The Arithmetical Origin of the Genetic Code

  • Vladimir shCherbak
Part of the Biosemiotics book series (BSEM, volume 1)

Physics and chemistry are indifferent to the internal syntax of numerical language of arithmetic and, in particular, to the number system that this language employs. All they require from arithmetic is quantitative data. Absence of a privileged numerical system inherent to an object must therefore be a necessary condition of its natural origin. Recent research, however, has found an exception. That object is the universal genetic code. The genetic code turns out to be a syntactic structure of arithmetic, the result of unique summations that have been carried out by some primordial abacus at least three and half billion years ago. The decimal place-value numerical system with a zero conception was used for that arithmetic. It turned out that the zero sign governed the genetic code not only as an integral part of the decimal system, but also directly as an acting arithmetical symbol. Being non-material abstractions, all the zero, decimal syntax and unique summations can display an artificial nature of the genetic code. They refute traditional ideas about the stochastic origin of the genetic code. A new order in the genetic code hardly ever went through chemical evolution and, seemingly, originally appeared as pure information like arithmetic itself.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apollinaire, G., 1980. Calligrammes. University of California Press, Los Angeles/London:.Google Scholar
  2. Barbieri, M., 2005. Life is “artifact-making”. J. Biosemiotics 1, 113–142.Google Scholar
  3. Bennet, M. D., 1977. The time and duration of meiosis. Phil. Trans. R. Soc. Lond. B. 277, 201–226.CrossRefGoogle Scholar
  4. Chiusano, M. L., Alvarez-Valin, F., Di Giulio, M., D’Onofrio, G., Ammirato, G., Colonna, G., and Bernardi, G., 2000. Second codon positions of genes and the secondary structures of proteins. Relationships and implications for the origin of the genetic code. Gene 261, 63–69.CrossRefPubMedGoogle Scholar
  5. Crick, F. H. C., 1966. Codon-anticodon pairing: the wobble hypothesis. J. Mol. Biol. 19, 548–555.CrossRefPubMedGoogle Scholar
  6. Crick, F. H. C., 1968. The origin of the genetic code. J. Mol. Biol. 38, 367–379.CrossRefPubMedGoogle Scholar
  7. Crick, F. H. C. and Orgel, L. E., 1973. Directed panspermia. Icarus 19, 341–346.CrossRefGoogle Scholar
  8. Dewachter, M., 1990. Champollion, un scribe pour l’Egypte. Coll. Découvertes, Gallimard, Paris.Google Scholar
  9. Downes, A. M. and Richardson, B. J., 2002. Relationships between genomic base content and distribution of mass in coded proteins. J. Mol. Evol. 55, 476–490.CrossRefPubMedGoogle Scholar
  10. Di Giulio, M., 1989. Some aspects of the organization and evolution of the genetic code. J. Mol. Evol. 29, 191–201.CrossRefPubMedGoogle Scholar
  11. Di Giulio, M. and Medugno, M., 2001. The level and landscape of optimization in the origin of the genetic code. J. Mol. Evol. 52, 372–382.PubMedGoogle Scholar
  12. Eigen, M. and Winkler, R., 1985. Das Spiel. Piper Verlag, München, Zürich, pp. 281–316.Google Scholar
  13. Figureau, A., 1987. Information theory and the genetic code. Origins Life 17, 439–449.CrossRefGoogle Scholar
  14. Freeland, S. J. and Hurst, L. D., 1998. The genetic code is one in a million. J. Mol. Evol. 47, 238–248.CrossRefPubMedGoogle Scholar
  15. Gamow, G., 1954. Possible relation between deoxyribonucleic acid and protein structures. Nature 173, 318.CrossRefGoogle Scholar
  16. Gonzalez, D. L., Giannerini, S., and Rosa, R., 2006. Detecting structure in parity binary sequences: error correction and detection in DNA. IEEE Eng. Med. Biol. Mag.. Jan./Feb, 69–81.Google Scholar
  17. Grimm, M., Brünen-Nieweler, C., Junker, V., Heckmann, K., and Beier, H., 1998. The hypotrichous ciliate Euplotes octocarinatus has only one type of tRNACys with GCA anticodon encoded on a single macromolecular DNA molecule. Nucleic Acids Res. 26, 4557–4565.CrossRefPubMedGoogle Scholar
  18. Gusev V. A. and Shulze-Makuch D., 2004. Genetic code: Lucky chance or fundamental law of nature? Phy. Life Rev. 1, 202–229.CrossRefGoogle Scholar
  19. Hasegawa, M. and Miyata, T., 1980. On the antisymmetry of the amino acid code table. Origins Life 10, 265–270.CrossRefGoogle Scholar
  20. Jukes, T. H., 1983. Evolution of the amino acid code: inferences from mitochondrial codes. J. Mol. Evol. 19, 219–225.CrossRefPubMedGoogle Scholar
  21. Jukes, T. H. and Osawa, S., 1990. The genetic code in mitochondria and chloroplasts. Experientia 46, Birkhäuser Verlag, CH-4010 Basel/Switzerland, 1117–1133.CrossRefPubMedGoogle Scholar
  22. Jungck, J. R., 1978. The genetic code as periodic table. J. Mol. Evol. 11, 211–224.CrossRefPubMedGoogle Scholar
  23. Kashkarov, V. V., Krassovitskiy, A. M., Mamleev, V. S., and shCherbak, V. I., 2002. Random sequences of proteins are exactly balanced like the canonical base pairs of DNA. In: Proceedings of the 10th ISSOL Meeting and 13th International Conference on the Origin of Life. Oaxaca City, Mexico, June 30–July 4.Google Scholar
  24. Knight, R. D., Freeland, S. J., and Landweber, L. F., 1999. Selection, history and chemistry: the three faces of the genetic code. Trends Biochem. Sci. 24, 241–247.CrossRefPubMedGoogle Scholar
  25. Lacey, J. C. Jr. and Mullins, D. W. Jr., 1983. Experimental studies related to the origin of the genetic code and the process of protein synthesis—a review. Origins Life 13, 3–42.CrossRefGoogle Scholar
  26. Mac Dynaill, D. A., 2002. A parity code interpretation of nucleotide alphabet composition. Chem. Commun. 18, 2062–2063.Google Scholar
  27. Marshal, R. E., Cascey, T. C., and Nirenberg, M., 1967. Fine structure of RNA codewords recognized by bacterial, amphibian and mammalian transfer RNA. Science 155, 820–825.CrossRefGoogle Scholar
  28. Marx, G., 1979. The message through time. Acta astronaut. 6, 221–226.CrossRefGoogle Scholar
  29. Meyer, F., Schmidt, H. I., Plümper, E., Hasilik, A., Mersmann, G., Meyer, H. E., Engström, A., and Heckmann, K., 1991. UGA is translated as cysteine in pheromone 3 of Euplotes octocarinatus. Proc. Natl. Acad. Sci. U.S.A. 88, 3758–3761.CrossRefPubMedGoogle Scholar
  30. Négadi, T., 2004. Symmetry groups for the Rumer-Konopel’chenko-shCherbak “bisections” of the genetic code and applications, Internet Electron. J. Mol. Des. 3, 247–270. Available at: http://www.biochempress.com.
  31. Nirenberg, M., Leder, P., Bernfield, M., Brimacombe, R., Trupin, J., Rottman, F., and O’Neal, C., 1965. RNA codewords and protein synthesis, VII. On the general nature of the RNA code. Proc. Natl. Acad. Sci. U. S. A. 53(5), 1161–1168.CrossRefPubMedGoogle Scholar
  32. Rakočević, M. M., 2004. A harmonic structure of the genetic code. J. Theor. Biol. 229, 221–234.CrossRefPubMedGoogle Scholar
  33. Rumer, Yu. B., 1966. About systematization of the codons of the genetic code. Dokl. Acad. Nauk. SSSR 167, 1393–1394.Google Scholar
  34. Schutzenberger, M.-P., Gavaudan, P., and Besson, J., 1969. Sur l’existence d’une certaine correlation entre le poids moleculaire des acides amines et le nombre de triplets intervenan dans leur codage. CR Acad. Sc. Paris, Serie D 268, 1342–1344.Google Scholar
  35. shCherbak, V. I., 1988. The co-operative symmetry of the genetic code. J. Theor. Biol. 132, 121–124.CrossRefPubMedGoogle Scholar
  36. shCherbak, V. I., 1989a. Rumer’s rule and transformation in the context of the co-operative symmetry of the genetic code. J. Theor. Biol. 139, 271–276.CrossRefPubMedGoogle Scholar
  37. shCherbak, V. I., 1989b. Ways of wobble pairing are formalized with the co-operative symmetry of the genetic code. J. Theor. Biol. 139, 277–281.CrossRefPubMedGoogle Scholar
  38. shCherbak, V. I., 1989c. The “START” and “STOP” of the genetic code: why exactly ATG and TAG, TAA? J. Theor. Biol. 139, 283–286.CrossRefPubMedGoogle Scholar
  39. shCherbak, V. I., 1989d. The information artefact of the genetic code. In: Proceedings of the 6th ISSOL Meeting and 9th International Conference Origin of Life, Book of Abstract, Prague, July 3–8, Czechoslovakia.Google Scholar
  40. shCherbak, V. I., 1993a. The symmetrical architecture of the genetic code systematization principle. J. Theor. Biol. 162, 395–398.CrossRefPubMedGoogle Scholar
  41. shCherbak, V. I., 1993b. Twenty canonical amino acids of the genetic code: the arithmetical regularities. Part I. J. Theor. Biol. 162, 399–401.CrossRefPubMedGoogle Scholar
  42. shCherbak, V. I., 1994. Sixty-four triplets and 20 canonical amino acids of the genetic code: the arithmetical regularities. Part II. J. Theor. Biol. 166, 475–477.CrossRefPubMedGoogle Scholar
  43. shCherbak, V. I., 1996. A new manifestation of the arithmetical regularity suggests the universal genetic code distinguishes the decimal system. In: Proceedings of the 8th ISSOL Meeting of the 11th International Conference Origin of Life. Book of Abstracts, Orleans July 5–12, France.Google Scholar
  44. shCherbak, V. I., 1999. A new manifestation of the decimal system in the genetic code. In: Proceedings of the 9th ISSOL Meeting and of the 12th International Conference Origin of Life. Book of Abstracts, San-Diego, July 11–16, USA.Google Scholar
  45. shCherbak, V. I., 2003. Arithmetic inside the universal genetic code. BioSystems 70, 187–209.CrossRefPubMedGoogle Scholar
  46. shCherbak, V. I., 2005. The origins of life and arithmetic zero. In: Proceedings of the 11th ISSOL Meeting and 14th International Conference on the Origin of Life. Book of Abstract, Beijing, June 6–11, People’s Republic of China.Google Scholar
  47. Shulz, G. E. and Schirmer, R. H., 1979. Principles of Protein Structure. Springer-Verlag, New York, Heidelberg, Berlin.Google Scholar
  48. Sjöström, M. and Wold, S., 1985. A multivariate study of the relationship between the genetic code and the physical-chemical properties of amino acids. J. Mol. Evol. 22, 272–277.CrossRefPubMedGoogle Scholar
  49. Spengler, O., 1922. Der Untergang des Abendlandes. Umrisse einer Morphologie der Weltgeschichte. C.H. Beck Verlag, München.Google Scholar
  50. Taylor F. J. R. and Coates D., 1989. The code within the codons. BioSystems 22, 117–187.CrossRefGoogle Scholar
  51. Yockey, H. P., 2000. Origin of life on earth and Shannon’s theory of communication. Comput. Chem. 24, 105–123.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Vladimir shCherbak
    • 1
  1. 1.Department of Applied MathematicsAl-Farabi Kazakh National UniversityKazakhstan

Personalised recommendations