Genomics OF Root Nodulation In Soybean

  • Kyujung Van
  • Moon Young Kim
  • Suk-Ha Lee


Soybean is a suitable crop material for studying root nodulation and full genome sequencing because of its economic value. This review introduces the “nodulation” phenomenon that occurs in legume root systems such as the soybean. In addition, the paper identifies and discusses nodulation mutants (e.g., non-nodulation, ineffective nodulation, and super-/hypernodulation) and the genetic loci that control nodulation. The advent of genomics, proteomics, metabolomics, etc., has greatly contributed in improving our understanding of the symbiotic interactions between legume plants and Rhizobia, particularly for the identification of nodulation-related genes. Furthermore, molecular gene identification should be combined with biochemical pathways for nodulation in order to better understand the symbiotic interactions between legume and Rhizobia.


Symbiotic Nitrogen Fixation Nodulation Mutant Model Legume Curr Opin Plant Biol Tentative Consensus Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akao S, Kouchi H (1992) A supernodulating mutant isolated from soybean cultivar Enrei. Soil Sci Plant Nutr 38:183–187Google Scholar
  2. Asamizu E, Nakamura Y, Sato S, Tabata S (2005) Comparison of the transcript profiles from the root and the nodulating root of the model legume Lotus japonicus by serial analysis of gene expression. Mol Plant Microbe Interact 18:487–498PubMedCrossRefGoogle Scholar
  3. Bachem CWB, Oomen RJFJ, Visser RGF (1998) Transcript imaging with cDNA-AFLP: a step-by-step protocol. Plant Mol Biol Reporter 16:157–173CrossRefGoogle Scholar
  4. Bestel-Corre G, Dumas-Gaudot E, Poinsot V, Dieu M, Dierick JF, Tuinen DV, Remacle J, Gianinazzi-Pearson V, Gianinazzi S (2002) Proteome analysis and identification of symbiosis-related protein form Medicago truncatula Gaertn by two-dimensional electrophoresis and mass spectrometry. Electophoresis 23:122–137CrossRefGoogle Scholar
  5. Bhuvaneswari TV, Bhagwat AA, Bauer WD (1981) Transient susceptibility of root cells in four common legumes to nodulation by Rhizobia. Plant Physiol 68:1144–1149PubMedGoogle Scholar
  6. Borisov AY, Madsen LH, Tsyganov VE, Umehara Y, Voroshilova VA, Batagov AO, Sandal N, Mortensen A, Schauser L, Ellis N, Tikhonovich IA, Stougaard J (2003) The Sym35 gene required for root nodule development in pea is an ortholog of Nin from Lotus japonicus. Plant Physiol 131:1009–1017PubMedCrossRefGoogle Scholar
  7. Caldwell BE (1966) Inheritance of a stain-specific ineffective nodulation in soybean. Crop Sci 6:427–428CrossRefGoogle Scholar
  8. Carroll BJ, Mathew A (1990) Nitrate inhibition of nodulation in legumes. In: Gresshoff, PM (ed) Molecular biology of symbiotic nitrogen fixation. CRC Press, Boca Raton, FL, pp 159–180Google Scholar
  9. Carroll BJ, McNeil DL, Gresshoff PM (1985a) A supernodulation and nitrate-tolerant symbiotic (nts) soybean mutant. Plant Physiol 78:34–40Google Scholar
  10. Carroll BJ, McNeil DL, Gresshoff PM (1985b) Isolation and properties of soybean [Glycine max (L.) Merr] mutants that nodulate in the presence of high nitrate concentrations. Proc Natl Acad Sci USA, 82:4162–4166CrossRefGoogle Scholar
  11. Catoira R, Timmers AC, Maillet F, Galera C, Penmetsa RV, Cook D, Denarie J, Gough C (2001) The HCL gene of Medicago truncatula controls Rhizobium-induced root hair curling. Development 128:1507–1518PubMedGoogle Scholar
  12. Clark FE (1957) Nodulation responses of two near-isogenic lines of the soybean. Can J Microbiol 3:113–123Google Scholar
  13. Colebatch G, Kloska S, Trevaski B, Freund S, Altman T, Udvardi MK (2002) Novel aspects of symbiotic nitrogen fixation uncovered by transcript profiling with cDNA arrays. Mol Plant Microbe Interact 15:411–420PubMedCrossRefGoogle Scholar
  14. Colebatch G, Desbrosses G, Ott T, Krusell L, Montanari O, Kloska S, Kopka J, Udvardi MK (2004) Global changes in transcription orchestrate metabolic differentiation during symbiotic nitrogen fixation in Lotus japonicus. Plant J 39:487–512PubMedCrossRefGoogle Scholar
  15. Cren M, Kondorosi A, Kondorosi E (1995) NolR controls expression of the Rhizobium meliloti nodulation genes involved in the core Nod factor synthesis. Mol Microbiol 15:733–747PubMedCrossRefGoogle Scholar
  16. Davis TM, Foster KW, Phillips DA (1985) Nodulation mutants in chickpea. Crop Sci 25:345–348CrossRefGoogle Scholar
  17. Davis JHC, Giller KE, Kipe-Nolt J, ad Awah M (1988) Non-nodulating mutants in common bean. Crop Sci 28:859–860CrossRefGoogle Scholar
  18. Delves AC, Mathews A, Day A, Carter AS, Carroll BJ, Gresshoff, PM (1986) Regulation of the soybean-Rhizobium nodule symbiosis by shoot and root factors. Plant Physiol 82:588–590PubMedGoogle Scholar
  19. Delves AC, Carroll BJ, Gresshoff, PM (1988) Genetic analysis and complementation studies in a number of mutant supernodulating soybean lines. J Genet 67:1–8Google Scholar
  20. Dénarié J, Debelle F, Prome J-C (1996) Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. Annu Rev Biochem 65:503–535PubMedCrossRefGoogle Scholar
  21. Devine TE, O’Neill JJ (1986) Registration of BARC-2 (Rj4) and Barc-3 (rj4) soybean germplasm. Crop Sci 26:1263–1264CrossRefGoogle Scholar
  22. Devine TE, O’Neill JJ (1993) Genetic independence of the nodulation-response gene loci-Rj1, Rj2, and Rj4-in soybean. J Hered 84:140–142Google Scholar
  23. El Yahyaoui F, Kuster H, Ben Amor B, Hohnjec N, Puhler A, Becker A, Gouzy J, Vernie T, Gough C, Niebel A, Godiard L, Gamas P (2004) Expression profiling in Medicago truncatula identifies more than 750 genes differentially expressed during nodulation, including many potential regulators of the symbiotic program. Plant Physiol 136:3159–3176PubMedCrossRefGoogle Scholar
  24. Endre G, Kereszt A, Kevei Z, Mihacea S, Kalo P, Kiss GB (2002) A receptor kinase regulating symbiotic nodule development. Nature 417:962–966PubMedCrossRefGoogle Scholar
  25. Fedorova M, van de Mortel J, Matsumoto PA, Cho, J, Town, CD, VandenBosch, KA, Gantt, JS, Vance, CP (2002) Genome-wide identification of nodule-specific transcripts in the model legume Medicago truncatula. Plant Physiol 130:519–537PubMedCrossRefGoogle Scholar
  26. Fellay R, Hanin M, Montorzi G, Frey J, Freiberg C, Golinowski W, Staehelin C, Broughton WJ, Jabbouri, S (1998) nodD2 of Rhizobium sp. NGR234 involved in the repression of the nodABC operon. Mol Microbiol 27:11039–11050CrossRefGoogle Scholar
  27. Geurts R, Fedorova E, Bisseling, T (2005) Nod factor signaling genes and their function in the early stages of Rhizobium infection. Curr Opin Plant Biol 8:346–352PubMedCrossRefGoogle Scholar
  28. Goormachtig S, Valerio-Lepiniex, M, Szczyglowski, K, Van Montagu M, Holsters M, de Bruijin FJ (1995) Use of differential display to identify novel Sesbania rostrata genes enhanced by Azorhizobium caulinodans infection. Mol Plant Microbe Interact 8:816–824PubMedGoogle Scholar
  29. Gremaud MF, Harper JE (1989) Selection and initial characterization of partially nitrate tolerant nodulation mutants of soybean. Plant Physiol 89:169–173PubMedGoogle Scholar
  30. Gresshoff PM (2003) Post-genomic insights into plant nodulation symbioses. Genome Biol 4:201–205PubMedCrossRefGoogle Scholar
  31. Gresshoff PM, Delves AC (1986) Plant genetic approaches to symbiotic nodulation and nitrogen fixation in legumes. Plant Gene Res 3:159–206Google Scholar
  32. Gresshoff PM, Olsson JE, Day DA, Schuller KA, Mathews A, Delves AC, KrotzKy A, Price GD, Carroll BJ (1987) Plant host genetics of nodulation in soybean. In: Verma DPS, Brisson N (eds) Molecular genetics of plant-microbe interactions. M. Nijhoff Publisher, Dordrecht, The Netherlands, pp 885–890Google Scholar
  33. Hohnjec N, Vieweg MF, Pühler A, Becker A, Küster H (2005) Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different Glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza. Plant Physiol 137:1283–1301PubMedCrossRefGoogle Scholar
  34. Israel DW, Mathis JN, Barbour WM, Elkan GH (1986) Symbiotic effectiveness and host-strain interactions of Rhizobium fredii USDA 191 on different soybean cultivars. Appl Environ Microbiol 51:898–903PubMedGoogle Scholar
  35. Jacobsen E, Feenstra WJ (1984) A new pea mutant with efficient nodulation in the presence of nitrate. Plant Sci Lett 33:337–344CrossRefGoogle Scholar
  36. Jorrín JV, Rubiales D, Dumas-Gaudot E, Recorbet G, Maldonado A, Castillejo MA, Curto M (2006) Proteomics: a promising approach to study biotic interaction in legumes. A review. Euphytica 147:37–47CrossRefGoogle Scholar
  37. Kim MY, Ha B-G, Jun T-H, Hwang E-Y, Van K, Kuk YI, Lee S-H (2004) Single nucleotide polymorphism discovery and linkage mapping of lipoxgenase-2 gene (Lx2) in soybean. Euphytica 135:169–177CrossRefGoogle Scholar
  38. Kim MY, Van K, Lestari P, Moon J-K, Lee S-H (2005) SNP identification and SNAP marker development for a GmNARK gene controlling supernodulation in soybean. Theor Appl Genet 110:1003–1010PubMedCrossRefGoogle Scholar
  39. Kistner C, Winzer T, Pitzschke A, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Webb KJ, Szczyglowski K, Parniske M (2005) Seven Lotus japonicus genes required for transcriptional reprogramming of the root during fungal and bacterial symbiosis. Plant Cell 17:2217–2229PubMedCrossRefGoogle Scholar
  40. Kneen BE, LaRue TA (1984) Nodulation resistant mutant of Pisum sativum (L.). J Hered 75:238–240Google Scholar
  41. Kneen BE, LaRue TA (1988) Induced symbiosis mutant pea (Pisum sativum) and sweetclover (Mililotus alba annua). Plant Sci 58:177–182CrossRefGoogle Scholar
  42. Knight CD, Rossen L, Robertson JG, Wells B, Downie JA (1986) Nodulation inhibition of Rhizobium leguminosarum multicopy nodABC genes and analysis of early stages of plant infection. J Bacteriol 166:552–558PubMedGoogle Scholar
  43. Kolchinsky A, Landau-Ellis D, Gresshoff PM (1997) Map order and linkage distance of molecular markers close to the supernodulation (nts-1) locus of soybean. Mol Genet Genomics 254:29–36CrossRefGoogle Scholar
  44. Kondorosi E, Gyuris J, Schmidt J, John M, Duda E, Hoffeman B, Schell J, Kondorosi A (1989) Positive and negative regulation of nod gene expression in Rhizobium meliloti is required for optimal nodulation. EMBO J 8:1331–1340PubMedGoogle Scholar
  45. Kosslak RM, Booklanf R, Barkei J, Paaren H, Appelbaum ER (1987) Induction of B. japonicum common nod genes by flavones isolated from Glycine max. Proc Natl Acad Sci USA 84:7428–7432PubMedCrossRefGoogle Scholar
  46. Kouchi H, Shimomura K, Hata S, Hirota A, Wu GJ, Kumagai H, Tajima S, Suganuma N, Suzuki A, Aoki T, Hayashi M, Yokoyama T, Ohyama T, Asamizu E, Kuwata C, Shibata D, Tabata S (2004) Large-scale analysis of gene expression profiles during early stages of root nodule formation in a model legume, Lotus japonicus. DNA Res 11:264–274CrossRefGoogle Scholar
  47. Krusell L, Madsen LH, Sato S, Aubet G, Genua A, Szczyglowski K, Duc G, Kaneko T, Tabata S, de Bruijin F, Pajuelo E, Sandal N, Stougaard J (2002) Shoot control of root development and nodulation in mediated by a receptor-like kinase. Nature 420:422–426PubMedCrossRefGoogle Scholar
  48. Küster H, Hohnjec N, Krajinski F, El Yahyaoui F, Manthey K, Gouzy J, Dondrup M, Meyer F, Kalinowski J, Brechenmacher L, van Tuinen D, Gianinazzi-Pearson V, Pühler A, Gamas P, Becker A (2004) Construction and validation of cDNA-based Mt6k-RIT macro- and micro-arrays to explore root endosymbioses in the model legume Medicago trauncatula. J Biotechnol 108:95–113PubMedCrossRefGoogle Scholar
  49. Küster H, Vieweg MF, Manthey K, Baier MC, Hohnjec N, Perlick AM (2007) Identification and expression regulation of symbiotically activated legume genes. Phytochemistry 68:8–18PubMedCrossRefGoogle Scholar
  50. Landau-Ellis D, Angemuller S, Shoemaker RC, Gresshoff PM (1991) The genetic locus controlling supernodulation in soybean (Glycine max L.) co-segregates tightly with a cloned molecular marker. Mol Genet Genomics 228:221–226Google Scholar
  51. Lee KH, LaRue TA (1992) Exogenous ethylene inhibits nodulation of Pisum sativum L. cv. Sparkle. Plant Physiol 100:1759–1763PubMedCrossRefGoogle Scholar
  52. Lee HS, Lee S-H (1998) Introduction, development, and characterization of supernodulating soybean mutant – nitrate inhibition of nodulation and nitrogen fixation in supernodulating soybean mutant. Korean J Crop Sci 43:23–27Google Scholar
  53. Lee SH, Ashley DA, Boerma HR (1991) Regulation of nodule development in supernodulating mutants and wild-type soybean. Crop Sci 31:688–693CrossRefGoogle Scholar
  54. Lee HS, Chae YA, Park EH, Kim YW, Yun KI, Lee SH (1997) Introduction, development, and characterization of supernodulating soybean mutant – mutagenesis of soybean and selection of supernodulating soybean mutant. Korean J Crop Sci 42:247–253Google Scholar
  55. Lee H, Hur C-G, Oh CJ, Kim HB, Park S-Y, An CS (2004) Analysis of the root nodule-enhanced transcriptome in soybean. Mol Cells 18:53–62PubMedGoogle Scholar
  56. Lestari P, Van K, Kim MY, Lee S-H (2005) Symbiotic effectiveness of Bradyrhizobium japonicum USDA 110 in a supernodulating soybean mutant SS2-2. Korean J Crop Sci 50:125–130Google Scholar
  57. Lestari P, Van K, Kim MY, Hwang CH, Lee S-H (2006a) Differentially expressed genes related to symbiotic association in a supernodulating soybean mutant and its wild type by cDNA-AFLP. Mol Plant Pathol 7:235–247CrossRefGoogle Scholar
  58. Lestari P, Van K, Kim MY, Lee B-W, Lee S-H (2006b) Newly featured infection events in a supernodulating soybean mutant SS2-2 by Bradyrhizobium japonicum. Can J Microbiol 52:328–335CrossRefGoogle Scholar
  59. Lie TA (1974) Environmental effects on nodulation and symbiotic nitrogen fixation. In: Quispel A (ed) The biology of nitrogen fixation. North-Holland Publishing Company, Amsterdam, pp 555–582Google Scholar
  60. Lievens S, Goormachtig S, Holsters M (2001) A critical evaluation of differential display as a tool to identify genes involved in legume nodulation: looking back and looking forward. Nucleic Acids Res 29:3459–3468PubMedCrossRefGoogle Scholar
  61. Loh J, Stacey G (2001) Feedback regulation of the Bradyrhizobium japonicum nodulation genes. Mol Microbiol 41:1357–1364PubMedCrossRefGoogle Scholar
  62. Loh J, Stacey G (2003) Nodulation gene regulation in Bradyrhizobium japonicum: a unique integration of global regulatory circuits. Appl Environ Microbiol 69:10–17PubMedCrossRefGoogle Scholar
  63. Lohar DP, Sharopova N, Endre G, Penuela S, Samac D, Town C, Silverstein KA, VandenBosch KA (2006) Transcript analysis of early nodulation events in Medicago truncatula. Plant Physiol 140:221–234PubMedCrossRefGoogle Scholar
  64. Lohnes DG, Wagner RE, Bernard RL (1993) Soybean genes Rj2, Rmd, and Rps2 in linkage group 19. J Hered 84:109–111Google Scholar
  65. Long SR (1989) Rhizobium-legume nodulation: life together in the underground. Cell 56:203–214PubMedCrossRefGoogle Scholar
  66. Long SR (1996) Rhizobium symbiosis: nod factors in perspective. Plant Cell 8:1885–1898PubMedCrossRefGoogle Scholar
  67. Long SR (2001) Genes and signals in the rhizobium-legume symbiosis. Plant Physiol 125:69–72PubMedCrossRefGoogle Scholar
  68. Maguire TL, Grimmond S, Forrest A, Iturbe-Ormaetxe I, Meksem K, Gresshoff PM (2002) Tissue-specific gene expression monitored by cDNA microarray analysis of soybean (Glycine max). J Plant Physiol 159:1361–1374CrossRefGoogle Scholar
  69. Manthey K, Krajinski F, Hohnjec N, Firnhaber C, Pühler A, Perlick AM, Küster H (2004) Transcriptome profiling in root nodules and arbuscular mycorrhiza identifies a collection of novel gene induced during Medicago truncatula root endosymbioses. Mol Plant Microbe Interact 17:1063–1077PubMedCrossRefGoogle Scholar
  70. Mathesius U, Keijzers G, Natera SH, Weinman JJ, Djordjevic MA, Rolfe BG (2001) Establishment of a root proteome reference map for the model legume Medicago truncatula using the expressed sequence tag database for peptide mass fingerprinting. Proteomics 1:1424–1440PubMedCrossRefGoogle Scholar
  71. Mathesius U, Imin N, Chen H, Djordjevic MA, Weinman JJ, Natera SH, Morris AC, Kerim T, Paul S, Menzel C, Weiller GF, Rolfe BG (2002) Evaluation of proteome reference maps for cross-species identification of proteins by peptide mass fingerprinting. Proteomics 2:1288–1303PubMedCrossRefGoogle Scholar
  72. Mathesius U, Mulders S, Gao MS, Teplitski M, Caetano-Anolles G, Rolfe BG, Bauer WD (2003) Extensive and specific responses of a eukaryotic to bacterial quorum-sensing signals. Proc Natl Acad Sci USA 100:1444–1449PubMedCrossRefGoogle Scholar
  73. Mathews A, Carroll BJ, Gresshoff PM (1987) Characterization of non-nodulation mutants of soybean (Glycine max [L.] Merril): Bradyrhizobium effects and absence of root hair curling. J Plant Physiol 131:349–361Google Scholar
  74. Matthews BF, Devine TE, Weisemann JM, Beard HS, Lewers KS, MacDonald MH, Park Y-B, Maiti R, Lin J-J, Kuo J, Pedroni MJ, Cregan PB, Saunders JA (2001) Incorporation of sequenced cDNA and genomic markers into the soybean genetic map. Crop Sci 41:516–521CrossRefGoogle Scholar
  75. Men AE, Laniya TS, Iturbe-Dramaetxe I, Gresshoff I, Jiang Q, Carroll BJ, Gresshoff PM (2002) Fast neutron mutagenesis of soybean (Glycine soja L.) produces a supernodulating mutant containing a large deletion in Linkage group H. Genome Lett 3:147–155CrossRefGoogle Scholar
  76. Mitra RM, Long SR (2004) Plant and bacterial symbiotic mutants define three transcriptionally distinct stages in the development of the Medicago truncatula/Sinorhizobium meliloti symbiosis. Plant Physiol 134:595–604PubMedCrossRefGoogle Scholar
  77. Mitra RM, Shaw SL, Long SR (2004) Six nonnodulating plant mutants defective for Nod-factor-induced transcriptional changes associated with the legume-Rhizobia symbiosis. Proc Natl Acad Sci USA 101:10217–10222PubMedCrossRefGoogle Scholar
  78. Morris AC, Djordjevic MA (2001) Proteome analysis of cultivar-specific interaction between Rhizobium leguminosarum biovar trifolii and subterranean clover cultivar Woogenellup. Electrophoresis 22: 586–598PubMedCrossRefGoogle Scholar
  79. Mylona P, Pawlowski K, Bisseling T (1995) Symbiotic nitrogen fixation. Plant Cell 7:869–885PubMedCrossRefGoogle Scholar
  80. Natera SHA, Guerreiro N, Djordjevic MA (2000) Proteome analysis of differentially displayed protein as a tool for the investigation of symbiosis. Mol Plant Microbe Interact 13:995–1009PubMedCrossRefGoogle Scholar
  81. Nishimura R, Hayashi M, Wu, GJ, Kouchi H, Imaizumi-Anraku, H, Murakami Y, Kawasaki S, Akao S, Ohmori M, Nagasawa M, Harada K, Kawaguchi M (2002) HAR1 mediates systemic regulation of symbiotic organ development. Nature 420:426–429PubMedCrossRefGoogle Scholar
  82. Nukui N, Ezura H, Yuhashi K, Yasuta T, Minamisawa G (2000) Effects of ethylene precursor and inhibitors for ethylene biosynthesis and perception on nodulation in Lotus japonicus and Macroptilium atropurpureum. Plant Cell Physiol 41:893–897PubMedCrossRefGoogle Scholar
  83. Oldroyd GED (2001) Dissecting symbiosis: development in Nod factor signal transduction. Ann Bot 87:709–718CrossRefGoogle Scholar
  84. Olsson JE, Nakao P, Bohlool B, Gresshoff PM (1989) Lack of systemic suppression of nodulation in split root systems of supernodulating soybean mutants. Plant Physiol 73:286–290Google Scholar
  85. Park SJ, Buttery BR (1988) Nodulation mutants of white bean (Phaseolus vulgaris L.) induced by ethyl-methane sulphonate. Can J Plant Sci 68:199–202Google Scholar
  86. Patner S, Thompson R, de Bruxelles G, Laver D, Trevaskis B, Udvardi M (2000) Identification with proteomics of novel proteins associated with the peribacteriod membrane of soybean root nodules. Mol Plant Microbe Interact 13:325–333CrossRefGoogle Scholar
  87. Pierce M, Bauer WD (1983) A rapid regulatory response governing nodulation in soybean. Plant Physiol 73:286–290PubMedGoogle Scholar
  88. Pracht JE, Nickell CD, Harper JE (1993) Genetic analysis of a hypernodulating mutant of soybean. Soybean Genet Newsl 20:107–111Google Scholar
  89. Riely BK, Ané J-M, Penmetsa RV, Cook DR (2004) Genetic and genomic analysis in model legumes bring nod-factor signaling to center stage. Curr Opin Plant Biol 7:408–413PubMedCrossRefGoogle Scholar
  90. Rolfe BG, Mathesius U, Djordjevic M, Weinman J, Hocart C, Weiller G, Bauer WD (2003) Proteomic analysis of legume–microbe interactions. Comp Funct Genomics 4:225–228CrossRefPubMedGoogle Scholar
  91. Saalbach G, Erik P, Wienkoop S (2002) Characterization by proteomics of peribacteriod space and peribacteriod membrane preparations from pea (Pisum sativum) symbiosomes. Proteomics 2:325–337PubMedCrossRefGoogle Scholar
  92. Sato S, Tabata S (2006) Lotus japonicus as a platform for legume research. Curr Opin Plant Biol 9:128–132PubMedCrossRefGoogle Scholar
  93. Schauser L, Roussis A, Stiller J, Stougarrd J (1999) A plant regulator controlling development of symbiotic root nodules. Nature 402:191–195PubMedCrossRefGoogle Scholar
  94. Schmidt JS, Harper JE, Hoffman TK, Bent AF (1999) Regulation of soybean nodulation independent of ethylene signaling. Plant Physiol 119:951–959PubMedCrossRefGoogle Scholar
  95. Schnabel E, Journet EP, de Carvalho-Niebel F, Duc G, Frugoli J (2005) The Medicago truncatula SUNN gene encodes a CLV1-like leucine-rich repeat receptor kinase that regulates nodule number and root length. Plant Mol Biol 58:809–822PubMedCrossRefGoogle Scholar
  96. Schultze M, Kondorosi A (1998) Regulation of symbiotic root nodule development. Ann Rev Genet 32:33–57PubMedCrossRefGoogle Scholar
  97. Searle IR, Men AM, Laniya TS, Buzas DM, Iturbe-Ormaetxe I, Caroll BJ, Gresshoff PM (2003) Long-distance signaling for nodulation control in legumes requires a CLAVATA1-like receptor kinase. Science 299:109–112PubMedCrossRefGoogle Scholar
  98. Shoemaker RC, Schlueter J, Doyle JJ (2006) Paleopolyploidy and gene duplication in soybean and other legumes. Curr Opin Plant Biol 9:104–109PubMedCrossRefGoogle Scholar
  99. Simoes-Araujo JL, Rodrigues RL, de A Gerhardt LB, Mondego JM, Alves-Ferreira M, Rumjanek NG, Margis-Pinheiro M (2002) Identification of differentially expressed gene by cDNA-AFLP technique during heat stress in cowpea nodules. FEBS Lett 515:44–50PubMedCrossRefGoogle Scholar
  100. Stacey G, Libault M, Brenchenmacher L, Wan J, May GD (2006) Genetics and functional genomics of legume nodulation. Curr Opin Plant Biol 9:110–121PubMedCrossRefGoogle Scholar
  101. Starker CG, Parra-Colmenares AL, Smith L, Mitra RM, Long SR (2006) Nitrogen fixation mutants of Medicago truncatula fail to support plant and bacterial symbiotic gene expression. Plant Physiol 140:671–680PubMedCrossRefGoogle Scholar
  102. Stracke S, Kistner C, Yoshida S, Mulder I, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Szczyglowski K, Parniske M (2002) A plant receptor-like kinase requires for both bacterial and fungal symbiosis. Nature 417:959–962PubMedCrossRefGoogle Scholar
  103. Sutton SD (1983) Nodule development and senescence. In: Broughton WJ (ed) Nitrogen fixation, Vol. 3. Legumes, Clarendon Press, Oxford, pp 144–209Google Scholar
  104. Tanner JW, Anderson IC (1963) Investigations on non-nodulating and nodulating soybean strains. Can J Plant Sci 43:542–545CrossRefGoogle Scholar
  105. Tesfaye M, Samac DA, Vance CP (2006) Insights into symbiotic nitrogen fixation in Medicago truncatula. Mol Plant Microbe Interact 19:330–341PubMedCrossRefGoogle Scholar
  106. Town CD (2006) Annotating the genome of Medicago truncatula. Curr Opin Plant Biol 9:122–127PubMedCrossRefGoogle Scholar
  107. Trevaskis B, Colebatch G, Desbrosses G, Wandrey M, Wienkoop S, Saalbach G, Udvardi M (2002) Differentiation of plant cells during symbiotic nitrogen fixation. Compar Funct Genomics 3:151–157CrossRefGoogle Scholar
  108. Van K, Kim K-S, Ha B-K, Jun T-H, Jang H-J, Kim MY, Lee S-H (2005) Molecular marker characterization of a supernodulating soybean mutant, SS2-2. Korean J Breeding 37:35–42Google Scholar
  109. Vance CP, Egli MN, Griffith SM, Miller SS (1988) Plant regulated aspects of nodulation and N fixation. Plant, Cell Environ 11:413–427CrossRefGoogle Scholar
  110. Vest G (1970) Rj – a gene conditioning ineffective nodulation in soybean. Crop Sci 10:34–35CrossRefGoogle Scholar
  111. Vest G, Caldwell BE (1972) Rj4-a gene conditioning ineffective nodulation in soybean. Crop Sci 12:692–693CrossRefGoogle Scholar
  112. Vuong TD, Harper JE (2000) Inheritance and allelism analysis of hypernodulating genes in the NOD3-7 and NOD2-4 soybean mutants. Crop Sci 40:700–703CrossRefGoogle Scholar
  113. Wan J, Torres M, Ganapathy A, Thelen J, DaGue BB, Mooney B, Xu D, Stacey G (2005) Proteomic analysis of soybean root hairs after infection by Brayrhizobium japonicum. Mol Plant Microbe Interact 18:458–467PubMedCrossRefGoogle Scholar
  114. William LF, Lynch DL (1954) Inheritance of a non-nodulating character in the soybean. Agron J 46:28–29CrossRefGoogle Scholar
  115. Winzer T, Bairl A, Linder M, Linder D, Werner D, Müller P (1999) A novel 53–kDa nodulin of the symbiosome membrane of soybean nodules, controlled by Brayrhizobium japonicum. Mol Plant Microbe Interact 12:218–228PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Kyujung Van
    • 1
  • Moon Young Kim
    • 1
    • 2
  • Suk-Ha Lee
    • 1
    • 2
  1. 1.Department of Plant ScienceSeoul National UniversityThe Republic of Korea
  2. 2.Research Institute for Agriculture and Life SciencesSeoul National UniversityThe Republic of Korea

Personalised recommendations