Life strategy, ecophysiology and ecology of seaweeds in polar waters

  • C. Wiencke
  • M. N. Clayton
  • I. Gómez
  • K. Iken
  • U. H. Lüder
  • C. D. Amsler
  • U. Karsten
  • D. Hanelt
  • K. Bischof
  • K. Dunton
Review

Abstract

Polar seaweeds are strongly adapted to the low temperatures of their environment, Antarctic species more strongly than Arctic species due to the longer cold water history of the Antarctic region. By reason of the strong isolation of the Southern Ocean the Antarctic marine flora is characterized by a high degree of endemism, whereas in the Arctic only few endemic species have been found so far. All polar species are strongly shade adapted and their phenology is finely tuned to the strong seasonal changes of the light conditions. The paper summarises the present knowledge of seaweeds from both polar regions with regard to the following topics: the history of seaweed research in polar regions; the environment of seaweeds in polar waters; biodiversity, biogeographical relationships and vertical distribution of Arctic and Antarctic seaweeds; life histories and physiological thallus anatomy; temperature demands and geographical distribution; light demands and depth zonation; the effect of salinity, temperature and desiccation on supra-and eulittoral seaweeds; seasonality of reproduction and the physiological characteristics of microscopic developmental stages; seasonal growth and photosynthesis; elemental and nutritional contents and chemical and physical defences against herbivory. We present evidence to show that specific characteristics and adaptations in polar seaweeds help to explain their ecological success under environmentally extreme conditions. In conclusion, as a perspective and guide for future research we draw attention to many remaining gaps in knowledge.

Keywords

Chemical ecology Freezing Growth Light Phenology Photosynthesis Polar algae Salinity Seaweeds Temperature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguilera J, Bischof K, Karsten U, Hanelt D, Wiencke C (2002) Seasonal variation in ecological patterns in macroalgae from an Arctic fjord. II. Pigment accumulation and biochemical defence systems against high light stress. Mar Biol 140:1087–1095CrossRefGoogle Scholar
  2. Amsler CD, Fairhead VA (2006) Defensive and sensory chemical ecology of brown algae. Adv Bot Res 43:1–91Google Scholar
  3. Amsler CD, Neushul M (1991) Photosynthetic physiology and chemical composition of spores of the kelps Macrocystis pyrifera, Nereocystis luetkeana, Laminaria farlowii, and Pterygophora californica (Phaeophyceae). J Phycol 27:26–34CrossRefGoogle Scholar
  4. Amsler CD, Laur DR, Quetin LB, Rowley RJ, Ross R, Neushul M. (1990) Quantitative analysis of the vertical distribution of overstory macroalgae near Anvers Island. Antarctica. Antarctic J US 25:201–202Google Scholar
  5. Amsler CD, Rowley RJ, Laur DR, Quetin LB, Ross RM (1995) Vertical distribution of Antarctic Peninsular macroalgae: cover, biomass and species composition. Phycologia 34:424–430Google Scholar
  6. Amsler CD, McClintock JB, Baker BJ (1998) Chemical defenses against herbivory in the Antarctic marine macroalgae Iridaea cordata and Phyllophora antarctica (Rhodophyceae). J Phycol 34:53–59CrossRefGoogle Scholar
  7. Amsler CD, Iken KB, McClintock JB, Baker BJ (2001) Secondary metabolites from Antarctic organisms and their ecological implications. In: McClintock JB, Baker BJ (eds) Marine chemical ecology. CRC Press, Boca Raton, pp 267–300Google Scholar
  8. Amsler CD, Okogbue IN, Landry DM, Amsler MO, McClintock JB, Baker BJ (2005a) Potential chemical defenses against diatom fouling in Antarctic macroalgae. Bot Mar 48:318–322CrossRefGoogle Scholar
  9. Amsler CD, Iken K, McClintock JB, Amsler MO, Peters KJ, Hubbard JM, Furrow FB, Baker BJ (2005b) Comprehensive evaluation of the palatability and chemical defenses of subtidal macroalgae from the Antarctic Pensinsula. Mar Ecol Prog Ser 294:141–159Google Scholar
  10. Andersson B, Salter AH, Virgin I, Vass I, Styring S (1992) Photodamage to photosystem II-primary and secondary events. J Photochem Photobiol B: Biol 15:15–31CrossRefGoogle Scholar
  11. Ankisetty S, Nandiraju S, Win H, Park YC, Amsler CD, McClintock JB, Baker JA, Diyabalanage TK, Pasaribu A, Singh MP, Maiese WM, Walsh RD, Zaworotko MJ, Baker BJ (2004) Chemical investigation of predator-deterred macroalgae from the Antarctic Peninsula. J Nat Prod 67:1295–1302PubMedCrossRefGoogle Scholar
  12. Arnoud PM (1974) Contributions à la binomie marine bentique des régions Antarctiques et subantarctiques. Thethys 6:465–653Google Scholar
  13. Arnold KE, Manley SL (1985) Carbon allocation in Macrocystis pyrifera (Phaeophyta): intrinsic variability in photosynthesis and respiration. J Phycol 21:147–167Google Scholar
  14. Aro EM, Virgin I, Andersson B (1993) Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim Biophys Acta 1143:113–134PubMedCrossRefGoogle Scholar
  15. Asada K, Takahashi M (1987) Production and scavenging of active oxygen in photosynthesis. In: Kyle DJ, Osmond CB, Arntzen CJ (eds) Photoinhibition. Topics in photosynthesis, vol 9. Elsevier Science Publishers, Amsterdam, pp 89–109Google Scholar
  16. Atkinson M, Smith S (1983) C:N:P ratios of benthic marine plants. Limnol Oceanogr 28:568–574CrossRefGoogle Scholar
  17. de Baar HWJ (1994) Von Liebig’s law of the minimum and plankton ecology. Progr Oceoanogr 33:347–386CrossRefGoogle Scholar
  18. de Baar HJW, de Jong JTM, Bakker DCE, Löscher BM, Veth C, Bathmann U, Smetacek, V (1995) Importance of Iron for Plankton Blooms and Carbon Dioxide Drawdown in the Southern Ocean. Nature 373:412–415CrossRefGoogle Scholar
  19. Becker EW (1982) Physiological studies on Antarctic Prasiola crispa and Nostoc commune at low temperatures. Polar Biol 1:99–104Google Scholar
  20. Bird CJ, Mc Lachlan JL (1992) Seaweed flora of the Maritimes, I. Rhodophyta-The red algae. Biopress Ltd. BristolGoogle Scholar
  21. Bischof K, Gómez J, Molis M, Hanelt D, Karsten U, Lüder UH, Roleda U, Zacher K, Wiencke C (2006) UV radiation shapes seaweed communities. Rev Environ Sci Biotechnol (in press)Google Scholar
  22. Bischoff B, Wiencke C (1993) Temperature requirements for growth and survival of macroalgae from Disko-Island (Greenland). Helgol Mar Res 47:167–191Google Scholar
  23. Bischoff B, Wiencke C (1995a) Temperature ecotypes and biogeography of Acrosiphoniales (Chlorophyta) with Arctic-Antarctic disjunct and Arctic/cold-temperate distributions. Eur J Phycol 30:19–27CrossRefGoogle Scholar
  24. Bischoff B, Wiencke C (1995b) Temperature adaptation in strains of the amphi-equatorial green alga Urospora penicilliformis (Acrosiphoniales) – biogeographical implications. Mar Biol 122:681–688CrossRefGoogle Scholar
  25. Bischoff-Bäsmann B, Wiencke C (1996) Temperature requirements for growth and survival of Antarctic Rhodophyta. J Phycol 32:525–535CrossRefGoogle Scholar
  26. Bolser RC, Hay ME (1996) Are tropical plants better defended? Palatability and defenses of temperate vs tropical seaweeds. Ecology 77:2269–2286CrossRefGoogle Scholar
  27. Bolton JJ, Lüning K (1982) Optimal growth and maximal survival temperatures of Atlantic Laminaria species (Phaeophyta) in culture. Mar Biol 66:89–94CrossRefGoogle Scholar
  28. Brand TE (1974) Trophic interactions and community ecology of the shallow-water marine benthos along the Antarctic Peninsula. PhD Dissertation, University of California, Davis, pp 1–220Google Scholar
  29. Breeman AM (1988) Relative importance of temperatures and other factors in determining geographic boundaries of seaweeds: experimental and phenological evidence. Helgoländer Meeresunters 42:199–241CrossRefGoogle Scholar
  30. Brouwer PEM (1996) In situ photosynthesis and estimated annual production of the red macroalga Myriogramme mangini in relation to underwater irradiance at Signy Island (Antarctica). Antarctic Sci 8:245–252Google Scholar
  31. Brown AD, Simpson JR (1972) Water relations of sugar-tolerant yeasts: the role of intracellular polyols. J General Microbiol 72:589–591Google Scholar
  32. Buggeln RG (1983) Photoassimilate translocation in brown algae. Progr Phycol Res 2:283–332Google Scholar
  33. Cabello-Pasini A, Alberte RS (2001) Expression of carboxylating enzymes in Laminaria setchelli (Phaeophyceae). Phycologia 40:351–358CrossRefGoogle Scholar
  34. Chapman ARO, Craigie JS (1977) Seasonal growth in Laminaria longicruris: relation with dissolved inorganic nutrients and internal reserves of nitrogen. Mar Biol 40:197–205CrossRefGoogle Scholar
  35. Chapman ARO, Craigie JS (1978) Seasonal growth in Laminaria longicruris: relations with reserve carbohydrate storage and production. Mar Biol 46:209–213CrossRefGoogle Scholar
  36. Chapman ARO, Lindley JE (1980). Seasonal growth of Laminaria longicruris in the High Arctic in relation to irradiance and dissolved nutrient concentration. Mar Biol 57:1–5CrossRefGoogle Scholar
  37. Clarke DL (1990) Arctic Ocean ice cover; geologic history and climatic significance. In: Grantz A, Johnson L, Sweeney JL (eds) The Arctic Ocean region. Geol. Soc. America, Boulder Colo, pp 53–62Google Scholar
  38. Clarke A, Barnes KA, Hodgson DA (2005) How isolated is Antarctica. Trends Ecol Evol 20:1–3PubMedCrossRefGoogle Scholar
  39. Clayton MN (1987) Isogamy and a fucalean type of life history in the Antarctic brown alga Ascoseira mirabilis (Ascoseirales, Phaeophyta). Bot Mar 30:447–455Google Scholar
  40. Clayton, MN (1988) Evolution and life histories of brown algae. Bot Mar 31:379–387Google Scholar
  41. Clayton MN, Ashburner CM (1990) The anatomy and ultrastructure of "conducting channels" in Ascoseira mirabilis (Ascoseirales, Phaeophyceae). Bot Mar 33:63–70Google Scholar
  42. Clayton MN, Wiencke C (1990) The anatomy, life history and development of the Antarctic brown alga Phaeurus antarcticus (Desmarestiales, Phaeophyceae). Phycologia 29:303–315Google Scholar
  43. Clayton MN, Wiencke C, Klöser H (1997) New records of temperate and sub-Antarctic marine benthic macroalgae from Antarctica. Polar Biol 17:141–149CrossRefGoogle Scholar
  44. CLIMAP Project Members (1981) Seasonal re constructions of the earths surface at the last glacial masimum. The Geol. Soc. of America Map and Chart Service MC-36, Washington DCGoogle Scholar
  45. Cormaci M, Furnari G, Scammacca B (1992) The benthic algal flora of Terra Nova Bay (Ross Sea, Antarctica). Bot Mar 35:541–552Google Scholar
  46. Crame JA (1993) Latitudinal range fluctuations in the marine realm through geological time. Trends Ecol Evol 8:162–266CrossRefGoogle Scholar
  47. Cross WE, Wilce RT, Fabijan MF (1987). Effects of experimental releases of oil and dispersed oil on Arctic nearshore macrobenthos. III, Macroalgae. Arctic 40(Suppl. 1):211–219Google Scholar
  48. Czerpak R, Mical A, Gutkowski R, Siegien I (1981) Chemism of some species of Antarctic macroalgae of the genera Adenocystis, Himantothallus, Leptosomia, and Monostroma. Pol Polar Res 2:95–107Google Scholar
  49. Davey MC (1989) The Effects of freezing and desiccation on photosynthesis and survival of terrestrial Antarctic algae and cyanobacteria. Polar Biol 10:29–36CrossRefGoogle Scholar
  50. Davison IR (1991) Environmental effects on algal photosynthesis: temperature. J Phycol 27:2–8CrossRefGoogle Scholar
  51. Deacon GER (1937) The hydrology of the Southern Ocean. Discovery Rep 15:125–152Google Scholar
  52. DeLaca TE, Lipps JH (1976) Shallow-water marine associations, Antarctic Peninsula. Antarctic J 11:12–20Google Scholar
  53. Delépine R, Lamb JM, Zimmermann MH (1966) Preliminary report on the vegetation of the Antarctic Peninsula. Proc 5th Int Seaweed Symp, pp 107–116Google Scholar
  54. Demmig-Adams B, Adams III WW (1992) Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol 43:599–626CrossRefGoogle Scholar
  55. Dethier MN (1981) Heteromorphic algal life histories: the seasonal pattern and response to herbivory of the brown crust, Ralfsia californica. Oecologia (Berl.) 49:333–339CrossRefGoogle Scholar
  56. Dhargalkar V, Reddy C, Deshmukhe G, Unatawale A (1987) Biochemical composition of some benthic marine algae of the Vestfold Hills. Antarctica Indian J Mar Sci 16:269–271Google Scholar
  57. tom Dieck I (Bartsch) (1991) Circannual growth rhythm and photoperiodic sorus induction in the kelp Laminaria setchellii (Phaeophyta). J Phycol 27:341–350Google Scholar
  58. tom Dieck I (1992) North Pacific and North Atlantic digitate Laminaria species (Phaeophyta): hybridisation experiments and temperature responses. Phycologia 31:147–163Google Scholar
  59. tom Dieck I (1993) Temperature tolerance and survival in darkness of kelp gametophytes (Laminariales, Phaeophyta): ecological and biogeographical implications. Mar Ecol Prog Ser 100:253–264Google Scholar
  60. Dieckmann G, Reichardt W, Zielinski K (1985) Growth and production of the seaweed, Himantothallus grandifolius, at King George Island. In: Siegfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cycles and food webs. Springer-Verlag, Berlin Heidelberg, pp 104–108Google Scholar
  61. Drew EA (1977) The physiology of photosynthesis and respiration in some Antarctic marine algae. Br Antarct Surv Bull 46:59–76Google Scholar
  62. Drew EA, Hastings RM (1992) A year-round ecophysiological study of Himantothallus grandifolius (Desmarestiales, Phaeophyta) at Signy Island. Antarctica. Phycologia 31:262–277Google Scholar
  63. Dring MJ, Makarov V, Schoschina E, Lorenz M, Lüning K (1996) Influence of ultraviolet radiation on chlorophyll fluorescence and growth in different life history stages of three species of Laminaria (Phaeophyta). Mar Biol 126:183–191CrossRefGoogle Scholar
  64. Duffy J, Paul V (1992) Prey nutritional quality and effectiveness of chemical defenses against tropical reef fishes. Oecologia 90:333–339CrossRefGoogle Scholar
  65. Dummermuth AL, Wiencke C (2003) Experimental investigation of seasonal development in six Antarctic red macroalgae. Antarct. Sci. 15:449–457CrossRefGoogle Scholar
  66. Dunton KH (1985) Growth of dark-exposed Laminaria saccharina (L.) Lamour and Laminaria solidungula J. Ag (Laminariales: Phaeophyta) in the Alaskan Beaufort Sea. J Exp Mar Biol Ecol 94:181–189CrossRefGoogle Scholar
  67. Dunton KH (1990) Growth and production in Laminaria solidungula: relation to continuous underwater light levels in the Alaskan high Arctic. Mar Biol 106:297–304CrossRefGoogle Scholar
  68. Dunton KH (1992) Arctic biogeography: the paradox of the marine benthic fauna and flora. Trends Ecol Evol 7:183–189CrossRefGoogle Scholar
  69. Dunton KH (2001) δ15N and δ13C measurements of Antarctic Peninsula fauna: trophic relationships and assimilation of benthic seaweeds. Am Zool 41:99–112CrossRefGoogle Scholar
  70. Dunton, KH, Dayton, PK (1995) The biology of high latitude kelp. In: Skjoldal HR (ed) Ecology of fjords and coastal waters: proceedings of the Mare Nor symposium on the ecology of fjords and coastal waters, Tromso, Norway, 5–9 December 1994. Elsevier, Amsterdam, pp 499–507Google Scholar
  71. Dunton KH, Jodwalis CM (1988) Photosynthetic performance of Laminaria solidungula measured in situ in the Alaskan High Arctic. Mar Biol 98:277–285CrossRefGoogle Scholar
  72. Dunton KH, Schell DM (1986) Seasonal carbon budget and growth of Laminaria solidungula in the Alaskan High Arctic. Mar Ecol Prog Ser 31:57–66Google Scholar
  73. Dunton KH, Schell DM (1987) Dependence of consumers on macroalgal (Laminaria solidungula) carbon in an arctic kelp community: δ13C evidence. Mar Biol 93:615–625CrossRefGoogle Scholar
  74. Dunton KH, Schonberg SV (2000) The benthic faunal assemblage of the Boulder Patch kelp community. In: Johnson SR, Truett JC (eds) The natural history of an Arctic oil field. Academic Press, San Diego, pp 372–397Google Scholar
  75. Dunton KH, Reimnitz E, Schonberg S (1982) An arctic kelp community in the Alaskan Beaufort Sea. Arctic 35:465–484Google Scholar
  76. Eggert A, Wiencke C (2000) Adaptation and acclimation of growth and photosynthesis of five Antarctic red algae to low temperatures. Polar Biol 23:609–618CrossRefGoogle Scholar
  77. Fain SR, Murray SN (1982) Effects of light and temperature on net photosynthesis and dark respiration of gametophytes and embryonic sporophytes of Macrocystis pyrifera. J Phycol 18:92–98CrossRefGoogle Scholar
  78. Fairhead VA, Amsler CD, McClintock JB, Baker BJ (2005a) Within-thallus variation in chemical and physical defences in two species of ecologically dominant brown macroalgae from the Antarctic Peninsula. J Exp Mar Biol Ecol 322:1–12CrossRefGoogle Scholar
  79. Fairhead VA, Amsler CD, McClintock JB, Baker BJ (2005b) Variation in phlorotannin content within two species of brown macroalgae (Desmarestia anceps and D. menziesii) from the Western Antarctic Peninsula. Polar Biol 28:680–686CrossRefGoogle Scholar
  80. Falkowski PG, Raven J (1997) Aquatic photosynthesis. Blackwell ScienceGoogle Scholar
  81. Gagne J, Mann K,, Chapman ARO (1982) Seasonal patterns of growth and storage in Laminaria longicruris in relation to differing patterns of availability of nitrogen in the water. Mar Biol 69:91–101CrossRefGoogle Scholar
  82. Gain L (1912) La flore algologique des régions antarctiques et subantarctiques. In: Charcot J (ed) Deuxième expédition Antarctique française (1908–1910). Sciences naturelles: Documents scientifiques, tome 8. Masson et Companie, Paris, pp 1–218Google Scholar
  83. Gerland S, Lind B, Dowdall M, Karcher M, Kolstad AK (2003) 99Tc in seawater in the West Spitsbergen Current and adjacent areas. J Environ Radioactivity 69:119–127CrossRefGoogle Scholar
  84. Godley EJ (1965) Botany of the southern zone. Exploration to 1843, Tuatara 13:140–181Google Scholar
  85. Gómez I, Lüning K (2001) Constant short-day treatment of outdoor-cultivated Laminaria digitata prevents summer drop in growth rate. Eur J Phycol 36:391–395CrossRefGoogle Scholar
  86. Gómez I, Westermeier R (1995) Energy contents and organic constituents in Antarctic and south Chilean marine brown algae. Polar Biol 15:597–602Google Scholar
  87. Gómez I, Wiencke C (1996a) Photosynthesis, dark respiration and pigment contents of gametophytes and sporophytes of the Antarctic brown alga Desmarestia menziesii. Bot Mar 39: 149–157Google Scholar
  88. Gómez, Wiencke C (1996b) Seasonal growth and photosynthetic performance of the Antarctic macroalga Desmarestia menziesii (Phaeophyceae) cultivated under fluctuating Antarctic daylengths, Bot Acta 110:25–31Google Scholar
  89. Gómez I, Wiencke C (1997) Seasonal growth and photosynthetic performance of the Antarctic macroalga Desmarestia menziesii (Phaeophyceae) cultivated under fluctuating Antarctic daylengths. Bot Acta 110:25–31Google Scholar
  90. Gómez I, Wiencke C (1998) Seasonal changes in C, N, and major organic compounds and their significance to morphofunctional processes in the endemic Antarctic brown alga Ascoseira mirabilis. Polar Biol 19:115–124CrossRefGoogle Scholar
  91. Gómez I, Thomas DN, Wiencke C (1995a) Longitudinal profiles of growth, photosynthesis and light independent carbon fixation in the Antarctic brown alga Ascoseira mirabilis. Bot Mar 38:157–164Google Scholar
  92. Gómez I, Wiencke C, Weykam G (1995b) Seasonal photosynthetic characteristics of the brown alga Ascoseira mirabilis from King George Island (Antarctica). Mar Biol 123:167–172CrossRefGoogle Scholar
  93. Gómez I, Wiencke C, Thomas DN (1996) Variations in photosynthetic characteristics of the Antarctic marine brown alga Ascoseira mirabilis in relation to thallus age and size. Eur J Phycol 31:167–172CrossRefGoogle Scholar
  94. Gómez I, Weykam G, Wiencke C (1998) Seasonal photosynthetic metabolism and major organic compounds in the marine brown alga Desmarestia menziesii from King George Island (Antarctica). Aquat Bot 60:105–118CrossRefGoogle Scholar
  95. Gómez I, Weykam G, Klöser H, Wiencke C (1997) Photosynthetic light requirements, daily carbon balance and zonation of sublittoral macroalgae from King George Island (Antarctica). Mar Ecol Progr Ser 148:281–293Google Scholar
  96. Graeve M, Dauby P, Scailteur Y (2001) Combined lipid, fatty acid and digestive tract content analyses: a penetrating approach to estimate feeding modes of Antarctic amphipods. Polar Biol 24:853–862CrossRefGoogle Scholar
  97. Gutkowski R, Maleszewski S (1989) Seasonal changes of the photosynthetic capacity of the Antarctic macroalga Adenocystis utricularis (Bory) Skottsberg. Polar Biol 10:145–148CrossRefGoogle Scholar
  98. Gutt J (2001) On the direct impact of ice on Marine Benthic communities, a review. Polar Biol 24:553–564CrossRefGoogle Scholar
  99. Gwynn JP, Dowdall M, Gerland S, SelnæsØG, Wiencke C (2004) Technetium-99 in Arctic marine algae from Kongsfjorden. Svalbard Ber Polarforsch Meeresforsch 492:35–45Google Scholar
  100. Hanelt D (1998) Capability of dynamic photoinhibition in Arctic macroalgae is related to their depth distribution. Mar biol 131:361–369CrossRefGoogle Scholar
  101. Hanelt D, Jaramillo J, Nultsch W, Senger S, Westermeier R (1994) Photoinhibitioin as a regulative mechanism of photosynthesis in marine algae of Antarctica. Ser Cient INACH 44:67–77Google Scholar
  102. Hanelt D, Melchersmann B, Wiencke C, Nultsch W (1997) Effects of high light stress on photosynthesis of polar macroalgae in relation to depth distribution. Mar Ecol Prog Ser 149:255–266Google Scholar
  103. Hanelt D, Tüg H, Bischof K, Gross C, Lippert H, Sawall T, Karsten U, Wiencke C (2001) Light regime in an Arctic fjord: a study related to Stratospheric Ozone depletion as a basis for determination of UV effects on algal growth. Mar Biol 138:649–658CrossRefGoogle Scholar
  104. Hanelt D, Wiencke C, Bischof K (2003) Photosynthesis in marine Macroalgae. In: Larkum AW, Douglas SE, Raven JA (eds) Photosynthesis in algae. Kluwer Academic Publisher, Dordrecht, pp 413–435Google Scholar
  105. Hatcher BG, Chapman ARO, Mann KH (1977) An annual carbon budget for the kelp Laminaria longicruris. Mar Biol 44:85–96CrossRefGoogle Scholar
  106. Healey FP (1972) Photosynthesis and respiration of some Arctic seaweeds. Phycologia 11:267–271Google Scholar
  107. Hempel G (1987) Die Polarmeere – ein biologischer Vergleich. Polarforsch 57:173–189Google Scholar
  108. Henley WJ, Dunton KH (1995) A seasonal comparison of carbon, nitrogen, and pigment content in Laminaria solidungula and L. saccharina (Phaeophyta) in the Alaskan Arctic. J Phycol 31:325–331CrossRefGoogle Scholar
  109. Henley WJ, Dunton KH (1997) Effects of nitrogen supply and continuous darkness on growth and photosynthesis of the arctic kelp Laminaria solidungula. Limnol Oceanogr 42:209–216CrossRefGoogle Scholar
  110. van den Hoek C (1982a) Phytogeographic distribution groups of benthic marine algae in the North Atlantic Ocean. A review of experimental evidence from life history studies. Helgoländer Meeresunters 35:153–214CrossRefGoogle Scholar
  111. van den Hoek C (1982b) The distribution of benthic marine algae in relation to the temperature regulation of their life histories. Biol J Linn Soc 18:1–144Google Scholar
  112. van den Hoek C, Breeman AM (1989) Seaweed biogeography in the North Atlantic: where are we now? In: Garbary DJ, South GR (eds) Evolutionary biogeography of the marine algae of the North Atlantic. NATO ASI Series, Vol. G 22, Springer-Verlag, Berlin, Heidelberg, pp 57–86Google Scholar
  113. Hooper RG (1984) Functional adaptations to the polar environment by the arctic kelp, Laminaria solidungula. Br Phycol J 19:194Google Scholar
  114. Hop H, Pearson T, Hegseth EN, Kovacs KM, Wiencke C, Kwasniewski S, Eiane K, Mehlum F, Gulliksen B, Wlodarska-Kowalczuk M, Lydersen C, Weslawski JM, Cochrane S, Gabrielsen GW, Leakey RJG, Lønne OJ, Zajaczkowski M, Falk-Petersen S, Kendall M, Wängberg S-Å, Bischof K, Voronkov AY, Kovaltchouk NA, Wiktor J, Poltermann M, di Prisco G, Papucci C, Gerland S (2002) The ecosystem of Kongsfjorden, Svalbard. Polar Res 21:167–208CrossRefGoogle Scholar
  115. Horn M, Neighbors M (1984) Protein and nitrogen assimilation as a factor in predicting the seasonal macroalgal diet of the monkeyface prickleback. Trans Am Fish Soc 113:388–396CrossRefGoogle Scholar
  116. Hoyer K, Karsten U, Sawall T, Wiencke C (2001) Photoprotective substances in Antarctic macroalgae and their variation with respect to depth distribution, different tissues and developmental stages. Mar Ecol Prog Ser 211:117–129Google Scholar
  117. Huang YM, McClintock JB, Amsler CD, Peters KJ, Baker BJ (2006) Feeding rates of common Antarctic gammarid amphipods on ecologically important sympatric macroalgae. J Exp Mar Biol Ecol 329:55–65CrossRefGoogle Scholar
  118. Iken K (1996) Trophic relations between macroalgae and herbivores in Potter Cove (King George Island, Antarctica). Ber Polarforsch Meeresforsch 201:1–206. (in German)Google Scholar
  119. Iken K (1999) Feeding ecology of the Antarctic herbivorous gastropod Laevilacunaria Antarctica. J Exp Mar Biol Ecol 236:133–148CrossRefGoogle Scholar
  120. Iken K, Barrera-Oro ER, Quartino ML, Casaux RJ, Brey T (1997) Grazing in the Antarctic fish Notothenia coriiceps: evidence for selective feeding on macroalgae. Ant Sci 9:386–391Google Scholar
  121. Iken K, Quartino M, Barrera Oro E, Palermo J, Wiencke C, Brey T (1998) Trophic relations between macroalgae and herbivores. Ber Polarforsch Meeresforsch 299:258–262Google Scholar
  122. Iken K, Quartino ML, Wiencke C (1999) Histological identification of macroalgae from stomach contents of the Antarctic fish Notothenia coriiceps gives new insights in its feeding ecology. Mar Ecol 20:11–18CrossRefGoogle Scholar
  123. Iken KB, Amsler CD, Hubbard JM, McClintock JB, Baker BJ (2001) Preliminary results on secondary metabolites from Antarctic brown algae and their ecological relevance. J Phycol 37:25–26. (Suppl.)Google Scholar
  124. Jacob A, Kirst GO, Wiencke C, Lehmann H (1991) Physiological responses of the Antarctic green alga Prasiola crispa ssp. antarctica to salinity stress. J Plant Physiol 139:57–62Google Scholar
  125. Jacob A, Lehmann H, Kirst GO, Wiencke C (1992a) Changes in the ultrastructure of Prasiola crispa ssp. antarctica under salinity stress. Bot Acta 105:41–46Google Scholar
  126. Jacob A, Wiencke C, Lehmann H, Kirst GO (1992b) Physiology and ultrastructure of desiccation in the green alga Prasiola crispa from Antarctica. Bot Mar 35:297–303Google Scholar
  127. Jerlov NG (1976) Marine optics. Elsevier, AmsterdamGoogle Scholar
  128. Johnston AM, Raven J (1986) Dark carbon fixation studies on the intertidal macroalga Ascophyllum nodosum (Phaeophyta). J Phycol 22:483–485Google Scholar
  129. Kain (Jones) JM (1964) Aspects of the biology of Laminaria hyperborea. III. Survival and growth of gametophytes. J Mar Biol Assoc UK 44:415–433Google Scholar
  130. Kain JM (1989) The seasons in the subtidal. Br Phycol J 24:203–215CrossRefGoogle Scholar
  131. Karsten U, West JA (2000) Living in the intertidal zone – seasonal effects on heterosides and sun-screen compounds in the red alga Bangia atropurpurea (Bangiales). J Exp Mar Biol Ecol 254:221–234PubMedCrossRefGoogle Scholar
  132. Karsten U, Wiencke C, Kirst GO (1991a) The effect of salinity changes upon physiology of eulittoral green macroalgae from Antarctica and Southern Chile. I. Cell viability, growth, photosynthesis and dark respiration. J Plant Physiol 138:667–673Google Scholar
  133. Karsten U, Wiencke C, Kirst GO (1991b) The effect of salinity changes upon physiology of eulittoral green macroalgae from Antarctica and Southern Chile. II. Inorganic ions and organic compounds. J Exp Bot 42:1533–1539CrossRefGoogle Scholar
  134. Karsten U, Barrow KD, King RJ (1993) Floridoside, l-isofloridoside and d-isofloridoside in the red alga Porphyra columbina: seasonal and osmotic effects. Plant Physiol 103:485–491PubMedGoogle Scholar
  135. Karsten U, Kück K, Vogt C, Kirst GO (1996a) Dimethylsulfoniopropionate production in phototrophic organisms and its physiological function as a cryoprotectant. In: Kiene RP (ed) Biological and environmental chemistry of DMSP and related sulfonium compounds. Plenum Press, New York, pp 143–153Google Scholar
  136. Karsten U, Barrow KD, Nixdorf O, King RJ (1996b) The compatibility of unusual organic osmolytes from mangrove red algae with enzyme activity. Aust J Plant Physiol 23:577–582Google Scholar
  137. Kennicutt II MC, et al (1990) Oil spillage in Antarctica. Environ Sci Technol 24:620–624CrossRefGoogle Scholar
  138. Kerby WN, Evans LV (1983) Phosphoenolpyruvate carboxykinase activity in Ascophyllum nodosum (Phaeophyceae). J Phycol 19:1–3CrossRefGoogle Scholar
  139. Kirst GO (1990) Salinity tolerance of eukaryotic marine algae. Annu Rev Plant Physiol Plant Mol Biol 41:21–53CrossRefGoogle Scholar
  140. Kirst GO, Wiencke C (1995) Ecophysiology of polar algae. J Phycol 31:181–199CrossRefGoogle Scholar
  141. Kjellman FR (1883) The algae of the Arctic Sea. Boktryckeriet, StockholmGoogle Scholar
  142. Klöser, H (1994) Descripción Basica de la Caleta Potter y Costas Abiertas Adyacentes. Dirección Nacional del Antártico; reporte de datos: Estructura y Dinamica de un Ecosistema Costero Antártico, Estación Cientifica ”Teniente Jubany” en la Isla 25 de Mayo (King George Island), Islas Shetland del Sur. Contributión 419BGoogle Scholar
  143. Klöser H, Ferreyra G, Schloss I, Mercuri G, Laturnus F, Curtosi A (1993) Seasonal variation of algal growth conditions in sheltered Antarctic bays: the example of Potter Cove (King Goerge Island, South Shetlands). J Mar Systems 4:289–301CrossRefGoogle Scholar
  144. Klöser H, Quartino ML, Wiencke C (1996) Distribution of macroalgae and macroalgal communities in gradients of physical conditions in Potter Cove, King George Island, Antarctica. Hydrobiologia 333:1–17CrossRefGoogle Scholar
  145. Knebel G (1936) Monographie der Algenreihe Prasiolales, insbesonder von Prasiola crispa. Hedwigia 75:1–120Google Scholar
  146. Knox GA, Lowry JK (1978) A comparison between the benthos of the Southern Ocean and the North Polar Ocean with special reference to the Amphipoda and the Polychaeta. In: Dunbar JM (ed) ‘Polar Oceans’ Proc. SCOR/SCAR polar ocean conference, Montreal 1974, pp 423–462Google Scholar
  147. Konar B, Iken K (2005) Competitive dominance among sessile marine organisms in a high Arctic boulder community. Polar Biol 29:61–64CrossRefGoogle Scholar
  148. Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349CrossRefGoogle Scholar
  149. Kremer BP (1981a) Metabolic implications of non-photosynthetic carbon fixation in brown macroalgae. Phycologia 20:242–250Google Scholar
  150. Kremer BP (1981b) Aspects of carbon metabolism in marine macroalgae. Oceanogr Mar Biol Annu Rev 19:41–94Google Scholar
  151. Küppers U, Kremer BP (1978) Longitudinal profiles of carbon dioxide capacities in marine macroalgae. Plant Physiol 62:49–53PubMedGoogle Scholar
  152. Lamb IM, Zimmermann MH (1977) Benthic marine algae of the Antarctic Peninsula, Antarctic research series 23, Biology of the Antarctic Seas V, Paper 4, pp 129–229Google Scholar
  153. Latala A (1990) Photosynthesis and respiration of some marine benthic algae from Spitsbergen. Polar Res 8:303–308CrossRefGoogle Scholar
  154. Laturnus F (1996) Volatile halocarbons released from Arctic macroalgae. Mar Chem 55:359–366CrossRefGoogle Scholar
  155. Laturnus F (2001) Marine macroalgae in polar regions as natural sources for volatile organohalogens. Environ Sci Pollut Res 8:103–108CrossRefGoogle Scholar
  156. Laturnus F, Wiencke C, Klöser H (1996) Antarctic macroalgae – sources of volatile halogenated organic compounds. Mar Environ Res 41:169–181CrossRefGoogle Scholar
  157. Lee RKS (1980) A catalogue of the marine algae of the Canadian Artic. Natl Mus Nat Sci Publ Bot 9:1–83Google Scholar
  158. Lippert H, Iken K, Rachor E, Wiencke C (2001) Macrofauna associated with macroalgae at Kongsfjord (Spitsbergen) – species composition and distribution on abundant macroalgal species. Polar Biol 24:512–522CrossRefGoogle Scholar
  159. Lubchenco J, Cubit J (1980) Heteromorphic life histories of certain marine algae as adaptations to variations in herbivory. Ecology 61:676–687CrossRefGoogle Scholar
  160. Lüder UH (2003) Acclimation of the photosynthetic apparatus of the endemic Antarctic red macroalga Palmaria decipiens to seasonally changing light conditions. Ber Polarforsch Meeresforsch 469:141 ppGoogle Scholar
  161. Lüder UH, Clayton MN (2004) Induction of phlorotannins in the brown macroalga Ecklonia radiata (Laminariales, Phaeophyta) in response to simulated herbivory – the first microscopic study. Planta 218:928–937PubMedCrossRefGoogle Scholar
  162. Lüder UH, Knoetzel J, Wiencke C (2001a) Acclimation of photosynthesis and pigments to seasonally changing light conditions in the endemic Antarctic red macroalga Palmaria decipiens. Polar Biol 24:598–603CrossRefGoogle Scholar
  163. Lüder UH, Knoetzel J, Wiencke C (2001b) Two forms of phycobilisomes in the Antarctic red macroalga Palmaria decipiens (Palmariales, Florideophyceae). Physiol Plant 112:572–581CrossRefGoogle Scholar
  164. Lüder UH, Knoetzel J, Wiencke C (2002) Acclimation of photosynthesis and pigments during and after six months of darkness in Palmaria decipiens (Rhodophyta) – a study to simulate Antarctic winter sea ice cover. J Phycol 38:904–913CrossRefGoogle Scholar
  165. Lund S (1951) Marine algae from Jörgen Brönlunds fjord in eastern North Greenland. Meddr Grønland 128:1–26Google Scholar
  166. Lund S (1959a) The marine algae from East Greenland. I. Taxonomical Part. Meddr Grønland 156(1):1–247Google Scholar
  167. Lund S (1959b) The marine algae from East Greenland. II. Geographic distribution. Meddr Grønland 156(2):1–70Google Scholar
  168. Lüning K (1971) Seasonal growth of Laminaria hyperborea under recorded underwater light conditions near Helgoland. In: Crisp DJ (ed) Proc 4th European Mar Biol Symp. University Press, Cambridge, pp 347–361Google Scholar
  169. Lüning K (1979) Growth strategies of three Laminaria species (Phaeophyceae) inhabiting different depth zones in the sublittoral region of Helgoland (North Sea). Mar Ecol Prog Ser 1:195–207Google Scholar
  170. Lüning K (1980a) Control of algal-life-history by daylength and temperature. In: Price JH, Irvine DEG, Farnham WF (eds) The shore environment, vol 2. Ecosystems. Academic Press, New York, pp 915–945Google Scholar
  171. Lüning K (1980b) Critical levels of light and temperature regulating the gametogenesis of three Laminaria species (Phaeophyceae). J Phycol 16:1–15CrossRefGoogle Scholar
  172. Lüning K (1988) Photoperiodic control of sorus formation in the brown alga Laminaria saccharina. Mar Ecol Prog Ser 45:137–144Google Scholar
  173. Lüning K (1990) Seaweeds. Their environment, biogeography and ecophysiology. John Wiley, Sons, Inc., New York, Chichester, Brisbane, Toronto, Singapore, 527 ppGoogle Scholar
  174. Lüning K (1991) Circannual growth rhythm in a brown alga, Pterygophora californica. Bot Acta 104:157–162Google Scholar
  175. Lüning K, Dring MJ (1979) Continuous underwater light measurement near Helgoland (North Sea) and its significance for characteristic light limits in the sublittoral region. Helgol Meeresunters 32:403–424CrossRefGoogle Scholar
  176. Lüning K, Kadel P (1993) Daylength range for circannual rhythmicity in Pterygophora californica (Alariaceae, Phaeophyta) and synchronisation of seasonal growth by daylength cycles in several other brown algae. Phycologia 32:379–387Google Scholar
  177. Lüning K, Neushul M (1978) Light and temperature demands for growth and reproduction of Laminarian gametophytes in southern and central California. Mar Biol 45:297–309CrossRefGoogle Scholar
  178. Lüning K, tom Dieck I (1989) Environmental triggers in algal Seasonality. Bot Mar 32:389–397CrossRefGoogle Scholar
  179. Lüning K, Schmitz K, Willenbrink J (1973) CO2 fixation and translocation in benthic marine algae. III. Rates and ecological significance of translocation in Laminaria hyperborea and L. saccharina. Mar Biol 23:275–281CrossRefGoogle Scholar
  180. McClintock JB, Karentz D (1997) Mycosporine-like amino acids in 38 species of subtidal marine organisms from McMurdo Sound. Antarctica. Ant Sci 9:392–398Google Scholar
  181. McKamey KA, Amsler CD (2006) Effects of temperature and light on growth of the Antarctic algae Geminocarpus geminatus (Ectocarpales: Phaeophyceae) and Cladophora repens (Cladophorales: Cladophorophyceae) in culture. Phycologia 45:225–232CrossRefGoogle Scholar
  182. Miller AK, Pearse JS (1991) Ecological studies of seaweeds in McMurdo sound. Antarctica Am Zool 31:35–48Google Scholar
  183. Moe RL, Silva PC (1977) Antarctic marine flora: uniquely devoid of kelps. Science 196:1206–1208CrossRefPubMedGoogle Scholar
  184. Moe RL, Silva PC (1981) Morphology and taxonomy of Himantothallus (including Phaeoglossum and Phyllogigas), an Antarctic member of the Desmarestiales (Phaeophyceae). J Phycol 17:15–29CrossRefGoogle Scholar
  185. Moe RL, Silva PC (1989) Desmarestia antarctica (Desmarestiales, Phaeophyceae), a new ligulate Antarctic species with an endophytic gametophyte. Plant Syst Evol 164:273–283CrossRefGoogle Scholar
  186. Moe RL, DeLaca TE (1976) Occurrence of macroscopic algae along the Antarctic Peninsula. Antarctic J 11:20–24Google Scholar
  187. Moore PG, MacAlister HE, Taylor AC (1995) the environmental tolerances and behavioural ecology of the sub-Antarctic Beach-Hopper “Orchestia” scutigerula Dana (Crustacea: Amphipoda) from Husvik, South Georgia. J Exper Mar Biol Ecol 189:159–182CrossRefGoogle Scholar
  188. Neushul M (1965) Diving observations of subtidal Antarctic marine vegetation. Bot Mar 8:234–243Google Scholar
  189. Neushul M (1972) Functional interpretation of benthic marine algal morphology. In: Abbott IS, Kurogi M (eds) Contributions to the systematic of benthic marine algae of the North Pacific. Japanese Society Phycology, Kobe, pp 47–71Google Scholar
  190. Nishiguchi MK, Somero GN (1992) Temperature-and concentration-dependence of compatibility of the organic osmolyte β-dimethylsulfoniopropionate. Cryobiology 29:118–124PubMedCrossRefGoogle Scholar
  191. Novaczek I (1984) Response of gametophytes of Ecklonia radiata (Laminariales) to temperature in saturating light. Mar Biol 82:241–245CrossRefGoogle Scholar
  192. Novaczek I, Lubbers GW, Breeman AM (1990) Thermal ecotypes in amphi-Atlantic algae. I. Algae of Arctic to cold-temperate distribution (Chaetomorpha melagonium, Devaleraea ramentacea and Phycodrys rubens). Helgoländer Meeresunters 44:459–474CrossRefGoogle Scholar
  193. Orheim O, Allegrini I, Boissonnas J, Drewry D, Gascard JC, Hedberg D, Müller-Wille L, Prestrud P, Sors A, Tilzer M (1995) European research in the Arctic – looking ahead. Norsk Polarinstitutt, OsloGoogle Scholar
  194. Osmond CB (1994) What is photoinhibition? Some insights from comparisons of shade and sun plants. In: Baker NR, Bowyer NR (eds) Photoinhibition of photosynthesis, from the molecular mechanisms to the field. BIOS Scientific Publ., Oxford, pp 1–24Google Scholar
  195. Papenfuss GF (1964) Catalogue and bibliography of Antarctic and Subantarctic benthic marine algae. Am Geophys Union, Antarctic Res Ser 1:1–76Google Scholar
  196. Pedersen PM (1976) Marine, benthic algae from southernmost Greenland. Meddr Grønland 199(3):1–79Google Scholar
  197. Peters AF (2003) Molecular identification, taxonomy and distribution of brown algal endophytes, with emphasis on species from Antarctica. In: Chapman ARO, Anderson RJ, Vreeland V, Davison IF (eds) Proceedings of the 17th international seaweed symposium. Oxford University Press, New York, pp 293–302Google Scholar
  198. Peters AF, Breeman AM (1992) Temperature responses of disjunct temperate brown algae indicate long-distance dispersal of microthalli across the tropics. J Phycol 28:428–438CrossRefGoogle Scholar
  199. Peters AF, Breeman AM (1993) Temperature tolerance and latitudinal range of brown algae from temperate Pacific South America. Mar Biol 115:143–150CrossRefGoogle Scholar
  200. Peters AF, van Oppen MJH, Wiencke C, Stam WT, Olsen JL (1997) Phylogeny and historical ecology of the Desmarestiaceae (Phaeophyceae) support a Southern Hemisphere origin. J Phycol 33:294–309CrossRefGoogle Scholar
  201. Peters KJ, Amsler CD, Amsler MO, McClintock JB, Dunbar RB, Baker BJ (2005) A comparative analysis of the nutritional and elemental composition of macroalgae from the western Antarctic Peninsula. Phycologia 44:453–463CrossRefGoogle Scholar
  202. Polle A (1996) Mehler reaction: friend or foe in photosynthesis. Bot Acta 109:84–89Google Scholar
  203. van de Poll WH, Eggert E, Buma AGJ, Breeman AM (2002) Temperature dependence of UV radiation effects in arctic and temperate isolates of three red macrophytes. Eur J Phycol 37:59–68CrossRefGoogle Scholar
  204. Quartino ML, Klöser H, Schloss IR, Wiencke C (2001): Biomass and associations of benthic marine macroalgae from the inner Potter Cove (King George Island, Antarctica) related to depth and Substrate. Polar Biol 24:349–355CrossRefGoogle Scholar
  205. Quartino ML, Zaixso HE, Boraso de Zaixso AL (2005) Biological and environmental characterization of marine macroalgal assemblages in Potter cove, South Shetland Islands, Antarctica. Bot Mar 48:187–197CrossRefGoogle Scholar
  206. Rakusa-Suszczewski S, Zieliński K (1993) Macrophytobenthos. In: Rakusa-Suszczewski S (ed) The Maritime Antarctic Coastal ecosystem of Admiralty Bay. Polish Academy of Sciences, Warsaw, pp 57–60Google Scholar
  207. Ramus J (1978) Seaweed anatomy and photosynthetic performance: the ecological significance of light guides, heterogenous absorption and multiple scatter. J Phycol 14:352–362CrossRefGoogle Scholar
  208. Ramus J (1981) The capture and transduction of light energy. In: Lobban CS, Wynne MJ (eds) The biology of seaweeds. University of California Press, Berkeley, pp 458–492Google Scholar
  209. Raven JA, Johnston AM (1991) Photosynthetic inorganic carbon assimilation by Prasiola stipitata (Prasiolales, Chlorophyta) under emersed and submersed conditions: relationship to the taxonomy of Prasiola. Br Phycol J 26:247–257CrossRefGoogle Scholar
  210. Raymond JA, Fritsen CH (2001) Semipurification and ice recrystallization inhibition activity of ice-active substances associated with Antarctic photosynthetic organisms. Cryobiology 43:63–70PubMedCrossRefGoogle Scholar
  211. Raymond JA, Knight CA (2003) Ice binding, recrystallization inhibition, and cryoprotective properties of ice-active substances associated with Antarctic sea ice diatoms. Cryobiology 46:174–181PubMedCrossRefGoogle Scholar
  212. Rhoades D (1979) Evolution of plant chemical defenses against herbivores. In: Rosenthal G, Janzed D (eds) Herbivores. Academic Press, New York, pp 4–54Google Scholar
  213. Richardson M (1977) The ecology including physiological aspects of selected Antarctic marine invertebrates associated with inshore macrophytes. PhD Dissertation, University of Durham, pp 1–165 (plus references and appendix)Google Scholar
  214. Richardson MG (1979) The distribution of the Antarctic marine macro-algae related to depth and substrate. Br Antarctic Bull 49:1–13Google Scholar
  215. Roberts RD, Kühl M, Glud RN, Rysgard S (2002) Primary production of crustose coralline red algaein a high Arctic fjord. J Phycol 38:273–283CrossRefGoogle Scholar
  216. Rosenvinge LK (1898) Deuxième mémoire sur les algues marines du Groenland. Meddr Grønland 20:1–125Google Scholar
  217. Salles S, Aguilera J, Figueroa FL (1996) Light field in algal canopies: changes in spectral light ratios and growth of Porphyra leucosticta. Thur. in Le Jol. Sci Mar 60:29–38Google Scholar
  218. Schaffelke B, Lüning K (1994) A circannual rhythm controls seasonal growth in the kelp Laminaria hyperborea and L. digitata from Helgoland (North Sea). Eur J Phycol 29:49–56CrossRefGoogle Scholar
  219. Schmitz K (1981) Translocation. In: Lobban, CS, Wynne M J. (eds) The biology of seaweeds, Botanical monographs, vol 17. University of California Press, Berkeley, Los Angeles, pp 534–558Google Scholar
  220. Schmitz K (1990) Algae. In: Behnke H-D, Sjolund RD (eds) Sieve elements. Comparative structure, induction and development. Springer Verlag, Berlin, Heidelberg New York, pp 1–18Google Scholar
  221. Schoene T, Pohl M, Zakrajsek AF, Schenke HW (1998) Tide gauge measurements – a contribution for the long term monitoring of the sea level. Ber Polarforsch Meeresforsch 299:12–14Google Scholar
  222. Schoenwaelder MEA (2002) The occurrence and cellular significance of physodes in brown algae. Phycologia 41:125–139CrossRefGoogle Scholar
  223. Schroeter B, Olech M, Kappen L, Heitland W (1995) Ecophysiological investigations of Usnea antarctica in the Maritime Antarctic. I. Annual microclimatic conditions and potential primary production. Antarct Sci 7:251–260Google Scholar
  224. Schwarz A-M, Hawes I, Andrew N, Mercer S, Cummings V, Trush S (2005) Primary production potential of non-geniculate coralline algae at Cape Evans, Ross Sea, Antarctica. Mar Ecol Prog Ser 294:131–140Google Scholar
  225. Scrosati RA (1992) Estudio anatomico de Desmarestia ligulata de Argentina y D. menziesii de Antártida (Phaeophyceae). Physis A 113:89–98Google Scholar
  226. Skottsberg CJF (1964) Antarctic phycology. In: Carrick R (ed) Comptes rendues premier symposium biologie Antarctique, Paris 1962. Hermann, Paris, pp 147–154Google Scholar
  227. Slocum CJ (1980) Differential susceptibility to grazers in two phases of an intertidal alga: advantages of heteromorphic generations. J Exp Mar Biol Ecol 46:99–110CrossRefGoogle Scholar
  228. Stockton W (1990) The intertidal zone at Palmer Station, Anvers Island, in the wake of the Bahia Paraiso spill. Antarctic J US 25:203Google Scholar
  229. Svendsen P (1959) The algal vegetation of Spitsbergen. A survey of the marine algal flora of the outer part of Isfjorden. Norsk Polarinst Skrifter 116:1–49Google Scholar
  230. Svendsen H, Beszczynska-Møller A, Hagen JO, Lefauconnier B, Tverberg V, Gerland S, Bischof K, Papucci C, Ørbæk JB, Zajaczkowski M, Azzolini R, Bruland O, Wiencke C, Winther JG, Dallmann W (2002) The physical environment of Kongsfjorden-Krossfjorden, an Arctic fjord system in Svalbard. Polar Res 21:133–166CrossRefGoogle Scholar
  231. Targett NM, Arnold TM (2001) Effects on secondary metabolites on digestion in marine herbivores. In: McClintock JB, Baker BJ (eds) Marine chemical ecology. CRC Press, Boca Raton, pp 391–412Google Scholar
  232. Taylor WR (1966) Marine algae of the northeastern coast of North America. The University of Michigan Press, Ann ArborGoogle Scholar
  233. Thomas DN, Dieckmann GS (2002) Antarctic sea ice – a habitat for extremophiles. Science 295:641–644PubMedCrossRefGoogle Scholar
  234. Thomas DN, Wiencke C (1991) Photosynthesis, dark respiration and light independent carbon fixation of endemic Antarctic macroalgae. Polar Biol 11:329–337CrossRefGoogle Scholar
  235. Topcuoglu S., Fowler SW (1984) Factors affecting the biokinetics of Technetium (95mTc) in marine macroalgae. Mar Environ Res 12:25–43CrossRefGoogle Scholar
  236. van Oppen MJH, Olsen JL, Stam W, van den Hoek C, Wiencke C (1993) Arctic–Antarctic disjunctions in the benthic seaweeds Acrosiphonia arcta (Chlorophyta) and Desmarestia viridis/willii (Phaeophyta) are of recent origin. Mar Biol 115:381–386CrossRefGoogle Scholar
  237. van Oppen MJH, Diekmann OE, Wiencke C, Stam WT, Olsen JL (1994) Tracking dispersal routes: phylogeography of Arctic–Antarctic disjunct seaweed Acrosiphonia arcta (Chlorophyta). J Phycol 30:67–80CrossRefGoogle Scholar
  238. Vinogradova KL (1995) The checklist of the marine algae from Spitsbergen. Bot J 80:50–61Google Scholar
  239. Weslawski JM, Wiktor J, Zajaczkowski M, Swerpel S (1993) Intertidal zone of Svalbard. 1. Macroorganism distribution and biomass. Polar Biol 13:73–79CrossRefGoogle Scholar
  240. Weslawski JM, Zajaczkowski M, Wiktor J, Szymelfenig M (1997) Intertidal zone of Svalbard 3. Littoral of a subarctic, oceanic island: Bjornoya. Polar Biol 18:45–52CrossRefGoogle Scholar
  241. Wessels H, Hagen W, Molis M, Wiencke C, Karsten U (2006) Intra- and interspecific differences in palatability of Arctic macroalgae from Kongsfjorden (Spitzbergen) for two benthic sympatric invertebrates. J Exp Mar Biol Ecol 329:20–33CrossRefGoogle Scholar
  242. Westermeier B, Gomez I, Rivera PJ, Müller DG (1992) Antarctic marine macroalgae: distribution, abundance and necromass at King George Island, South Shetland. Antarctica. Ser Cient INACH 42:21–34Google Scholar
  243. Weykam G, Wiencke C (1996) Seasonal photosynthetic performance of the endemic Antarctic alga Palmaria decipiens (Reinsch) Ricker. Polar Biol 16:357–361Google Scholar
  244. Weykam G, Gómez I, Wiencke C, Iken K, Klöser H (1996) Photosynthetic characteristics and C:N ratios of macroalgae from King George Island (Antarctica). J Exp Mar Biol Ecol 204:1–22CrossRefGoogle Scholar
  245. Weykam G, Thomas DN, Wiencke C (1997) Growth and photosynthesis of the Antarctic red algae Palmaria decipiens (Palmariales) and Iridaea cordata (Gigartinales) during and following extended periods of darkness. Phycologia 36:395–405CrossRefGoogle Scholar
  246. Wiencke C (1988) Notes on the development of some benthic marine macroalgae of King George Island (Antarctica). Ser Cient INACH 37:23–47Google Scholar
  247. Wiencke C (1990a) Seasonality of brown macroalgae from Antarctica – a long-term culture study under fluctuating Antarctic daylengths. Polar Biol 10:589–600CrossRefGoogle Scholar
  248. Wiencke C (1990b) Seasonality of red and green macroalgae from Antarctica – a long-term culture study under fluctuating Antarctic daylengths. Polar Biol 10:601–607CrossRefGoogle Scholar
  249. Wiencke C (2004) The coastal ecosystem of Kongsfjorden, Svalbard. Synopsis of biological research performed at the Koldewey Station in the years 1991-2003. Ber Polarforsch.Meeresforsch. 492:1–244Google Scholar
  250. Wiencke C, Clayton MN (1990) Sexual reproduction, life history, and early development in culture of the Antarctic brown alga Himantothallus grandifolius (Desmarestiales, Phaeophyceae). Phycologia 29:9–18Google Scholar
  251. Wiencke C, Clayton MN (2002) Antarctic seaweeds. Synopses of the Antarctic Benthos (Wägele JW, Sieg J (eds)), vol 9. Gantner, RuggellGoogle Scholar
  252. Wiencke C, Fischer G (1990) Growth and stable carbon isotope composition of cold-water macroalgae in relation to light and temperature. Mar Ecol Prog Ser 65:283–292Google Scholar
  253. Wiencke C, tom Dieck I (1989) Temperature requirements for growth and temperature tolerance of macroalgae endemic to the Antarctic region. Mar Ecol Progr Ser 54:189–197Google Scholar
  254. Wiencke C, tom Dieck I (1990) Temperature requirements for growth and survival of macroalgae from Antarctica and Southern Chile. Mar Ecol Prog Ser 59:157–170Google Scholar
  255. Wiencke C, Stolpe U, Lehmann H (1991) Morphogenesis of the brown alga Desmarestia antarctica cultivated under seasonally fluctuating Antarctic daylengths. Ser Cient INACH 41:65–78Google Scholar
  256. Wiencke C, Rahmel J, Karsten U, Weykam G, Kirst GO (1993) Photosynthesis of marine macroalgae from Antarctica: light and temperature requirements. Bot Acta 106:78–87Google Scholar
  257. Wiencke C, Bartsch I, Bischoff B, Peters AF, Breeman AM (1994) Temperature requirements and biogeography of Antarctic, Arctic and amphiequatorial seaweeds. Bot Mar 37:247–259Google Scholar
  258. Wiencke C, Clayton MN, Schulz D (1995) Life history, reproductive morphology and development of the Antarctic brown alga Desmarestia menziesii J. Agardh. Bot Acta 108:201–208Google Scholar
  259. Wiencke C, Clayton MN, Langreder C (1996) Life history and seasonal morphogenesis of the endemic Antarctic brown alga Desmarestia anceps Montagne. Bot Mar 39:435–444CrossRefGoogle Scholar
  260. Wiencke C, Vögele B, Kovaltchouk NA, Hop H (2004). Species composition and zonation of marine benthic macroalgae at Hansneset in Kongsfjorden, Svalbard. Ber Polarforsch Meeresforsch 492:55–62Google Scholar
  261. Wilce RT (1963) Studies on benthic marine algae in north-west Greenland. Proc Int Seaweed Symp 4:280–287Google Scholar
  262. Wilce RT (1990) Role of the Arctic Ocean as a bridge between the Atlantic and Pacific Oceans: fact and hypothesis. In: Garbary DJ, South GR (eds) Evolutionary biogeography of the marina algae of the North Atlantic. Springer-Verlag Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong, Barcelona, pp 323–348Google Scholar
  263. Wilce RT (1994) The Arctic subtidal as habitat for macrophytes. In: Lobban CS, Harrison PJ (eds) Seaweed ecology and physiology. Cambridge University Press, Cambridge, pp 89–92Google Scholar
  264. Winkler JB, Kappen L, Schulz F (2000) Snow and ice as an important ecological factor fort the cryptogams in the maritime Antarctic. In: Davison W, Howard-Williams C, Broady P (eds) Antarctic ecosystems: models for wider ecological understanding. New Zealand Natural Sciences, University of Canterbury, pp 220–224Google Scholar
  265. Womersley HBS (1991) Biogeography of Australasian marine macroalgae. In: Clayton MN, King RJ (eds) Biology of marine plants. Longman Cheshire, Melbourne, pp 367–381Google Scholar
  266. Zaneveld JS (1968) Benthic marine algae, Ross Island to Balleny Islands. Antarctic Map Folio Series. Am Geograph Soc NY, Folio 10:1–12Google Scholar
  267. Zielinski K (1981) Benthic macroalgae of Admiralty Bay (King Goerge Island, Antarctica) and circulation of algal matter between the water and the shore. Pol Polar Res 2:71–94.Google Scholar
  268. Zinova AD (1953) Brown algae of the northern seas of the U.S.S.R. Izdatel’Akademii Nauk SSSR, Moscow, LeningradGoogle Scholar
  269. Zinova AD (1955) Red algae of the northern seas of the U.S.S.R. Izdatel’Akademii Nauk SSSR, Moscow, LeningradGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • C. Wiencke
    • 1
  • M. N. Clayton
    • 2
  • I. Gómez
    • 3
  • K. Iken
    • 4
  • U. H. Lüder
    • 1
  • C. D. Amsler
    • 5
  • U. Karsten
    • 6
  • D. Hanelt
    • 7
  • K. Bischof
    • 8
  • K. Dunton
    • 9
  1. 1.Alfred Wegener Institute for Polar and Marine ResearchBremerhavenGermany
  2. 2.School of Biological SciencesMonash UniversityMelbourneAustralia
  3. 3.Instituto de Biología MarinaUniversidad Austral de ChileValdiviaChile
  4. 4.Institute of Marine ScienceUniversity of Alaska FairbanksFairbanksUSA
  5. 5.Department of BiologyUniversity of Alabama at BirminghamBirminghamUSA
  6. 6.Institute of Biological Sciences, Applied EcologyUniversity of RostockRostockGermany
  7. 7.Biocenter Klein FlottbekUniversity of HamburgHamburgGermany
  8. 8.Institute for Polar EcologyUniversity of KielKielGermany
  9. 9.Marine Science InstituteUniversity of Texas at AustinPort AransasUSA

Personalised recommendations