Self Healing Materials pp 19-44

Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 100) | Cite as

Self Healing Polymers and Composites

  • H. M. Andersson
  • Michael W. Keller
  • Jeffrey S. Moore
  • Nancy R. Sottos
  • Scott White

Structural polymers are susceptible to damage in the form of cracks, which form deep within the structure where detection is difficult and repair is almost impossible. Damage in polymeric coatings, adhesives, microelectronic components, and structural composites can span many length scales. Structural composites subject to impact loading can sustain significant damage on centimeter length scales, which in turn can lead to subsurface millimeter-scale delaminations and micron-scale matrix cracking (Figure 1).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blaiszik B.J., White S.R., Sottos N.R. 2006 Nanocapsules for self-healing composites. Proceedings of the 2006 SEM Annual Conference and Exposition on Experimental and Applied Mechanics 1:391-396Google Scholar
  2. Brown E.N., Sottos N.R., White S.R. 2002 Fracture testing of a self-healing polymer composite. Exp Mech 42:372-379CrossRefGoogle Scholar
  3. Brown E.N., Kessler M.R., Sottos N.R., White S.R. 2003 In situ poly(urea-formaldehyde) microencapsulation of dicyclopentadiene. J Microencapsul 20:719-730CrossRefGoogle Scholar
  4. Brown E.N., Sottos N.R., White S.R. 2004 Microcapsule induced toughening in a self-healing polymer composite. J Mater Sci 39:1703-1710CrossRefGoogle Scholar
  5. Brown E.N., White S.R., Sottos N.R. 2005a Retardation and repair of fatigue cracks in a microcapsule toughened epoxy composite - Part I: Manual infiltration. Compo Sci Technol 65:2466-2473CrossRefGoogle Scholar
  6. Brown E.N., White S.R., Sottos N.R. 2005b Retardation and repair of fatigue cracks in a microcapsule toughened epoxy composite - Part II: In situ self-healing. Compos Sci Technol 65: 2474-2480CrossRefGoogle Scholar
  7. Brown E.N., Sottos N.R., White S.R. 2006 Fatigue crack propagation in microcapsule-toughened epoxy. J Mater Sci 41:6266-6273CrossRefGoogle Scholar
  8. Cho S.H., Andersson H.M., White S.R., Sottos N.R., Braun P.V. 2006 Polydimethylsiloxane-based self-healing materials. Adv Mater 18:997-1000CrossRefGoogle Scholar
  9. Grubbs R.H., Tumas W. 1989 Polymer synthesis and organotransition metal chemistry. Science 243:907-915CrossRefGoogle Scholar
  10. Jones A.S., Rule J.D., Moore J.S., White S.R., Sottos N.R. 2006 Catalyst morphology and dissolution kinetics of self-healing polymers. Chem Mater 18:1312-1317CrossRefGoogle Scholar
  11. Jones A.S., Rule J.D., Moore J.S., Sottos N.R., White S.R. (2007) Life extension of self-healing polymers with rapidly growing fatigue cracks. Accepted for publication in Journal of the Royal Society InterfaceGoogle Scholar
  12. Kamphaus J.M., Rule J.D., Delafuente D.A., Moore J.S., Sottos N.R., White S.R. 2007 Development and evaluation of an alternative catalyst for self-healing polymers. Proceedings of the 1st International Conference on Self-Healing Materials, Noordwijk, The NetherlandsGoogle Scholar
  13. Keller M.W., White S.R., Sottos N.R. (2007) A self-healing poly(dimethyl siloxane) elastomer. Submitted to Advanced Functional MaterialsGoogle Scholar
  14. Kessler M.R., White S.R. 2001 Self-activated healing of delamination damage in woven composites. Composites: Part A 32:683-699CrossRefGoogle Scholar
  15. Kessler M.R. (2002) Characterization and performance of a self-healing composite material. PhD Thesis in Theoretical and Applied Mechanics, Graduate College of the University of Illinois at Urbana-ChampaignGoogle Scholar
  16. Kessler M.R., White S.R. 2002 Cure kinetics of the ring-opening metathesis of dicyclopentadiene. J Polym Sci: Part A: Polym Chem 40:2373-2383CrossRefGoogle Scholar
  17. Kessler M.R., Sottos N.R., White S.R. 2003 Self-healing structural composite materials. Composites: Part A 34:743-753CrossRefGoogle Scholar
  18. Mauldin T.C., Rule J.D., Sottos N.R., White S.R., Moore J.S. (2007) Self-healing kinetics and the stereoisomers of dicyclopentadiene. Accepted for publication in Journal of the Royal Society InterfaceGoogle Scholar
  19. Patel A.J., White S.R. (2006) Self-healing composite armor. ARL Progress ReportGoogle Scholar
  20. Patel A.J., Sottos N.R., White S.R. 2007 Self-healing composites for mitigation of low-velocity impact damage. Proceedings of the 1st International Conference on Self-Healing Materials, Noordwijk, The NetherlandsGoogle Scholar
  21. Rule J.D., Moore J.S. 2002 ROMP reactivity of endo- and exo-dicyclopentadiene. Macromolecules 35:7878-7882CrossRefGoogle Scholar
  22. Rule J.D., Brown E.N., Sottos N.R., White S.R., Moore J.S. 2005 Wax-protected catalyst microspheres for efficient self-healing materials. Adv Mater 17:205-208CrossRefGoogle Scholar
  23. Rule J.D. (2005) Polymer chemistry for improved self-healing composite materials. PhD Thesis in Chemistry, Graduate College of the University of Illinois at Urbana-ChampaignGoogle Scholar
  24. Rule J.D., Sottos N.R., White S.R. (2007) Effect of microcapsule size on the performance of selfhealing polymers. Submitted to PolymerGoogle Scholar
  25. Sanford M.S., Henling L.M., Grubbs R.H. 1998 Synthesis and reactivity of neutral and cationic ruthenium(II) tri(pyrazolyl)borate alkylidenes. Organometallics 17:5384-5389CrossRefGoogle Scholar
  26. Schwab P., Grubbs R.H., Ziller J.W. 1996 Synthesis and applications of RuCl2 (= CHR’)(PR3 )2 : the influence of the alkylidene moiety on metathesis activity. J Am Chem Soc 118:100-110CrossRefGoogle Scholar
  27. Sernetz M., Justen M., Jestczemski F. 1995 Disperse characterization of kidney arteries by three dimensional mass-radius-analysis. Fractals 3:879-891CrossRefGoogle Scholar
  28. Therriault D., White S.R., Lewis J.A. 2003 Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nat Mater 2:265-271CrossRefGoogle Scholar
  29. Toohey K.S., White S.R., Lewis J.A., Moore J.S., Sottos N.S. (2007) Self-healing materials with microvascular networks. Submitted to Nature MaterialsGoogle Scholar
  30. White S.R., Sottos N.R., Geubelle P.H., Moore J.S., Kessler M.R., Sriram S.R., Brown E.N., Viswanathan S. 2001 Autonomic healing of polymer composites. Nature 409:794-797CrossRefGoogle Scholar
  31. White S.R. (2006) Microvascular autonomic composites. MURI Annual Report, AFOSR Grant # FA9550-05-1-0346Google Scholar
  32. Wilson G.O., Andersson H.M., Sottos N.R., White S.R., Moore J.S. (2007) Autonomic healing in epoxy vinyl esters via ring opening metathesis polymerization (ROMP). Submitted to Advanced Functional MaterialsGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • H. M. Andersson
    • 1
  • Michael W. Keller
    • 2
  • Jeffrey S. Moore
    • 3
  • Nancy R. Sottos
    • 4
  • Scott White
    • 5
  1. 1.Beckman InstituteUniversity of Illinois Urbana-ChampaignUrbanaUSA
  2. 2.Department of Mechanical Science and EngineeringUniversity of Illinois Urbana-ChampaignUrbanaUSA
  3. 3.Department of ChemistryUniversity of Illinois Urbana-ChampaignUrbanaUSA
  4. 4.Department of Materials Science and EngineeringUniversity of Illinois Urbana-ChampaignUrbanaUSA
  5. 5.Department of Aerospace EngineeringUniversity of Illinois Urbana-ChampaignUrbanaUSA

Personalised recommendations