Codes of Biosequences

  • Edward N. Trifonov
Part of the Biosemiotics book series (BSEM, volume 1)

Contrary to common belief that the nucleotide sequences only encode proteins, there are numerous additional codes, each of a different nature. The codes, at DNA, RNA, and protein sequence levels, are superposed, i.e. the same nucleotide in a given sequence may be simultaneously involved in several different encoded functions, at different levels. Such coexistence is possible due to degeneracy of the messages present in the sequence. Protein sequences are degenerate as well: involved not only in the functions related to the protein, but also adjusting to sequence requirements at the DNA level.


Sequence Pattern Nucleosome Position Noncoding Sequence Sequence Rule Triplet Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aharonovsky E, Trifonov EN (2005) Protein sequence modules. J Biomol Str Dyn 23:237–242Google Scholar
  2. Aparicio S, et al. (2002) Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297:1301–1310CrossRefPubMedGoogle Scholar
  3. Bacolla A, Collins JR, Gold B et al. (2006) Long homopurine* homopyrimidine sequences are characteristic of genes expressed in brain and the pseudoautosomal region. Nucl Acids Res 34:2663–2675CrossRefPubMedGoogle Scholar
  4. Berezovsky IN, Trifonov EN (2001) Evolutionary aspects of protein structure and folding. Mol Biol 35:233–239CrossRefGoogle Scholar
  5. Berezovsky IN, Trifonov EN (2002) Loop fold structure of proteins: resolution of Levinthal’s paradox. J Biomolec Str Dyn 20:5–6Google Scholar
  6. Berezovsky IN, Grosberg AY, Trifonov EN (2000) Closed loops of nearly standard size: common basic element of protein structure. FEBS Lett 466:283–286CrossRefPubMedGoogle Scholar
  7. Berezovsky IN, Kirzhner VM, Kirzhner A et al. (2003a) Protein sequences yield a proteomic code. J Biomol Struct Dyn 21:317–325PubMedGoogle Scholar
  8. Berezovsky IN, Kirzhner A, Kirzhner VM, Trifonov EN (2003b) Spelling protein structure. J Biomol Struct Dyn 21:327–339PubMedGoogle Scholar
  9. Berman AL, Kolker E, Trifonov EN (1994) Underlying order in protein sequence organization. Proc Natl Acad Sci USA 91:4044–4047CrossRefPubMedGoogle Scholar
  10. Bolshoy A, McNamara P, Harrington RE, Trifonov EN (1991) Curved DNA without AA: experimental estimation of all 16 wedge angles. Proc Natl Acad Sci USA 88:2312–2316CrossRefPubMedGoogle Scholar
  11. Breathnach R, Chambon P (1981) Organization and expression of eukaryotic split genes coding for proteins. Ann Rev Bioch 50:349–383CrossRefGoogle Scholar
  12. Cohanim AB, Kashi Y, Trifonov EN (2005) Yeast nucleosome DNA pattern: deconvolution from genome sequences of S. cerevisiae. J Biomol Str Dyn 22:687–694Google Scholar
  13. Cohanim AB, Kashi Y, Trifonov EN (2006a) Three sequence rules for chromatin. J Biomol Struct Dyn 23:559–566PubMedGoogle Scholar
  14. Cohanim AB, Trifonov EN, Kashi Y (2006b) Specific selection pressure on the third codon positions: contribution to 10 - 11 base periodicity in prokaryotic genomes. J Molec Evol (in press)Google Scholar
  15. Denisov DA, Shpigelman ES, Trifonov EN (1997) Protective nucleosome centering at splice sites as suggested by sequence-directed mapping of the nucleosomes. Gene 205:145–149CrossRefPubMedGoogle Scholar
  16. D’Onofrio G, Bernardi G (1992) A universal compositional correlation among codon positions. Gene 110:81–88CrossRefPubMedGoogle Scholar
  17. Doolittle RF (1988) More molecular opportunism. Nature 336:18CrossRefPubMedGoogle Scholar
  18. Fire A, Xu S, Montgomery MK et al. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811CrossRefPubMedGoogle Scholar
  19. Fondon JW, Garner HR (2004) Molecular origin of rapid and continuous morphological evolution. Proc Natl Acad Sci USA 101:18058–18063CrossRefPubMedGoogle Scholar
  20. Gabdank I, Barash D, Trifonov EN (2006) Tracing ancient mRNA hairpins. J Biomol Str Dyn 24:163–170Google Scholar
  21. Gott JM, Emeson RB (2000) Functions and mechanisms of RNA editing. Ann Rev Genet 34:499–531CrossRefPubMedGoogle Scholar
  22. Hinegardner R (1976) Evolution of genome size. In: Ayala FJ (ed) Molecular Evolution. Sinauer Association, SunderlandGoogle Scholar
  23. Holliday R (1968) Genetic recombination in fungi. In: Peacock WJ, Brock RD (eds) Replication and Recombination of Genetic Material. Australian Academy of Science, Canberra, AustraliaGoogle Scholar
  24. Holliday R (1991) Quantitative genetic variation and developmental clocks. J Theor Biol 151:351–358CrossRefPubMedGoogle Scholar
  25. Khorana HG, Büchi H, Ghosh H et al. (1966) Polynucleotide synthesis and the genetic code. Cold Spring Harb Symp Quant Biol 31:39–49PubMedGoogle Scholar
  26. King DG (1994) Triple repeat DNA as a highly mutable regulatory mechanism. Science 263:595–596PubMedGoogle Scholar
  27. King DG, Soller M, Kashi Y (1997) Evolutionary tuning knobs. Endeavor 21:36–40CrossRefGoogle Scholar
  28. Kiyama R, Trifonov EN (2002) What positiones nucleosomes? A model. FEBS Lett 523:7–11CrossRefPubMedGoogle Scholar
  29. Kogan S, Trifonov EN (2005) Gene splice sites correlate with nucleosome positions. Gene 352:57–62CrossRefPubMedGoogle Scholar
  30. Kogan SB, Kato M, Kiyama R, Trifonov EN (2006) Sequence structure of human nucleosome DNA. J Biomol Struct Dyn 24:43–48PubMedGoogle Scholar
  31. Kolker E, Trifonov EN (1995) Periodic recurrence of methionines: Fossil of gene fusion? Proc Natl Acad Sci USA 92:557–560CrossRefPubMedGoogle Scholar
  32. Kolker E, Tjaden BC, Hubley R et al. (2002) Spectral analysis of distributions: finding periodic components in eukaryotic enzyme length data. OMICS: J Integr Biol 6:123–130CrossRefGoogle Scholar
  33. Koop BF, Hood L (1994) Striking sequence similarity over almost 100 kilobases of human and mouse T-cell receptor DNA. Nature Genet 7:48–53CrossRefPubMedGoogle Scholar
  34. Künzler P, Matsuo K, Schaffner W (1995) Pathological, physiological, and evolutionary aspects of short unstable DNA repeats in the human genome. Biol Chem Hoppe-Seyler 376:201–211PubMedGoogle Scholar
  35. Lagunez-Otero J, Trifonov EN (1992) mRNA periodical infrastructure complementary to the proof-reading site in the ribosome. J Biomol Struct Dyn 10:455–464PubMedGoogle Scholar
  36. Makhoul CH, Trifonov EN (2002) Distribution of rare triplets along mRNA and their relation to protein folding. J Biomol Struct Dyn 20:413–420PubMedGoogle Scholar
  37. Mengeritsky G, Trifonov EN (1983) Nucleotide sequence-directed mapping of the nucleosomes. Nucl Acids Res 11:3833–3851CrossRefPubMedGoogle Scholar
  38. Mount SM (1982) A catalogue of splice junction sequences. Nucl Acids Res 10:459–472CrossRefPubMedGoogle Scholar
  39. Nalimov VV (1981) In the labyrinths of language: A Mathematician’s Journey. ISI Press, Philadelphia, USAGoogle Scholar
  40. Nirenberg M, Caskey T, Marshall R et al. (1966) The RNA code and protein synthesis. Cold Spring Harb Symp Quant Biol 31:11–24PubMedGoogle Scholar
  41. Noll M, Zimmer S, Engel A, Dubochet J (1980) Self-assembly of single and closely spaced nucleosome core particles. Nucl Acids Res 8:21–42CrossRefPubMedGoogle Scholar
  42. Normark S, Bergstrom S, Edlund T et al (1983) Overlapping genes. Ann Rev Genet 17:499–525CrossRefPubMedGoogle Scholar
  43. Ochoa S (1963) Synthetic polynucleotides and the amino acid code. Cold Spring Harb Symp Quant Biol 28:559–567Google Scholar
  44. Peleg G, Katzir G, Peleg O et al. (2006) Hereditary family signature of facial expression. Proc Natl Acad Sci USA 103:15921–15926CrossRefPubMedGoogle Scholar
  45. Reanney DC (1976) Extrachromosomal elements as possible agents of adaption and development. Bact Rev 40:552–590PubMedGoogle Scholar
  46. Schaap T (1971) Dual information in DNA and the evolution of the genetic code. J Theor Biol 32:293–298CrossRefPubMedGoogle Scholar
  47. Segal E, Fondufe-Mittendorf Y, Chen L, Thastrom A, Field Y, Moore IK, Wang JP, Widom J (2006) A genome code for nucleosome positioning. Nature 442:772–778CrossRefPubMedGoogle Scholar
  48. Shore D, Langowski J, Baldwin RL (1981) DNA flexibility studied by covalent closure of short fragments into circles. Proc Natl Acad Sci USA 78:4833–4838CrossRefPubMedGoogle Scholar
  49. Shpigelman ES, Trifonov EN, Bolshoy A (1993) CURVATURE: software for the analysis of curved DNA. CABIOS 9:435–440PubMedGoogle Scholar
  50. Sobolevsky Y, Trifonov EN (2005) Conserved sequences of prokaryotic proteomes and their compositional age. J Mol Evol 61:591–596CrossRefPubMedGoogle Scholar
  51. Sobolevsky Y, Trifonov EN (2006) Protein modules conserved since LUCA. J Mol Evol 63:622–634CrossRefPubMedGoogle Scholar
  52. Tompa P, Scasz C, Buday L (2005) Structural disorder throws new light on moonlighting. Trends Bioch Sci 30:484–489CrossRefGoogle Scholar
  53. Trifonov EN (1980) Sequence-dependent deformational anisotropy of chromatin DNA. Nucl Acids Res 8:4041–4053CrossRefPubMedGoogle Scholar
  54. Trifonov EN (1981) Structure of DNA in chromatin. In: Schweiger H (ed) International Cell Biology 1980–1981. Springer-Verlag, BerlinGoogle Scholar
  55. Trifonov EN (1987) Translation framing code and frame-monitoring mechanism as suggested by the analysis of mRNA and 16S rRNA nucleotide sequences. J Mol Biol 194:643–652CrossRefPubMedGoogle Scholar
  56. Trifonov EN (1989) The multiple codes of nucleotide sequences. Bull Math Biol 51:417–432PubMedGoogle Scholar
  57. Trifonov EN (1991) DNA in profile. Trends Biochem Sci 16:467–470CrossRefPubMedGoogle Scholar
  58. Trifonov EN (1990) Making sense of the human genome. In: Sarma RH, Sarma MH (eds) Structure and Methods, vol. 1, Human Genome Initiative and DNA Recombination. Adenine Press, New YorkGoogle Scholar
  59. Trifonov EN (1995) Segmented structure of protein sequences and early evolution of genome by combinatorial fusion of DNA elements. J Mol Evol 40:337–342CrossRefPubMedGoogle Scholar
  60. Trifonov EN (1996) Interfering contexts of regulatory sequence elements. CABIOS 12:423–429PubMedGoogle Scholar
  61. Trifonov EN (1997) Genetic sequences as product of compression by inclusive superposition of many codes. Mol Biol 31:759–767Google Scholar
  62. Trifonov EN (1999) Elucidating sequence codes: three codes for evolution. Annals NY Acad Sci 870:330–338CrossRefGoogle Scholar
  63. Trifonov EN (2000a) Earliest pages of bioinformatics. Bioinformatics 16:5–9CrossRefPubMedGoogle Scholar
  64. Trifonov EN (2000b) Consensus temporal order of amino acids and evolution of the triplet code. Gene 261:139–151CrossRefPubMedGoogle Scholar
  65. Trifonov EN (2002) Segmented genome: elementary units of genome structure. Russian J Genet. 38:659–663CrossRefGoogle Scholar
  66. Trifonov EN (2004) The triplet code from first principles. J Biomol Struct Dyn 22:1–11PubMedGoogle Scholar
  67. Trifonov EN (2006) Theory of early molecular evolution: predictions and confirmations. In: Eisenhaber F (ed) Discovering Biomolecular Mechanisms with Computational Biology. Landes Bioscience, GeorgetownGoogle Scholar
  68. Trifonov EN, Berezovsky IN (2003) Evolutionary aspects of protein structure and folding, Curr Opinion Struct Biol 13:110–114CrossRefGoogle Scholar
  69. Trifonov EN, Bettecken T (1997) Sequence fossils, triplet expansion, and reconstruction of earliest codons. Gene 205:1–6CrossRefPubMedGoogle Scholar
  70. Trifonov EN, Sussman JL (1980) The pitch of chromatin DNA is reflected in its nucleotide sequence. Proc Natl Acad Sci USA 77:3816–3820CrossRefPubMedGoogle Scholar
  71. Trifonov EN, Kirzhner A, Kirzhner VM, Berezovsky IN (2001) Distinct stages of protein evolution as suggested by protein sequence analysis. J Mol Evol 53:394–401CrossRefPubMedGoogle Scholar
  72. Trifonov EN, Kogan S, Cohanim AB (2006a) Latest on the nucleosome positioning sequence patterns. In: Kiyama R, Shimizu M (eds) DNA Structure, Chromatin and Gene Expression. Transworld Research Network. Trivandrum, IndiaGoogle Scholar
  73. Trifonov EN, Gabdank I, Barash D, Sobolevsky Y (2006b) Primordia vita. Deconvolution from modern sequences. Origin Life Evol Biosph 36(5–6):559–565Google Scholar
  74. Ulanovsky LE, Trifonov EN (1986) A different view point on the chromatin higher order structure: steric exclusion effects. In: Sarma RH, Sarma MH (eds) Biomolecular stereodynamics III. Adenine Press, New YorkGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Edward N. Trifonov
    • 1
  1. 1.Genome Diversity Center, Institute of EvolutionUniversity of HaifaIsrael

Personalised recommendations