Genetic Fidelity Analyses of In Vitro Propagated Cork Oak (Quercus suber L.)

  • C. Santos
  • J. Loureiro
  • T. Lopes
  • G. Pinto

In vitro propagation methods, such as somatic embryogenesis (SE), are very interesting approaches when compared with traditional propagation, which presents serious drawbacks. SE is frequently regarded as the best system for propagation of superior genotypes (Kim, 2000) mostly because both root and shoot meristems are present simultaneously in somatic embryos. Cork oak (Quercus suber L.), as other woody species, is recalcitrant concerning somatic embryogenesis (SE). Most of the successful studies regarding SE within this species used juvenile materials (Gallego et al., 1997; Hernandez et al., 1999; Toribio et al., 1999; Hornero et al., 2001a; Pinto et al., 2001). Only recently, SE was successfully and reproducibly induced from adult cork oak trees (Pinto et al., 2002; Lopes et al., 2006), opening perspectives for breeding programmes of selected genotypes of this species.


Somatic Embryo Somatic Embryogenesis Somaclonal Variation Propidium Iodide Fluorescence Internal Reference Standard 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Breiman, A., Rotemabarbanell, D., Karp, A. & Shaskin, H. (1987) Heritable somaclonal variation in wild barley (Hordeum spontaneum). Theoretical and Applied Genetics, 74, 104-112.CrossRefGoogle Scholar
  2. Bueno, M., Gomez, A., Vicente, O. & Manzanera, J. (1996) Stability in ploidy level during somatic embryogenesis in Quercus canariensis. In M. Ajuha, W. Bourjan & D. Neale (Eds), Somatic Cell Genetics and Molecular Genetics of Trees. Dordrecht: Kluwer Academic Publishers. pp. 23-28.Google Scholar
  3. Clark, J.M. (1988) Novel non-templated nucleotide addition-reactions catalyzed by procaryotic and eukaryotic DNA-polymerases. Nucleic Acids Research 16, 9677-9686.CrossRefPubMedGoogle Scholar
  4. Conde, P., Loureiro, J. & Santos, C. (2004) Somatic embryogenesis and plant regeneration from leaves of Ulmus minor Mill. Plant Cell Reports 22, 632-639.CrossRefPubMedGoogle Scholar
  5. Doležel, J. & Bartoš, J. (2005) Plant DNA flow cytometry and estimation of nuclear genome size. Annals of Botany 95, 99-110.CrossRefPubMedGoogle Scholar
  6. Doležel, J., Sgorbati, S. & Lucretti, S. (1992) Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiologia Plantarum 85, 625-631.CrossRefGoogle Scholar
  7. Doležel, J., Doleželová, M. & Novák, F. (1994) Flow cytometric estimation of nuclear DNA amount in diploid bananas (Musa acuminata and M. balbisiana). Biologia Plantarum, 36, 351-357.CrossRefGoogle Scholar
  8. Doležel, J., Greilhuber, J., Lucretti, S., Meister, A., Lysák, M., Nardi, L., et al. (1998) Plant genome size estimation by flow cytometry: inter-laboratory comparison. Annals of Botany, 82 (Supplement A), 17-26.CrossRefGoogle Scholar
  9. Doležel, J., Bartoš, J., Voglmayr, H. & Greilhuber, J. (2003) Nuclear DNA content and genome size of trout and human. Cytometry Part A, 51A, 127-128.CrossRefGoogle Scholar
  10. Endemann, M., Hristoforoglu, K., Stauber, T. & Wilhelm, E. (2002) Assessment of age-related polyploidy in Quercus robur L. somatic embryos and regenerated plants using DNA flow cytometry. Biologia Plantarum 44, 339-345.CrossRefGoogle Scholar
  11. Galbraith, D.W., Harkins, K.R., Maddox, J.M., Ayres, N.M., Sharma, D.P. & Firoozabady, E. (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science, 220, 1049-1051.CrossRefPubMedGoogle Scholar
  12. Galbraith, D.W., Lambert, G., Macas, J. & Doležel, J. (2002) Analysis of nuclear DNA content and ploidy in higher plants. In Robinson, J.P., Darzynkiewicz, Z., Dean, P.N., Dressler, L.G., Rabinovitch, P.S., Stewart, C.V., Tanke, H.J. & Wheeless, L.L. (Eds), Current Protocols in Cytometry. New York: John Wiley & Sons, Inc. pp. 7.6.1-7.6.22.Google Scholar
  13. Gallego, F.J., Martinez, I., Celestino, C. & Toribio, M. (1997) Testing somaclonal variation using RAPDs in Quercus suber L. somatic embryos. International Journal of Plant Sciences, 158, 563-567.CrossRefGoogle Scholar
  14. Glaubitz, J. & Moran, G. (2000) Genetic tools: the use of biochemical and molecular markers. In Young, A., Boshier, D. & Boyle, T. (Eds), Forest Conservation Genetics: Principles and Practice. Collingwood, Victoria: CSIRO Publishing. pp. 39-59.Google Scholar
  15. Gomez, A., Pintos, B., Aguiriano, E., Manzanera, J.A. & Bueno, M.A. (2001) SSR markers for Quercus suber tree identification and embryo analysis. Journal of Heredity 92, 292-295.CrossRefPubMedGoogle Scholar
  16. Greilhuber, J., Temsch, E. & Loureiro, J. (2007). Nuclear DNA content measurement. In Doležel, J., Greilhuber, J. & Suda, J. (Eds), Flow Cytometry with Plant Cells. Weinheim: Wiley-VCH. pp. 67-101.CrossRefGoogle Scholar
  17. Hernandez, I., Celestino, C., Martinez, J., Hormero, J., Gallego, J. & Toribio, M. (1999) Induction of somatic embryogenesis in leaves from mature Quercus suber trees. Paper presented at the Physiology and control of plant propagation in vitro. Report of activities, Eur Cost Action 822, Krakow, Poland.Google Scholar
  18. Hornero, J., Martinez, I., Celestino, C., Gallego, F. J., Torres, V. & Toribio, M. (2001a) Early checking of genetic stability of cork oak somatic embryos by AFLP analysis. International Journal of Plant Sciences 162, 827-833.CrossRefGoogle Scholar
  19. Hornero, J., Gallego, F.J., Martinez, I. & Toribio, M. (2001b) Testing the conservation of Quercus spp. microsatellites in the cork oak, Q. suber L. Silvae Genetica 50(3-4), 162-167.Google Scholar
  20. Isagi, Y. & Suhandono, S. (1997) PCR primers amplifying microsatellite loci of Quercus myrsinifolia Blume and their conservation between oak species. Molecular Ecology 6, 897-899.CrossRefPubMedGoogle Scholar
  21. Ishii, K., Thakur, R. & Jain, S. (1999) Somatic embryogenesis and evaluation of variability in somatic seedlings of Quercus serrata by RAPD markers. In Jain, S., Gupta, P. & Newton, R. (Eds), Somatic Embryogenesis in Woody Plants. Vol. 4. Dordrecht: Kluwer Academic Publishers. pp. 403-414.Google Scholar
  22. Jones, C.J., Edwards, K.J., Castaglione, S., Winfield, M.O., Sala, F., vandeWiel, C., et al. (1997) Repro- ducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories. Molecular Breeding 3, 381-390.CrossRefGoogle Scholar
  23. Kampfer, S., Lexer, C., Glossl, J. & Steinkellner, H. (1998) Characterization of (GA)(n) microsatellite loci from Quercus robur. Hereditas 129, 183-186.CrossRefGoogle Scholar
  24. Karp, A., Edwards, K.J., Bruford, M., Funk, S., Vosman, B., Morgante, M., et al. (1997) Molecular techno- logies for biodiversity evaluation: opportunities and challenges. Nature Biotechnology 15, 625-628.CrossRefPubMedGoogle Scholar
  25. Kim, Y. (2000) Somatic embryogenesis in Quercus acutissima. In Jain, S., Gupta, P. & Newton, R. (Eds), Somatic Embryogenesis in Woody Plants.Vol. 6. Dordrecht: Kluwer Academic Publishers. pp. 671-686.Google Scholar
  26. Larkin, P.J. & Scowcroft, W.R. (1981) Somaclonal variation - a novel source of variability from cell- cultures for plant improvement. Theoretical and Applied Genetics 60, 197-214.CrossRefGoogle Scholar
  27. Larkin, P.J., Banks, P.M., Bhati, R., Brettell, R.I.S., Davies, P.A., Ryan, S.A., et al. (1989) From somatic variation to variant plants - mechanisms and applications. Genome 31, 705-711.Google Scholar
  28. Lopes, T., Pinto, G., Loureiro, J., Costa, A. & Santos, C. (2006) Determination of genetic stability in long-term somatic embryogenic cultures and derived plantlets of cork oak using microsatellite markers. Tree Physiology 26, 1145-1152.PubMedGoogle Scholar
  29. Loureiro, J., Pinto, G., Lopes, T., Doležel, J. & Santos, C. (2005) Assessment of ploidy stability of the somatic embryogenesis process in Quercus suber L. using flow cytometry. Planta 221, 815-822.CrossRefPubMedGoogle Scholar
  30. Loureiro, J., Rodriguez, E., Doležel, J. & Santos, C. (2006a) Flow cytometric and microscopic analysis of the effect of tannic acid on plant nuclei and estimation of DNA content. Annals of Botany 98, 515-527.CrossRefPubMedGoogle Scholar
  31. Loureiro, J., Rodriguez, E., Doležel, J. & Santos, C. (2006b) Comparison of four nuclear isolation buffers for plant DNA flow cytometry. Annals of Botany 98, 679-689.CrossRefPubMedGoogle Scholar
  32. Loureiro, J., Suda, J., Doležel, J. & Santos, C. (2007a). FLOWer: a plant DNA flow cytometry database. In Doležel, J., Greilhuber, J. & Suda, J. (Eds), Flow Cytometry with Plant Cells. Weinheim: Wiley- VCH. pp. 423-438.CrossRefGoogle Scholar
  33. Loureiro, J., Rodriguez, E., Doležel, J. & Santos, C. (2007b) Two new nuclear isolation buffers for plant DNA flow cytometry: A test with 37 species. Annals of Botany (in Press).Google Scholar
  34. Lysák, M. & Doležel, J. (1998) Estimation of nuclear DNA content in Sesleria (Poaceae). Caryologia 52, 123-132.Google Scholar
  35. Noirot, M., Barre, P., Louarn, J., Duperray, C. & Hamon, S. (2000) Nucleus-cytosol interactions - a source of stoichiometric error in flow cytometric estimation of nuclear DNA content in plants. Annals of Botany 86, 309-316.CrossRefGoogle Scholar
  36. Pinto, G., Amaral, R., Santos, C. & Carnide, O. (2001) Somatic embryogenesis in calluses of leaves from three year old Quercus suber L. plants. Paper presented at the Quality enhancement of plant production through tissue culture. Book of Abstracts. Second Meeting of the Cost 843 WG3, Carcavelos, Portugal.Google Scholar
  37. Pinto, G., Valentim, H., Costa, A., Castro, S. & Santos, C. (2002) Somatic embryogenesis in leaf callus from a mature Quercus suber L. tree. In Vitro Cellular & Developmental Biology-Plant 38, 569-572.CrossRefGoogle Scholar
  38. Pinto, G., Loureiro, J., Lopes, T. & Santos, C. (2004). Analysis of the genetic stability of Eucalyptus globulus Labill. somatic embryos by flow cytometry. Theoretical and Applied Genetics 109, 580-587.CrossRefPubMedGoogle Scholar
  39. Sanchez, M.C., Martinez, M.T., Valladares, S., Ferro, E. & Vieitez, A.M. (2003) Maturation and germination of oak somatic embryos originated from leaf and stem explants: RAPD markers for genetic analysis of regenerants. Journal of Plant Physiology, 160, 699-707.CrossRefPubMedGoogle Scholar
  40. Steinkellner, H., Fluch, S., Turetschek, E., Lexer, C., Streiff, R., Kremer, A., et al. (1997a) Identification and characterization of (GA/CT)(n)- microsatellite loci from Quercus petraea. Plant Molecular Biology 33, 1093-1096.CrossRefPubMedGoogle Scholar
  41. Steinkellner, H., Lexer, C., Turetschek, E. & Glossl, J. (1997b) Conservation of (GA)(n) microsatellite loci between Quercus species. Molecular Ecology 6, 1189-1194.CrossRefGoogle Scholar
  42. Thakur, R., Gota, S., Ishii, K. & Jain, S. (1999) Monitoring genetic stability in Quercus serrata Thunb. somatic embryogenesis using RAPD markers. Journal of Forestry Research 4, 157-160.CrossRefGoogle Scholar
  43. Tiersch, T.R., Chandler, R.W., Wachtel, S.S. & Elias, S. (1989) Reference standards for flow cytometry and application in comparative studies of nuclear DNA content. Cytometry 10, 706-710.CrossRefPubMedGoogle Scholar
  44. Toribio, M., Celestino, C., Gallego, J. & Martinez, J. (1999) Induction of somatic embryogenesis in tissues from mature oak trees. Paper presented at the Development of integrated systems for large scale propagation of elite plants using in vitro techniques. Report of activities, Eur Cost Action 822, Luxembourg.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • C. Santos
    • 1
  • J. Loureiro
    • 1
  • T. Lopes
    • 1
  • G. Pinto
    • 1
  1. 1.Department of Biology & CESAMUniversity of AveiroPortugal

Personalised recommendations