R., 1998, The plate tectonics of Cenozoic SE Asia and the distribution of land and sea, in: Hall, R. and Holloway, J.D., (eds), Biogeography and Geological Evolution of Southeast Asia, Backhuys Publishers, Leiden, pp. 99–131.Google Scholar
  41. Hallock, P., 1987, Fluctuations in the trophic resource continuum: a factor in global diversity cycles? Paleoceanography 2: 457–471.CrossRefGoogle Scholar
  42. Hallock, P., 1988, Interoceanic differences in foraminifera with symbiotic algae: a result of nutrient supplies? Proceedings Sixth International Coral Reef Symposium, Volume 3: 251–255.Google Scholar
  43. Hallock, P., Premoli Silva, I., and Boersma, A., 1991, Similarities between planktonic and larger foraminiferal evolutionary trends through Paleogene paleoceanographic changes, Palaegeography, Palaeoclimatology, Palaeoecology 83: 49–64.CrossRefGoogle Scholar
  44. Hashimoto, W. and Matsumaru, K., 1981, Larger foraminifera from Sabah, Malaysia, part 1, Larger foraminifera from the Kudat Peninsula, the Gomanton Area, and the Semporna Peninsula, Geology and Palaeontology of Southeast Asia 22: 49–54.Google Scholar
  45. Henrici, H., 1934, Foraminiferen aus dem Eocän und Altmiocän von Timor, Palaeontographica 4: 56 pp.Google Scholar
  46. Henson, F.R.S., 1950, Middle Eastern Tertiary Peneroplidae (Foraminfera), with Remarks on the Phylogeny and Taxonomy of the Family, West Yorkshire, Wakefield.Google Scholar
  47. Hofker, J.S.R., 1927, The foraminifera from the Siboga expedition; uitkomsten op zoologisch, botanisch, oceanografisch en geologisch gebied, verzameld in Nederlandsch Oost-Indië 1899–1900 aan boord van H.M. Siboga, E.J., Brill, Leiden.Google Scholar
  48. Hollaus, S.-S. and Hottinger, L., 1997, Temperature dependence of endosymbiotic relationships? Evidence from the depth range of Mediterranean Amphistegina lessonii (foraminiferida) truncated by the thermocline, Ecologae Geologicae Helvetiae 90: 591–597.Google Scholar
  49. Hottinger, L., 1983, Processes determining the distribution of larger Foraminifera in space and time, Utrecht Micropaleontological Bulletins 30: 239–253.Google Scholar
  50. Hottinger, L., 1990, Significance of diversity in shallow benthic foraminifera, Atti del Quattro Simposio di Ecologia e Paleoecologia delle Comunita Bentoniche, Museo Regionale de Scienze, Naturali, Torino, pp. 35–51.Google Scholar
  51. Hottinger, L., 1997, Shallow benthic foraminiferal assemblages as signals for depth of their deposition and their limitations, Bulletin de la Société Géologique de France 168: 491–505.Google Scholar
  52. Hottinger, L., 2001, Archiasinids and related porcelaneous larger foraminifera from the late Miocene of the Dominican Republic, Journal of Paleontology 75: 475–512.CrossRefGoogle Scholar
  53. Hottinger, L., Halicz, E. and Reiss, Z., 1991, The foraminiferal genera Pararotalia, Neorotalia and Calcarina: taxonomic revision, Journal of Paleontology 65: 18–33.Google Scholar
  54. Hottinger, L., Romero, J., and Caus, E., 2001, Architecture and revision of the Pellatispirines, planispiral canaliferous foraminifera from the Late Eocene Tethys, Micropaleontology 47 (Suppl. 2): 35–77.Google Scholar
  55. Jones, R.W., 1999, Marine invertebrate (chiefly foraminiferal) evidence for the palaeogeography of the Oligocene–Miocene of western Eurasia, and consequences for terrestrial vertebrate migration, in: Agustí, J., Rook, L. and Andrews, P. (eds), The Evolution of Neogene Terrestrial Ecosystems in Europe, Cambridge University Press, Cambridge, pp. 274–309.Google Scholar
  56. Langer, M.R. and Hottinger, L., 2000, Biogeography of selected “larger” foraminifera, Micropaleontology 46 (Suppl. 1): 105–127.Google Scholar
  57. Lawver, L.A., and Gahagen, L.M., 2003, The development of palaeo seaways around Antarctica, Palaegeography, Palaeoclimatology, Palaeoecology 198: 11–37.CrossRefGoogle Scholar
  58. Less, G., 1987, Paleontology and stratigraphy of the European Orthophragminae, Geologica Hungarica Series Palaeontologica 51: 373 pp.Google Scholar
  59. Le Roy, L.W., 1948, The foraminifer Orbulina universa d’Orbigny, a suggested middle Tertiary time indicator, Journal of Paleontology 22: 500–508.Google Scholar
  60. Le Roy, L.W., 1952, Orbulina universa d’Orbigny in Central Sumatra, Journal of Paleontology 26: 576–584.Google Scholar
  61. Leupold, W. and van der Vlerk, I.M., 1931, The Tertiary, Leidsche Geologische Mededelingen 5: 54–78.Google Scholar
  62. Loeblich, A.R., Jr. and Tappan, H., 1987, Foraminiferal genera and their classification, Van Nostrand Reinhold, New York.Google Scholar
  63. Loeblich, A.R., Jr. and Tappan, H., 1994, Foraminifera from the Sahul shelf and Timor Sea, Cushman Foundation for Foraminiferal Research Special Publication 13: 1–661.Google Scholar
  64. Lunt, P., 2003, Biogeography of some Eocene larger foraminifera, and their application in distinguishing geological plates, Palaeontologica Electronica 6 (1): 1–22.Google Scholar
  65. Lunt, P. and Allan, T., 2004, Larger foraminifera in Indonesian biostratigraphy, calibrated to isotopic dating. GRDC Museum Workshop on Micropaleontology, June 2004.Google Scholar
  66. MacGillavry, H.J., 1962, Lineages in the genus Cycloclypeus Carpenter (Foraminifera), Proceedings Konijnklijke Nederlandse Academie voor Wetenschappen B-65: 430–458.Google Scholar
  67. van Marle, L.J., 1991, Eastern Indonesian, Late Cenozoic smaller benthic foraminifera, Verhandelingen der Koninklijke Nederlandse Akademie van Wetenschappen, afd Natuurkunde, Eerste Reeks 34: 1–328.Google Scholar
  68. Matsumaru, K., 1996, Tertiary larger foraminifera (foraminiferida) from the Ogasawara Islands, Japan, Paleontological Society of Japan, Special Papers 36: 239 pp.Google Scholar
  69. McGowran, B. and Li, Q., 2000, Evolutionary palaeoecology of Cainozoic Foraminfera: Tethys, Indo-Pacific, Southern Australia, Historical Biology 15: 3–27.CrossRefGoogle Scholar
  70. Morley, R.J., 2000, Origin and Evolution of Tropical Rain Forests, Wiley, London.Google Scholar
  71. Mohler, W.A., 1949, Flosculinella reicheli sp. nov. aus dem Tertiär von Borneo, Eclogae Geologiae Helvetiae 42: 521–527.Google Scholar
  72. Moss, S.J. and Wilson, M.E.J., 1998, Biogeographic implactions of the Tertiary palaeogeographic evolution of Sulawesi and Borneo, in: Hall, R. and Holloway, J.D. (eds), Biogeography and Geological Evolution of Southeast Asia, Backhuys, Leiden, pp. 133–163.Google Scholar
  73. O’Herne, L. 1972, Secondary chamberlets in Cycloclypeus, Scripta Geologica 7: 1–38.Google Scholar
  74. Osimo, G., 1908, Di alcuni foraminiferi dell ‘Eocene superiore di Celebes, Rivista Italiana di Paleontologia 14: 28–54.Google Scholar
  75. Parrish, J.T., and Curtis, R.L., 1982, Atmospheric circulation, upwelling, and organic rich rocks in the Mesozoic and Cenozoic eras, Palaeogeography, Palaeoclimatology, Palaeoecology 40: 31–66.CrossRefGoogle Scholar
  76. Paulay, G., 1997, Diversity and distribution of reef organisms, in: Birkeland, C. (ed.), Live and Death of Coral Reefs, Chapman & Hall, New York, pp. 298–352.Google Scholar
  77. Pearson, P.N., Ditchfield, P.W., Singano, J., Harcourt-Brown, K.G., Nicholas, C.J., Olsson, R., Shackleton, N.J., and Hall, M., 2001, Warm tropical sea surface temperatures in the Late Creatateceous and Eocene epochs, Nature 413: 481–487.CrossRefPubMedGoogle Scholar
  78. Racey, A., 1995, Lithostratigraphy and larger foraminiferal (nummulitid) biostratigraphy of the Tertiary of northern Oman, Micropaleontology 41: 1–123.CrossRefGoogle Scholar
  79. Raju, D.S.N., 1974, Study of Indian Miogypsinidae, Utrecht Micropaleontological Bulletins 9: 1–148.Google Scholar
  80. Renema, W., 2002, Larger foraminifera as marine environmental indicators, Scripta Geologica 124: 263 pp.Google Scholar
  81. Renema, W., 2006a, Large benthic foraminifera from the deep photic zone of a mixed siliciclastic-carbonate shelf off East Kalimantan, Indonesia, Marine Micropaleontology 58: 73–82.CrossRefGoogle Scholar
  82. Renema, W. 2006b, Habitat variables determining the occurrence of large benthic foraminifera in the Berau area (East Kalimantan, Indonesia), Coral Reefs 25:351–359.CrossRefGoogle Scholar
  83. Renema, W., 2006c, Comment on “Significant Miocene larger foraminifera from South Central Java” by M.K. Boudagher and S.W. Lokier, Revue de Paléobiologie 25: 205–206.Google Scholar
  84. Renema, W., in press, the internal architecture of the miocene Pseudotaberina and its relation to caribbean archiasinids, Palaeontology..Google Scholar
  85. Renema, W., Racey, A., and Lunt, P., 2003, Paleogene nummulitid foraminifera from the Indonesian Archipelago: a review, Cainozoic Research 2 (1–2): 23–78.Google Scholar
  86. Renema, W. and Troelstra, S.R., 2001, Larger foraminifera distribution on a mesotrophic carbonate shelf in SW Sulawesi (Indonesia), Palaeogeography, Palaeoclimatology, Palaeoecology 175: 125–146.CrossRefGoogle Scholar
  87. Rögl, F., 1998, Paleogeographic considerations for Mediterranean and Paratethys seaways (Oligocene to Miocene), Annales des Naturhistorisches Museums Wien 99A: 279–310.Google Scholar
  88. Rosen, B.R., 1988, From fossils to earth history; applied historical biogeography, in: Myers, A.A. and Giller, P. S. (eds), Analytical Biogeography; An Integrated Approach to the Study of Animal and Plant Distributions, Chapman & Hall, London, pp. 437–481.Google Scholar
  89. Rosen, B.R., 1999, Paleoclimatic implications of the energy hypothesis from Neogene corals of the Mediterranean region, in: Agustí, J., Rook, L., and Andrews, P. (eds), The Evolution of Neogene Terrestrial Ecosystems in Europe, Homonoid Evolution and Climatic Change in Europe, Vol. 1, Cambridge University Press, Cambridge, pp. 309–327.Google Scholar
  90. Salamy, K.A. and Zachos, J., 1999, Latest Eocene–Early Oligocene climate change and Southern Ocean fertility: inferences from sediment accumulation and stable isotope data, Palaeogeography, Palaeoclimatology, Palaeoecology 145: 61–77.CrossRefGoogle Scholar
  91. Schaub, H., 1981, Nummulites et Assilines de la Tethys paleogène, Taxonomie, phylogenèse et biostratigraphie, Schweizerische Palaeontologische Abhandlungen 104: 1–238.Google Scholar
  92. Scheffen, W., 1932, Ostindische Lepidocyclinen. Part 1, Wetenschappelijke Mededeelingen, Dienst Mijnbouw Bandoeng 19: 5–76.Google Scholar
  93. Sengupta, S., 2000, Problems of classifying Early Oligocene Reticulate Nummulites (Foraminiferida) from Southwestern Kutch, Gujarat, Journal Geological Society of India 56: 673–677.Google Scholar
  94. Sengupta, S., 2002, A note on test shape of Nummulities cf. fichteli Michelloti form A (Foraminiferida) from the early Oligocene deposit of southwestern Kutch, India, Journal of the Geological Society of India 60: 223–224.Google Scholar
  95. Serra-Kiel, J., Hottinger, L., Caus, E., Drobne, K., Fernandez, C., Jauhri, A.K., Less, G., Pavlovec, R., Pignatti, J., Samso, J.M., Schaub, H., Sirel, E., Strougo, A., Tambareau,  Y., Tosquella, Y., and Zakrevskaya, E., 1998, Larger foraminiferal biostratigraphy of the Tethyan Paleocene and Eocene, Bulletin de la Société Géologique de France 169: 281–299.Google Scholar
  96. Sirotti, A., 1982, A tentative phylogenetic interpretation of Lepidocyclinidae, in: Gallitelli, E.M. (ed.), Proceedings of the First International Meeting on “Paleontology, Essential of Historical Geology” STEM, Mucchi, Modena, pp. 467–480.Google Scholar
  97. Tan, S.H., 1930a, Over Spiroclypeus met opmerkingen over zijn stratigraphische verspreiding, De Mijningenieur 11: 180–184.Google Scholar
  98. Tan, S.H. 1930b, Over Cycloclypeus: voorlopige resultaten eener biostratigraphischer studie, De Mijningenieur 11: 233–242.Google Scholar
  99. Tan, S.H., 1932, In the genus Cycloclypeus Carpenter, Wetenschappelijke Mededeelingen Dienst van den Mijnbouw in Nederlands-Indië 19: 3–194.Google Scholar
  100. Tan, S.H. 1936a, Over verschillende palaeontologische criteria voor de geleiding van het Tertiair, De ingenieur in Nederlands Oost-Indië 3 (4): 35–45.Google Scholar
  101. Tan, S.H. 1936b, Zur Kenntnis der Lepidocycliniden, Natuurkundig Tijdschrift voor Nederlandsch-Indië 96: 235–280.Google Scholar
  102. Tan, S.H., 1937, On the genus Spiroclypeus H.Douvillé with a description of the Eocene Spiroclypeus vermicularis nov. sp. from Koetai in East Borneo, De Mijningenieur in Nederlands Oost-Indië 4 (4): 177–193.Google Scholar
  103. Tan, S.H., 1939, Remarks on the “letter classification” of the East Indian Tertiary, De Mijningenieur in Nederlands Oost-Indië 6 (7): 39–97.Google Scholar
  104. van Vessem, E.J., 1978, Study of Lepidocyclinidae from South East Asia, particularly from Java and Borneo, Utrecht Micropaleontological Bulletins 19: 1–163.Google Scholar
  105. van der Vlerk, I.M., 1922, Studieën over Nummulinidae en Alveolinidae’s Gravenhage- Moulton, 140 pp.Google Scholar
  106. van der Vlerk, I.M., 1925, Het foraminiferengenus Spiroclypeus en zijn betekenis voor de stratigraphie van het Tertiair van den Indo-Australischen Archipel, Verhandelingen van het Geologisch en Mijnbouwkundig Genootschap voor Nederland en Koloniën 8: 561–568.Google Scholar
  107. van der Vlerk, I.M., 1928, Het genus Lepidocycina in het Indopacifische gebied. Wetenschappelijke Mededeelingen, Dienst Mijnbouw Bandoeng 8: 7–86.Google Scholar
  108. van der Vlerk, I.M., 1929, Groote foraminiferen van NO Borneo, Wetenschappelijke Mededeelingen, Dienst Mijnbouw Bandoeng 9: 1–44.Google Scholar
  109. van der Vlerk, I.M., 1951, Tabulation of determinations of larger foraminifera, in: Reinhard, M. and Wenk, E. (eds), Geology of the Colony of North Borneo, Bulletin of the Geological Survey Department of the British territories in Borneo 1: 137–145.Google Scholar
  110. van der Vlerk, I.M., 1955, Correlation of the Tertiary of the Far East and Europe, Micropaleontology 1: 72–75.CrossRefGoogle Scholar
  111. van der Vlerk, I.M., 1968, Two methods of worldwide correlation, Micropaleontology 14: 334–338.CrossRefGoogle Scholar
  112. van der Vlerk, I.M. and Postuma, J.A., 1967, Oligo-Miocene Lepidocyclinas and planktonic foraminifera from East Java and Madura, Indonesia, Proceedings Konijnklijke Nederlandse Academie voor Wetenschappen B-70: 391–398.Google Scholar
  113. van der Vlerk, I.M. and Umbgrove, J.H.L., 1927, Tertiaire gidsforaminiferen uit Nederlandsch Oost-Indie, Wetenschappelijke Mededeelingen, Dienst Mijnbouw Bandoeng 6: 1–31.Google Scholar
  114. Verbeek, R.D.M. and Fennema, R., 1896, Geologische Beschrijving van Java en Madoera, J.G. Stemler Cz, Amsterdam.Google Scholar
  115. Veron, J.E.N., 1995, Corals in Space and Time, The Biogeography and Evolution of the Scleractinia, University of New South Wales Press, Sydney.Google Scholar
  116. Wang, L., 1994, Sea surface temperature history of the low latitude western Pacific during the last 5.3 million years, Palaeogeography, Palaeoclimatology, Palaeoecology 108: 379–436.CrossRefGoogle Scholar
  117. Whittaker, J.E. and Hodgkinson, R.L., 1979, Foraminifera of the Togopi formation, eastern Sabah, Malaysia, Bulletin of the British Museum (Natural History) Geology 31: 1–120.Google Scholar
  118. Wilson, M.E.J., 1995, The Tonasa Limestone Formation, Sulawesi, Indonesia: Development of a Tertiary Carbonate Platform, Ph.D. thesis, Royal Holloway University, London.Google Scholar
  119. Wilson, M.E.J., 2002, Cenozoic carbonates in Southeast Asia: implications for equatorial carbonate development, Sedimentary Geology 147: 295–428.CrossRefGoogle Scholar
  120. Wilson, M.E.J. and Rosen, B.R., 1998, Implications of paucity of corals in the Paleogene of SE Asia: plate tectonics or Centre of Origin, in: Hall, R. and Holloway, J.D. (eds), Biogeography and Geological Evolution of Southeast Asia, Backhuys, Leiden, pp. 165–195.Google Scholar
  121. Wonders, A.A.H. and Adams, C.G., 1991, The biostratigraphical and evolutionary significance of Alveolinella praequoyii sp. nov. from Papua New Guinea, Bulletin of the British Museum (Natural History) Geology 47: 169–175.Google Scholar
  122. Zachos, J., Stott, L.D., and Lohmann, K.D., 1994, Evolution of early Cenozoic marine temperature, Paleoceanography 9: 353–387.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Willem Renema
    • 1
  1. 1.Nationaal Natuurhistorisch Museum NaturalisThe Netherlands

Personalised recommendations