Advertisement

NASA Earth Observation Satellite Missions for Global Change Research

  • Emilio Chuvieco
  • Chris Justice

Abstract

This chapter reviews the main missions of NASA and, secondarily, other US agencies, providing global observation of the Earth’s environment, with special emphasis on Landsat and the Earth Observing System (EOS) missions. An analysis of the main policies towards long-term data archival and accessibility, and an assessment of the immediate future is also addressed.

Keywords

Shuttle Radar Topography Mission Advanced Very High Resolution Radiometer Advanced Very High Resolution Radiometer Global Change Research Defense Meteorological Satellite Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arvidson, T., Goward, S., Gasch, J., & Williams, D. (2006) Landsat-7 long-term acquisition plan: Development and validation. Photogrammetric Engineering and Remote Sensing, 72, 1137–1146.Google Scholar
  2. Chelton, D. B., Schlax, M. G., Freilich, M. H., & Milliff, R. F. (2004) Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303, 978–983.CrossRefGoogle Scholar
  3. Cracknell, A. P. (1997) The Advanced Very High Resolution Radiometer (AVHRR). London: Taylor & Francis.Google Scholar
  4. Csiszar, I. A., Morisette, J. T., & Giglio, L. (2006) Validation of active fire detection from moderate-resolution satellite sensors: The MODIS example in Northern Eurasia. IEEE Transactions on Geoscience and Remote Sensing, 44, 1757–1764.CrossRefGoogle Scholar
  5. Diamond, H. (Ed.). (2001) The United States detailed national report on systematic observations for climate. Silver Spring: U.S. Department of Commerce, NOAA.Google Scholar
  6. Elachi, C. (1982) Radar images of the Earth from space. Scientific American, 247, 46–53.CrossRefGoogle Scholar
  7. Elvidge, C. D. (2001) DMSP-OLS estimation of tropical forest area impacted by surface fires in Roraima, Brazil: 1995 versus 1998. International Journal of Remote Sensing, 22, 2661–2673.CrossRefGoogle Scholar
  8. Francis, P., & Jones, P. (1984) Images of Earth. London: George Phillip and Son Ltd.Google Scholar
  9. Goodenough, D. G., Dyk, A., Niemann, K. O., Pearlman, J. S., Chen, H., & Han, T. et al. (2003) Processing Hyperion and ALI for forest classification. IEEE Transactions on Geoscience and Remote Sensing, 41, 1321–1331.CrossRefGoogle Scholar
  10. Goward, S. N., Markham, B., Dye, D. G., Dulaney, W., & Yang, I. (1991) Normalized difference vegetation index measurements from the Advanced Very High Resolution Radiometer. Remote Sensing of Environment, 35, 257–277.CrossRefGoogle Scholar
  11. Goward, S. N., & Skole, D. (2005) Landsat 2005:Time to Act. Space News, October 31.Google Scholar
  12. Harding, D. J., & Carabajal, C. C. (2005) ICESat waveformmeasurements of within-footprint topographic relief and vegetation vertical structure. Geophysical Research Letters, 32, L21S10, doi:10.1029/2005 GL023471, 4pgs.CrossRefGoogle Scholar
  13. Hart, W. G. (1975) The use of Skylab data to study the early detection of insect infestations and density and distribution of host plants. In, NASA Earth Resources Survey Symposium (pp. 203–220).Google Scholar
  14. Kidwell, K. B. (1990) Global Vegetation Index. User’s guide. Washington, D.C: NOAA/NESDIS/NCDCGoogle Scholar
  15. King, M. D., Closs, J., Spangler, S., Greenstone, R., Wharton, S., & Myers, M. (Eds.). (2003) EOS Data Products Handbook.Volume 1. Washington, D. C.: National Aeronautics and Space Administration.Google Scholar
  16. Konecny, G. (1986) First results of the European Spacelab Photogrammetric Camera Mission. In K. H. Szekielda (Ed.), Satellite remote sensing for resources development (pp. 115–121). London: Graham and Trotman Ltd.Google Scholar
  17. Lulla, K. (1993) Space shuttle earth observations database for global urban applications. In K. N. Au (Ed.), Cities of the world as seen from space (pp. 15–19). Hong-Kong: Geocarto International.Google Scholar
  18. Lulla, K. P., & Dessinov, L. V. (Eds.). (2000) Dynamic Earth Environments. Remote sensing observations from shuttle – Mir Missions. New York: John Wiley and Sons.Google Scholar
  19. Morisette, J. T., Privette, J. L., & Justice, C. O. (2002) A framework for the validation of MODIS Land products. Remote Sensing of Environment, 83, 77–96.CrossRefGoogle Scholar
  20. Murphy, R. E. (2006) The NPOESS Preparatory Project. In J. J. Qu, W. Gao, M. Kafatos, R. E. Murphy & V. V. Salomonson (Eds.), Earth Science Satellite Remote Sensing.Vol. 1: Science and Instruments (pp. 183–198). Beijing: Tsinghua University Press and Springer Verlag.Google Scholar
  21. Murphy, R. E., Ardanuy, P., DeLuccia, F. J., Clement, J. E., & Schueler, C. F. (2006) The visible infrared imaging radiometer suite. In J. J. Qu, W. Gao, M. Kafatos, R. E. Murphy & V. V. Salomonson (Eds.), Earth Science Satellite Remote Sensing.Vol. 1: Science and Instruments (pp. 33–49). Beijing: Tsinghua University Press and Springer Verlag.Google Scholar
  22. Murphy, R. E., Barnes, W. L., Lyapustin, A. I., Privette, J., Welsch, C., & De Luccia, F. et al. (2001) Using VIIRS to provide data continuity with MODIS. In Proc. IEEE International Geoscience and Remote Sensing Symposium(pp. vol 3: 1212–1214).Google Scholar
  23. NASA (1977) Skylab Explores the Earth. Washington: NASA, SP 380.Google Scholar
  24. National Research Council (2007) Earth science and applications from space: National imperatives for the next decade and beyond. Washington, DC: National Academy of Sciences Press.Google Scholar
  25. O. T. A. (1984) Remote sensing and the private sector: Issues for discussion. A technical memorandum. Washington, DC: U.S. Congress, Office of Technology Assessment, OTA-TM-ISC-20.Google Scholar
  26. Parkinson, C. L., Ward, A., & King, M. D. (Eds.) (2006) Earth science reference handbook. A guide to NASA’s Earth science program and earth observing satellite missions. Washington, DC: National Aeronautics and Space Administration.Google Scholar
  27. Roberts, D. A., Gardner, M., Church, R., Ustin, S., Scheer, G., & Green, R. O. (2003) Evaluation of the potential of hyperion for fire danger assessment by comparison to the airborne visible/infrared imaging spectrometer. IEEE Transactions on Geoscience and Remote Sensing, 4, 1297–1310.CrossRefGoogle Scholar
  28. Short, N. M., & Stuart, L. M. (1982) The Heat Capacity Mapping Mission (HCMM) Anthology. Washington DC: NASA Scientific and Technical Information Branch.Google Scholar
  29. Williamson, R. A. (2001) Remote sensing policy and the development of commercial remote sensing. In J. C. Baker, K. M. O’Connell & R. A. Williamson (Eds.), Commercial observation satellites. At the leading edge of Global transparency (pp. 37–52). Santa Monica: RAND – ASPRS.Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2008

Authors and Affiliations

  • Emilio Chuvieco
  • Chris Justice

There are no affiliations available

Personalised recommendations