Macromolecular cryo-crystallography

  • Elspeth Garman
Conference paper
Part of the NATO Science Series book series (NAII, volume 245)

During room temperature X-ray data collection, macromolecular crystals commonly suffer severe radiation damage. Thus, diffraction data are now routinely collected with the sample held at around 100 K, significantly reducing the secondary radiation damage, and usually resulting in higher resolution and better quality data. However, at synchrotron X-ray sources, even at cryo-temperatures there has now been frequent observation of both degradation of data quality as the experiment proceeds and specific structural damage to particular amino acids due to radiation damage. Present research into cryo-techniques seeks to understand the basic physical and chemical processes involved in flash-cooling and radiation damage, to allow rational optimisation of cryo-protocols and minimisation of the deleterious effects of X-ray irradiation.


Radiation Damage Mother Liquor Osmotic Shock Protein Crystal Liquid Cryogen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Garman, E.F. and Schneider, T.R. (1997) Journal of Applied Crystallography, 27: 211–237.CrossRefGoogle Scholar
  2. 2.
    Rodgers, D.W. (1997) Methods in Enzymology, 276: 183–202.CrossRefGoogle Scholar
  3. 3.
    Garman, E. (1999) Acta Crystallographica, D55: 1641–1653.Google Scholar
  4. 4.
    Rodgers, D. (2001) In International Tables for Crystallography: Volume F, Crystallography of Biological Macromolecules. Edited by Rossmann, M.G. and Arnold, E., vol.—F. Dordrecht: Kluwer Academic, pp.—202–208.Google Scholar
  5. 5.
    Garman, E.F. and Doublie, S. (2003) Methods Enzymol, 368: 188–216.CrossRefGoogle Scholar
  6. 6.
    Garman, E. and Owen, R.L. (2006) Acta Crystallographica, D62: 32–47.Google Scholar
  7. 7.
    Jones, G.D., Lea, J.S., Symons, M.C., and Taiwo, F.A. (1987) Nature, 330: 772–773.CrossRefADSGoogle Scholar
  8. 8.
    Weik, M., Ravelli, R.B., Kryger, G., McSweeney, S., Raves, M.L., Harel, M., Gros, P., Silman, I., Kroon, J., and Sussman, J.L. (2000) Proceedings of the National Academy of Sciences of the USA, 97: 623–628.CrossRefADSGoogle Scholar
  9. 9.
    Ravelli, R.B. and McSweeney, S.M. (2000) Structure Folding and Design 8: 315–328.CrossRefGoogle Scholar
  10. 10.
    Burmeister, W.P. (2000) Acta Crystallographica, D56: 328–341.Google Scholar
  11. 11.
    Garman, E. (2003) Current Opinion in Structural Biology, 13: 545–551.CrossRefGoogle Scholar
  12. 12.
    Nave, C. and Garman, E.F. (2005) Journal of Synchrotron Radiation, 12: 257–260.CrossRefGoogle Scholar
  13. 13.
    Hope, H. (1988) Acta Crystallographica, B44: 22–26.Google Scholar
  14. 14.
    Teng, T.-Y. (1990) Journal of Applied Crystallography, 23: 387–391.CrossRefGoogle Scholar
  15. 15.
    King, M.V. (1958) Nature (London), 181: 263–264.CrossRefADSGoogle Scholar
  16. 16.
    Low, B.W., Chen, C.C.H., Berger, J.E., Singman, L., and Pletcher, J.F. (1966) Proceedings of the National Academy of Sciences of the USA, 56: 1746–1750.CrossRefADSGoogle Scholar
  17. 17.
    Haas, D. (1968) Acta Crystallographica, B24: 604–605.Google Scholar
  18. 18.
    Haas, D. and Rossmann, M.G. (1970) Acta Crystallographica, B26: 998–1004.Google Scholar
  19. 19.
    Thomanek, U. et—al. (1973) Acta Crystallographica, A29: 263–265.ADSGoogle Scholar
  20. 20.
    Kim, C.U., Kapfer, R., and Gruner, S.M. (2005) Acta Crystallographica, D61: 881–890.Google Scholar
  21. 21.
    Petsko, G.A. (1975) Journal of Molecular Biology, 96: 381–392.CrossRefGoogle Scholar
  22. 22.
    Teeter, M.M. and Hope, H. (1986) Annals of the New York Academy of Sciences, 482: 163–165.CrossRefADSGoogle Scholar
  23. 23.
    Parkin, S. and Hope, H. (1998) Journal of Applied Crystallography, 31: 945–953.CrossRefGoogle Scholar
  24. 24.
    Skrzypczak-Jankun, E., Bianchet, M.A., Amzel, L.M., and Funk, M.O. Jr. (1996) Acta Crystallographica, D52: 959–965.Google Scholar
  25. 25.
    Nagata, C., Other1, and Other2 (1996) Acta Crystallographica, D52: 623–630.Google Scholar
  26. 26.
    Fernandez, E.J. et—al. (2000) Journal of Applied Crystallography, 33: 168–171.CrossRefGoogle Scholar
  27. 27.
    Garman, E.F. (1999) In Protein Crystallisation: Techniques, Strategies and Tips. Edited by Bergfors, T.M. La Jolla, CA: International University Line.Google Scholar
  28. 28.
    Thorne, R.E., Stum, J., Kmetko, K., O’Neill, R., and Gillilan, J.—(2003) Journal of Applied Crystallography, 36: 1455–1460.CrossRefGoogle Scholar
  29. 29.
    Gregoriou, M., Noble, M.E., Watson, K.A., Garman, E.F., Krulle, T.M., de la Fuente, C., Fleet, G.W., Oikonomakos, N.G., and Johnson, L.N. (1998) Protein Science, 7: 915–927.CrossRefGoogle Scholar
  30. 30.
    Crick, F.H.C. and Magdoff, B.S. (1956) Acta Crystallographica, D9: 901–908.CrossRefGoogle Scholar
  31. 31.
    Mitchell, E.M. and Garman, E.F. (1994) Journal of Applied Crystallography, 27: 1070–1074.CrossRefGoogle Scholar
  32. 32.
    Kwong, P.D. and Lui, Y. (1999) Journal of Applied Crystallography, 32: 102–105.CrossRefGoogle Scholar
  33. 33.
    Riboldi-Tunnicliffe, A. and Hilgenfeld, R. (1999) Journal of Applied Crystallography, 32: 1003–1005.CrossRefGoogle Scholar
  34. 34.
    Lusty, C.J. (1999) Journal of Applied Crystallography, 32: 106–112.CrossRefGoogle Scholar
  35. 35.
    Wierenga, R.K., Zeelan, J.P., and Noble, M.E. (1992) Journal of Crystal Growth, 122: 231–234.CrossRefADSGoogle Scholar
  36. 36.
    Ray, W.J. Jr., Baranidharan, S., and Liu, J. (1997) Acta Crystallographica, D53: 385–391.Google Scholar
  37. 37.
    Teng, T.-Y. and Moffat, K. (1998) Journal of Applied Crystallography, 31: 252–257.CrossRefGoogle Scholar
  38. 38.
    Walker, L.J., Moreno, P.O., and Hope, H. (1998) Journal of Applied Crystallography, 31: 954.CrossRefGoogle Scholar
  39. 39.
    Kriminski, S., Kazmierczak, M., and Thorne, R.E. (2003) Acta Crystallographica, D59: 697–708.Google Scholar
  40. 40.
    CRC (1988–1989) Chemical Rubber Company Handbook, 69th edn. Table D-232.Google Scholar
  41. 41.
    Yeh, J.I. and Hol, W.G.J. (1998) Acta Crystallographica, D54: 479–480.Google Scholar
  42. 42.
    Harp, J.M., Timm, D.E., and Bunick, G.J. (1998) Acta Crystallographica, B54: 622.Google Scholar
  43. 43.
    Harp, J.M., Hanson, B.L., Timm, D.E., and Bunick, G.J. (1999) Acta Crystallographica Section D: Biological Crystallography, 55: 1329.CrossRefGoogle Scholar
  44. 44.
    Kriminski, S., Caylor, C.L., Nonato, M.C., Finkelstein, K.D., and Thorne, R.E. (2002) Acta Crystallographica, D58: 459–471.Google Scholar
  45. 45.
    Juers, D.H. and Mathews, B.W. (2004) Acta Crystallographica, B60: 412–421.Google Scholar
  46. 46.
    Garman, E.F. and Mitchell, E.M. (1996) Journal of Applied Crystallography, 29: 584–587.CrossRefGoogle Scholar
  47. 47.
    McFerrin, M. and Snell, E. (2002) Journal of Applied Crystallography, 35: 538–545.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Elspeth Garman
    • 1
  1. 1.Laboratory of Molecular Biophysics, Department of BiochemistryUniversity of OxfordOxfordUK

Personalised recommendations