Advertisement

A Lipid-based Code in Nuclear Signalling

  • Nadir M. Maraldi
Part of the Biosemiotics book series (BSEM, volume 1)

Cell signalling in eukaryotes requires mechanisms more complex than in prokaryotes, because the genome is segregated within the nucleus. This is not merely due to the physical gap between the receptor and the genome, owing to the presence of the nuclear envelope, but because of the major complexity of the transcriptional and translational mechanisms in eukaryotes.

This chapter reviews the main evidence of a multiple localization of the inositol lipid signalling system in the cell, i.e. plasma membrane, cytoskeleton, and nucleus. This results in a variety of functions, which depend on the intracellular localization (contestual modulation).

In the nucleus, the elements of the inositol lipid signalling system are located at nuclear domains involved in pre-mRNA processing and in the modulation of the chromatin arrangement. The nuclear signalling system presents the characteristics of an organic code; furthermore, it does not represent a redundancy of the system located at the plasma membrane, but the result of an evolutionary process.

Keywords

Nuclear Signalling Organic Code Nuclear Domain Interchromatin Granule Inositol Lipid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albright, L. M., Hualu, E., and Ausubel, F. M. (1989), Prokaryotic signal transduction mediated by sensor and regulatory protein pairs. Annu. Rev. Genet. 23: 311–336.CrossRefPubMedGoogle Scholar
  2. Anderson, R. A., Boronenkov, I. V., Dougham, S. D., Kunz, J., and Loijens, J. C. (1999), Phosphatidylinositol phosphate kinases, a multifaceted family of signaling enzymes. J. Biol. Chem. 274: 9907–9910.CrossRefPubMedGoogle Scholar
  3. Barbieri, M. (1998), The organic codes: the basic mechanism of macroevolution. Rivista di Biologia-Biology Forum, 91: 481–514.Google Scholar
  4. Barbieri, M. (2003), The Organic Codes. Cambridge Univesity Press, Cambridge.Google Scholar
  5. Bavelloni, A., Santi, S., Sirri, A., Riccio, M., Faenza, I., Zini, N., Cecchi, S., Ferri, A., Auron, P. E., Maraldi, N. M., and Marmiroli, S. (1999), Phosphatidylinositol 3-kinase translocation to the nucleus is induced by interleukin 1 and prevented by mutation of interleukin 1 receptor in human osteosarcoma Saos-2 cells. J. Cell Sci. 112: 631–640.PubMedGoogle Scholar
  6. Boronenkov, I. V., Loijens, J. C., Umeda, M., and Anderson, R. A. (1998), Phosphoinositide signaling pathways in nuclei are associated with nuclear speckles containing pre-mRNA processing factors. Mol. Biol. Cell 9: 3547–3560.PubMedGoogle Scholar
  7. Cocco, L., Gilmour R. S., Ognibene, A., Letcher A. J., Manzoli, F. A., and Irvine, R. F. (1987), Synthesis of polyphosphoinositides in nuclei of Friend cells. Evidence for polyphosphoinositide metabolism inside the nucleus which changes with cell differentiation. Biochem. J. 248: 765–770.PubMedGoogle Scholar
  8. Cooke, F. T. (2002), Phosphatidylinositol 3, 5-bisphosphate: metabolism and function. Arch. Biochem. Biophys. 407: 143–151.CrossRefPubMedGoogle Scholar
  9. Cullen, P. I., Cozier, G. E., Banting, G., and Mellor, H. (2001), Modular phosphoinositide-binding domains-their role in signalling and membrane trafficking. Curr. Biol. 11: R882–893.CrossRefPubMedGoogle Scholar
  10. Czech, M. P. (2002), Dynamics of phosphoinositides in membrane retrieval and insertion. Annu. Rev. Physiol, 65: 33.1–33.25.Google Scholar
  11. Divecha, N., Banfic, H., and Irvine, R. F. (1993), Inositides and the nucleus and inositides in the nucleus. Cell 74: 405–407.CrossRefPubMedGoogle Scholar
  12. Hammond, G., Thomas, C. L., and Schiavo, G. (2004), Nuclear phosphoinositides and their functions. Curr. Top. Microbiol. Immunol. 282: 177–206.PubMedGoogle Scholar
  13. Irvine R. F. (2003), Nuclear lipid signalling. Nat. Rev. Mol. Cell Biol. 4:1–12.Google Scholar
  14. Irvine, R. F. and Schell, M. J. (2001), Back in the water: the return of the inositol pphosphates. Nat. Rev. Mol. Cell Biol. 2: 327–338.CrossRefPubMedGoogle Scholar
  15. Jones, D. R. and Divecha, N. (2004), Linking lipids to chromatin. Curr. Opin. Genet. Develop 14: 196–202.CrossRefGoogle Scholar
  16. Manzoli, F. A., Capitani, S., Maraldi, N. M., Cocco, L., and Barnabei, O. (1979), Chromatin lipids and their possibile role in gene expression. A study in normal and neoplastic cells. Advan. Enzyme Regul. 17: 175–194.CrossRefGoogle Scholar
  17. Manzoli, F. A., Maraldi, N. M., Cocco, L., Capitani, S., and Facchini, A. (1977), Chromatin phospholipids in normal and chronic lymphocytic leucemia lymphocytes. Cancer Res 37: 843–849.PubMedGoogle Scholar
  18. Maraldi, N. M. and Capitani, S. (2003), The topology of nuclear lipids, in: Cocco, L. and Martelli, A. M. (eds) Nuclear lipid metabolism and signalling. Research Signpost, Kerala, India, pp. 101–121.Google Scholar
  19. Maraldi, N. M., Capitani, S., Caramelli, E., Cocco, L., Barnabei, O., and Manzoli, F. A. (1984), Conformational changes of nuclear chromatin related to phospholipid-induced modifications of the template availability. Advan. Enzyme Regul. 22: 447–464.CrossRefGoogle Scholar
  20. Maraldi, N. M. and Lattanzi, G. (2005), Linkage of lamins to fidelity of gene transcription. Crit. Rev. Eukar. Gene Express. 15: 277–293.Google Scholar
  21. Maraldi, N. M., Zini, N., Ognibene, A., Martelli, A. M., Barbieri, M., Mazzotti, G., and Manzoli, F. A. (1995), Immunocytochemical detection of the intranuclear variations of phosphatidylinositol 4,5-bisphosphate amount associated with changes of activity and amount of phospholipase Cβ1 in cells exposed to mitogenic or differentiating agonists. Biol. Cell 83: 201–210.CrossRefPubMedGoogle Scholar
  22. Maraldi, N. M., Zini, N., Santi, S., and Manzoli, F. A. (1999), Topology of inositol lipid signal transduction in the nucleus. J. Cell. Physiol. 181: 203–217.CrossRefPubMedGoogle Scholar
  23. Maraldi, N. M., Zini, N., Squarzoni, S., Del Coco, R., Sabatelli, O., and Manzoli, F. A. (1992), Intranuclear localization of phospholipids by ultrastructural cytochemistry. J. Histochem. Cytochem. 40: 1383–1392.PubMedGoogle Scholar
  24. Martelli, A. M., Gilmour, R. S., Bertagnolo, V., Neri, L. M., Manzoli, L., and Cocco, L. (1992), Nuclear localization and signalling activity of phospholipase Cβ in Swiss 3T3 cells. Nature 358: 242–245.CrossRefPubMedGoogle Scholar
  25. Martelli, A. M., Cocco, L., Bareggi, R., Tabelloni, G., Rizzoli, R., Ghibellini, M. D., and Narducci, P. (1999), Insulin-like growth factor-I-dependent stimulation of nuclear phospholipase C-β1 activity in Swiss 3T3 cells requires an intact cytoskeleton and is paralleled by increased phosphorylation of the phospholipase. J. Cell Biochem. 72: 339–348.CrossRefPubMedGoogle Scholar
  26. Martelli, A. M., Manzoli, L., and Cocco, L. (2004), Nuclear inositides: facts and perspectives. Pharmacol. Therap. 101: 47–64.CrossRefGoogle Scholar
  27. Mazzotti, G., Zini, N., Rizzi, E., Rizzoli, R., Galanzi, A., Ognibene, A., Santi, S., Matteucci, S., Martelli, A. M., and Maraldi, N. M. (1995), Immunocytochemical detection of phosphatidylinositol 4,5-bisphosphate localization sites within the nucleus. J. Histochem. Cytochem. 43: 181–191.PubMedGoogle Scholar
  28. Misteli, T. and Spector, D. L. (1997), Protein phosphorylation and the nuclear organization of pre-mRNA splicing. Trends Cell Biol. 7: 135–138.CrossRefPubMedGoogle Scholar
  29. Odom, A. R., Stahlberg, A., Wente, S. R., and York, J. D. (2000), A role for nuclear inositol 1,4,5-trisphosphate kinase in transcriptional control. Science 287: 2026–2029.CrossRefPubMedGoogle Scholar
  30. Osborne, S. L., Meunier, F. A., and Schiavo, G. (2001), Phosphoinositides as key regulators of synaptic functions. Neuron 32: 9–12.CrossRefPubMedGoogle Scholar
  31. Osborne, S. L., Thomas, C. L., Gschmeissner, S., and Schiavo, G. (2001), Nuclear PtdIns(4,5) P2 assembles in a mitotically regulated particle involved in pre-mRNA splicing. J. Cell Sci. 114: 2501–2511.PubMedGoogle Scholar
  32. Ozaki, S., DeWald, D. B., Shope, J. C., Chen, J., and Prestwich, G. D. (2000), Intracellular delivery of phosphoinositides and inositol phosphates using polyamine carriers. Proc. Natl. Acad. Sci. USA 97: 11286–11291.CrossRefPubMedGoogle Scholar
  33. Raben, D. M. (2006), Lipid signaling in the nucleus. Biochem. Biophys. Acta 1761: 503–504.Google Scholar
  34. Rando, O. J., Zhao, K., Janmey, P., and Crabtree, G. R. (2002), Phosphatidylinositol-dependent actin filament binding by the SWI/SNF-like BAF chromatin remodeling complex. Proc. Natl. Acad. Sci. USA 99: 2824–2829.CrossRefPubMedGoogle Scholar
  35. Toker, A. (2002), Phosphoinositides and signal transduction. Cell. Mol. Life Sci. 59: 761–779.CrossRefPubMedGoogle Scholar
  36. Watt, S. A., Kular, G., Fleming, I. N., Downes, C. P., and Lucocq, J. M. (2002), Subcellular localization of phosphatidylinositol 4,5-bisphosphate using the pleckstrin homology domain of phospholipase Cδ1. Biochem. J. 363: 657–666.CrossRefPubMedGoogle Scholar
  37. Zhao, K., Wang, W., Rando, O. J., Xue, Y., Swiderek, K., Kuo, A., and Crabtree, G. R. (1998), Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. Cell 95: 625–636.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Nadir M. Maraldi
    • 1
  1. 1.Laboratory of Cell Biology and Electron MicroscopyItaly

Personalised recommendations