Advertisement

Physiological and molecular basis of fish oocyte hydration

  • Joan Cerdà
  • Mercedes Fabra
  • Demetrio Raldúa

As in other lower vertebrates, teleost oocytes growing within the ovary pass through a series of developmental stages that eventually culminate in the production of a mature female gamete or egg. During most of its time they are temporarily arrested in meiotic prophase I, and energy expenditures are concentrated on the synthesis and uptake of various substances (e.g. vitellogenin (Vg) ) required by the developing oocyte and subsequent embryo development. After oocyte growth, meosis resumes as the large nucleus or germinal vesicle breaks down (GVBD), half the chromosomes are eliminated into a small polar body by unequal cytokinesis, and the remainder becomes aligned in second meiotic metaphase at the animal pole. During this process, termed “meiotic maturation”, or “oocyte maturation”, ovulation generally occurs. Shortly after second meiotic metaphase is achieved, the oocyte becomes “activable” or capable of being fertilized, and hence becomes an egg.

Keywords

Granulosa Cell Oocyte Maturation Yolk Protein Marine Teleost Meiotic Maturation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrami, L., Simon, M., Rousselet, G., Berthonaud, V., Buhler, J.M., Ripoche, P. Sequence and functional expression of an amphibian water channel, FA-CHIP: a new member of the MIP family. Biochim. Biophys. Acta. 1192:147–51 (1994).PubMedGoogle Scholar
  2. Agre, P., Preston, G.M., Smith, B.L., Jung, J.S., Raina, S., Moon, C., Guggino, W.B., Nielsen, S. Aquaporin CHIP: the archetypal molecular water channel. Am. J. Physiol. 265:F463–476 (1993).PubMedGoogle Scholar
  3. Agre, P., King, S.L., Yasui, M., Guggino, W.B., Ottersen, O.P., Fujiyoshi, Y., Engel, A., Nielsen, S. Aquaporin water channels–from atomic structure to clinical medicine. J. Physiol. 542:3–16 (2002).PubMedGoogle Scholar
  4. Ahlstrom, E.H., Moser, H.G. Characters useful in identification of pelagic marine fish eggs. Rep. California Coop. Oceanic Fish. Inv. 21:121–131 (1980).Google Scholar
  5. Aoki, M., Kaneko, T., Katoh, F., Hasegawa, S., Tsutsui, N., Aida, K. Intestinal water absorption through aquaporin 1 expressed in the apical membrane of mucosal epithelial cells in seawater-adapted Japanese eel. J. Exp. Biol. 206:3495–3505 (2003).PubMedGoogle Scholar
  6. Babiker, M.M., Ibrahim, H. Studies on the biology of reproduction in the ciclid Tilapia nilotica (L.): effects of steroid and trophic hormones on ovulation and ovarian hydration. J. Fish Biol. 15:21–30 (1979).Google Scholar
  7. Balon, E.K. Early ontogeny of Labeotropheus Ahl, 1927 (Mbuna, Cichlidae, Lake Malawi) with a discussion on advanced protective styles in fish reproduction and development. Environ. Biol. Fish. 2:147–176 (1977).Google Scholar
  8. Blank, M.E., Ehmke, H. Aquaporin-1 and HCO3-Cltransporter-mediated transport of CO2across the human erythrocyte membrane. J. Physiol. 550:419–429 (2003).PubMedGoogle Scholar
  9. Bolamba, D., Patiño, R., Yoshizaki, G., Thomas, P. Changes in homologous and heterologous gap junction contacts during maturation-inducing hormone-dependent meiotic resumption in ovarian follicles of Atlantic croaker. Gen. Comp. Endocrinol. 131:291–295 (2003).PubMedGoogle Scholar
  10. Borgnia, M., Nielsen, S., Engel, A., Agre, P. Cellular and molecular biology of the aquaporin water channels. Annu. Rev. Biochem. 68:425–458 (1999).PubMedGoogle Scholar
  11. Brooks, H.L., Regan, J.W., Yool, A.J. Inhibition of aquaporin-1 water permeability by tetraethylamonium: involvement of the E pore region. Mol. Pharmacol. 57:1021–1026 (2000).PubMedGoogle Scholar
  12. Bulling, A., Berg, F.D., Berg, U., Duffy, D.M., Stouffer, R.L., Ojeda, S.R., Gratzl, M., Mayerhofer, A. Identification of an ovarian voltage-activated Na+-channel type: hints to involvement in luteolysis. Mol. Cell. Endocrinol. 14:1064–1974 (2000).Google Scholar
  13. Byrne, B.M., Gruber, M., Ab, C. The evolution of egg yolk proteins. Prog. Biophys. Mol. Biol. 53:33–69 (1989).PubMedGoogle Scholar
  14. Carnevali, O., Mosconi, G., Roncarati, A., Belvedere, P., Romano, M., Limatola, E. Changes in the electrophoretic pattern of yolk proteins during vitellogenesis in the gilthead sea bream, Sparus aurata L. Comp. Biochem. Physiol. 103B:955–962 (1992).Google Scholar
  15. Carnevali, O., Mosconi, G., Roncarati, A., Belvedere, P., Limatola, E., Polzonetti-Magni, A.M. Yolk protein changes during oocyte growth in European sea bass Dicentrarchus labrax L. J. Appl. Ichthyol. 9:175–184 (1993).Google Scholar
  16. Carnevali, O., Carletta, R., Cambi, A., Vita, A., Bromage, N. Yolk formation and degradation during oocyte maturation in seabream Sparus aurata. Involvement of two lysosomal proteinases. Biol. Reprod. 60:140–146 (1999a).Google Scholar
  17. Carnevali, O., Centonze, F., Brooks, S., Marota, I., Sumpter, J.P. Molecular cloning and expression of ovarian cathepsin D in sea bream Sparus aurata. Biol. Reprod. 61:785–791 (1999b).PubMedGoogle Scholar
  18. Carnevali, O., Mosconi, G., Cardinali, M., Meiri, I., Polzonetti-Magni, A. Molecular components related to egg viability in the gilthead seabream, Sparus aurata. Mol. Reprod. Dev. 58:330–335 (2001a).Google Scholar
  19. Carnevali, O., Mosconi, G., Cambi, A., Ridolfi, S., Zanuy, S., Polzonetti-Magni, A.M. Changes of lysosomal enzyme activities in sea bass (Dicentrarchus labrax) eggs and developing embryos. Aquaculture 202:249–256 (2001b).Google Scholar
  20. Cerdà, J., Petrino, T.R., Wallace, R.A. Functional heterologous gap junctions in Fundulus ovarian follicles maintain meiotic arrest and permit hydration during oocyte maturation. Dev. Biol. 160:228–235 (1993).PubMedGoogle Scholar
  21. Cerdà, J., Selman, K., Wallace, R.A. Observations on oocyte maturation and hydration in vitro in the black sea bass, Centropristis striata (Serranidae). Aquat. Living Res. 9:325–335 (1996).Google Scholar
  22. Chang, X., Patiño, R., Yoshizaki, G., Thomas, P., Lee, V.H. Hormonal regulation and cellular distribution of connexin 32.2 and connexin 32.7 RNAs in the ovary of Atlantic croaker. Gen. Comp. Endocrinol. 120:146–156 (2000).Google Scholar
  23. Chen, Y.-N., Hsieh, S.-L., Kuo, C.M. Changes in oocyte and blood plasma osmotic components of ayu, Plecoglossus altivelis Temminck and Schlegel during oocyte maturation. Aquacult. Res. 34:859–867 (2003).Google Scholar
  24. Cho, W.L., Tsao, S.M., Hays, A.R., Walter, R., Chen, J.S., Snigirevskaya, E.S., Raikhel, A.S. Mosquito cathepsin B-like protease involved in embryonic degradation of vitellin is produced as a latent extraovarian precursor. J. Biol. Chem. 274:13311–13321 (1999).PubMedGoogle Scholar
  25. Choi, C.Y., Takashima, F. Molecular cloning and hormonal control in the ovary of connexin 31.5 mRNA and correlation with the appearance of oocyte maturational competence in red seabream. J. Exp. Biol. 203:3299–3306 (2000).PubMedGoogle Scholar
  26. Chrispeels, M.J., Morillon, R., Maurel, C., Gerbeau, P., Kjellbom, P., Johansson, I. Aquaporins of plants: structure, function, regulation, and role in plant water relations. In: Hohmann, S., Nielsen, S. Agre, P. (eds.), Aquaporins. Current Topics in Membranes, Vol. 51. Academic Press, San Diego, CA, pp. 277–334 (2001).Google Scholar
  27. Chuda, H., Matsuyama, M., Hara, Y., Yada, T., Matsuura, S. Relationship between post-ovulation time and fertilization rate of eggs in artificial insemination of tiger puffer, Takifugu rubripes. Nippon Suisan Gakkaishi 64:993–998 (1998).Google Scholar
  28. Cionna, C., Verdecchia, V., Di Rosa, C., Cardinalli, M., Carnevali, O. Expression of cathepsins B, D and L genes and their enzymatic activities during oocyte maturation in Danio rerio. Proc. 5th Int. Symp. Fish Endocrinol, p. 89 (2004).Google Scholar
  29. Clemens, H.P., Grant, F.B. Gonadal hydration of carp (Cyprinus carpio) and goldfish (Carassius auratus) after injections of pituitary extracts. Zoologica 49:193–210 (1964).Google Scholar
  30. Craik, J.C.A. Levels of phosphoprotein in the eggs and ovaries of some fish species. Comp. Biochem. Physiol. 72B:507–512 (1982).Google Scholar
  31. Craik, J.C.A., Harvey, S.M. Biochemical changes occurring during final maturation of eggs of some marine and freshwater teleosts. J. Fish. Biol. 24:599–610 (1984).Google Scholar
  32. Craik, J.C.A., Harvey, S.M. Phosphorus metabolism and water uptake during final maturation of ovaries of teleosts with pelagic and demersal eggs. Mar. Biol. 90:285–289 (1986).Google Scholar
  33. Craik, J.C.A., Harvey, S.M. The causes of buoyancy in eggs of marine teleosts. J. Mar. Biol. Ass. UK 67:169–182 (1987).Google Scholar
  34. Cutler, C.P., Cramb, G. Branchial expression of an aquaporin 3 (AQP3) homologue is downregulated in the European eel, Anguilla anguilla following seawater acclimation. J. Exp. Biol. 205:2643–2651 (2002).PubMedGoogle Scholar
  35. Deen, P.M.T., van Balkom, B.W.M., Kamsteeg, E.-J. Routing of the aquaporin-2 water channel in health and disease. Eur. J. Cell Biol. 79:523–530 (2000).PubMedGoogle Scholar
  36. Eldridge, M.B., Joseph, J.D., Taberski, K.M., Seaborn, G. Lipid and fatty acid composition of the endogeneous energy sources of striped bass (Morone saxatilis) eggs. Lipids 18:510–513 (1983).PubMedGoogle Scholar
  37. Fabra, M., Cerdà, J. Ovarian cysteine proteinases in the teleost Fundulus heteroclitus: molecular cloning and gene expression during vitellogenesis and oocyte maturation. Mol. Reprod. Dev. 67:282–294 (2004).PubMedGoogle Scholar
  38. Fabra, M., Raldúa, D., Power, D.A., Deen, P.M.T., Cerdà, J. Marine fish egg hydration is aquaporinmediated. Science 307:545 (2005).PubMedGoogle Scholar
  39. Fabra, M., Raldúa, D., Bozzo, M.G., Deen, P.M.T., Lubzens, E., Cerdà, J. Yolk proteolysis and aquaporin-1o play essential roles to regulate fish oocyte hydration during meiosis resumption. Dev. Biol. 295:250–262 (2006).PubMedGoogle Scholar
  40. Fagotto, F. Yolk degradation in tick eggs: I. Occurrence of a cathepsin L-like acid proteinase in yolk spheres. Arch. Insect Biochem. Physiol. 14:217–235 (1990a).PubMedGoogle Scholar
  41. Fagotto, F. Yolk degradation in tick eggs: II. Evidence that cathepsin L-like proteinase is stored as a latent, acid-activatable proenzyme. Arch. Insect Biochem. Physiol. 14:237–252 (1990b).PubMedGoogle Scholar
  42. Fagotto, F., Maxfield, F.R. Yolk platelets in Xenopus oocytes maintain an acidic internal pH which may be essential for sodium accumulation. J. Cell Biol. 125:1047–1056 (1994a).PubMedGoogle Scholar
  43. Fagotto, F., Maxfield, F.R. Changes in yolk platelet pH during Xenopus laevis development correlate with yolk utilization. A quantitative confocal microscopy study. J. Cell Sci. 107:3325–3337 (1994b).PubMedGoogle Scholar
  44. Finn, R.N., Rønnestad, I., Fyhn, H.J. Respiration, nitrogen and energy metabolism of developing yolk-sac larvae of Atlantic halibut (Hippoglossus hippoglossus L.). Comp. Biochem. Physiol. 111A:647–671 (1995).Google Scholar
  45. Finn, R.N., Ostby, G.C., Norberg, B., Fyhn, H.J. In vivo oocyte hydration in Atlantic halibut (Hippoglossus hipoglossus): proteolytic liberation of free amino acids, and ion transport, are driving forces for osmotic water influx. J. Exp. Biol. 205:211–224 (2002a).PubMedGoogle Scholar
  46. Finn, R.N., Wamboldt, M., Fyhn, H.J. Differential processing of yolk proteins during hydration in marine fishes (Labridae) that spawn benthic and pelagic eggs. Mar. Ecol. Prog. Ser. 237:217–226 (2002b).Google Scholar
  47. Flegler, C. Electron microscopic studies on the development of the chorion of the viviparous teleost Dermogenys pusillus (Hemirhamphidae). Cell Tissue Res. 179:255–270 (1977).PubMedGoogle Scholar
  48. Fugelli, K., Thoroed, S.M. Taurine and volume regulation in fish cells. In: Pasantes-Morales, H., Martin, D.L., Shain, W., del Río, R.M. (eds.), Taurine: Functional Neurochemistry, Physiology and Cardiology. Wiley-Liss, New York, pp. 481–488 (1990).Google Scholar
  49. Fujiyoshi, Y., Mitsuoka, K., de Groot, B.L., Philippsen, A., Grubmüller, H., Agre, P., Engel, A. Structure and function of water channels. Curr. Opin. Struct. Biol. 12:509–515 (2002).PubMedGoogle Scholar
  50. Fulton, T.W. The comparative fecundity of sea fishes. Fish. Board Scotland Ann. Rep. 9:243–268 (1891).Google Scholar
  51. Fulton, T.W. On the growth and maturation of the ovarian eggs of teleostean fishes. Fish. Board Scotland Ann. Rep. 16:88–134 (1898).Google Scholar
  52. Fyhn, H.J., Serigstad, B. Free amino acids as energy substrate in developing eggs and larvae of the cod Gadus morhua. Mar. Biol. 96:335–341 (1987).Google Scholar
  53. Fyhn, H.J. First feeding of marine fish larvae: are free amino acids the source of energy? Aquaculture 80:111–120 (1989).Google Scholar
  54. Fyhn, H.J., Finn, R.N., Reith, M., Norberg, B. Yolk protein hydrolysis and oocyte free amino acids as key features in the adaptative evolution of teleost fishes to seawater. Sarsia 84:451–456 (1999).Google Scholar
  55. Geck, P., Heinz, E. The Na-K-2Cl cotransport system. J. Membr. Biol. 91:97–105 (1986).PubMedGoogle Scholar
  56. Gerhartz, B., Kolb, H. J., Wittmann, J. Proteolytic activity in the yolk sac membrane of quail eggs. Comp. Biochem. Physiol. 123A:1–8 (1999).Google Scholar
  57. Greeley, M.S., Calder, D.R., Wallace, R.A. Changes in teleost yolk proteins during oocyte maturation: correlation of yolk proteolysis with oocyte hydration. Comp. Biochem. Physiol. 84B:1–9 (1986).Google Scholar
  58. Greeley, M.S., Hols, H., Wallace, R.A. Changes in size, hydration and low molecular weight osmotic effectors during meiotic maturation of Fundulus oocytes in vivo. Comp. Biochem. Physiol. 100A:639–647 (1991).Google Scholar
  59. Harries, W.E.C., Akhavan, D., Miercke, L.J.W., Khademi, S., Stroud, R.M. The channel architechture of aquaporin 0 at a 2.2-Å resolution. Proc. Natl. Acad. Sci. USA 101:14045–14050 (2004).Google Scholar
  60. Hasegawa, T., Tanii, H., Suzuki, M., Tanaka, S. Regulation of water absorption in the frog skins by two vasotocin-dependent water-channel aquaporins, AQP-h2 and AQP-h3. Endocrinology 144:4087–4096 (2003).PubMedGoogle Scholar
  61. Hasilik, A. The early an late processing of lysosomal enzymes: proteolysis and compartmentation. Experientia 48:130–151 (1992).PubMedGoogle Scholar
  62. Hiramatsu, N., Ichikawa, N., Fukada, H., Fujita, T., Sullivan, C.V., Hara, A. Identification and characterization of proteases involved in specific proteolysis of vitellogenin and yolk proteins in salmonids. J. Exp. Zool. 292:11–25 (2002a).PubMedGoogle Scholar
  63. Hiramatsu, N., Hara, A., Hiramatsu, K., Fukada, H., Weber, G.M., Denslow, N.D., Sullivan, C.V. Vitellogenin-derived yolk proteins of white perch, Morone americana: purification, characterization, and vitellogenin-receptor binding. Biol. Reprod. 67:655–667 (2002b).PubMedGoogle Scholar
  64. Hirata, T., Kaneko, T., Ono, T., Nakazato, T., Furukawa, N., Hasegawa, S., Wakabayashi, S., Shigekawa, M., Chang, M.-H., Romero, M.F., Hirose, S. Mechanism of acid adaptation of a fish living in a pH 3.5 lake. Am. J. Physiol. Regul. Integr. Comp. Physiol. 284:R1199–R1212 (2003).Google Scholar
  65. Hirose, K., Hirano, T., Ishida, R. Effects of salmon gonadotropin on ovulation in thye ayu, Plecoglossus altivelis, with special reference to water balance. Comp. Biochem. Physiol. 47A:283–289 (1974).Google Scholar
  66. Hirose, K., Ishida, R. Effects of cortisol and human chorionic gonadotropin (hCG) on ovulation in ayu, Plecoglossus altivelis (Temminck and Schlegel) with special respect to waterf and ion balance. J. Fish Biol. 6:557–564 (1974).Google Scholar
  67. Hirose, K. Endocrine control of ovulation in medaka (Oryzias latipes) and ayu (Plecoglossus altivelis). J. Fish. Res. Board Can. 33:989–994 (1976).Google Scholar
  68. Hoffman, E.K. Role of separate K+and Clchannels and of Na/Cl cotransport in volume regulation in Ehrlich cells. Fed. Proc. 44:2513–2519 (1985).Google Scholar
  69. Hølleland, T., Fyhn, H.J. Osmotic properties of eggs of the herring Clupea harengus. Mar. Biol. 91:377–383 (1986).Google Scholar
  70. Holm, L.M., Klaerke, D.A., Zeuthen, T. Aquaporin 6 is permeable to glycerol and urea. Eur. J. Physiol. 448:181–186 (2004).Google Scholar
  71. Iwamatsu, T., Ohta, T., Oshima, E., Noriyoshi, S. Oogenesis in the medaka Oryzias latipes –stages of oocyte development. Zool. Sci. 5:353–373 (1988).Google Scholar
  72. Iwamatsu, T., Takahashi, S.Y., Oh-ishi, T., Yokochi, T., Maeda, H. Changes in electrophoretic patterns of oocyte proteins during oocyte maturation in Oryzias latipes. Dev. Growth Differ. 34:173–179 (1992).Google Scholar
  73. Jahn, T.P., Møller, A.L.B., Zeuthen, T., Holm, L.M., Klaerke, D.A., Mohsin, B., Kühlbrandt, W., Schjoerring, J.K. Aquaporin homologues in plants and mammals transport ammonia. FEBS Lett. 574:31–36 (2004).PubMedGoogle Scholar
  74. Kamsteeg, E.J., Heijnen, I., van Os, C.H., Deen, P.M.T. The subcellular localization of an aquaporin-2 tetramer depends on the stoichiometry of phosphorylated and nonphosphorylated monomers. J. Cell Biol. 151:919–930 (2000).PubMedGoogle Scholar
  75. Kestemont, P., Cooremans, J., Abi-Ayad, A., Mélard, C. Cathepsin L in eggs and larvae of perch Perca fluviatilis: variations with developmental stage and spawning period. Fish Physiol. Biochem. 21:59–64 (1999).Google Scholar
  76. King, P.A., Goldstein, L. Organic osmolytes and cell volume regulation in fish. Mol. Physiol. 4:53–66 (1983).Google Scholar
  77. Kjesbu, O.S., Kryvi, H. Oogenesis in cod, Gadus morhua L., studied by light and electron microscopy. J. Fish Biol. 34:735–746 (1989).Google Scholar
  78. Kjesbu, O.S., Kryvi, H. A histological examination of oocyte final maturation in cod (Gadus morhua). In: Walther, B.T., Fyhn, H.J. (eds.), Physiological and Biochemical Aspects of Fish Development. University of Bergen, Oslo, pp. 86–92 (1993).Google Scholar
  79. Kjørsvik, E., Mangor-Jensen, A., Holmefjord, I. Egg quality in fishes. Adv. Mar. Biol. 26:71–113 (1990).Google Scholar
  80. Kwon, J.Y., Prat, F., Randall, C., Tyler, C. Molecular characterization of putative yolk processing enzymes and their expression during oogenesis and embryogenesis in rainbow trout (Oncorhynchus mykiss). Biol. Reprod. 65:1701–1709 (2001).PubMedGoogle Scholar
  81. LaFleur, G.J., Jr., Thomas, P. Evidence for a role of Na+, K+-ATPase in the hydration of atlantic croaker and spotted seatrout oocytes during final maturation. J. Exp. Biol. 258:126–136 (1991).Google Scholar
  82. LaFleur, G.J., Jr., Byrne, B.M., Kanungo, J., Nelson, L.D., Greenberg, R.M., Wallace, R.A. Fundulus heteroclitus vitelllogenin: the deduced primary structure of a piscine precursor to noncrystalline, liquid-phase yolk protein. J. Mol. Evol. 41:505–521 (1995a).Google Scholar
  83. LaFleur, G.J., Jr., Byrne, B.M., Haux, C., Greenberg, M.A., Wallace, R.A. Liver-derived cDNAs: vitellogenin and vitelline envelope proteins precursors (choriogenins). Proc. 5th Int. Symp. Reprod. Physiol. Fish (1995b).Google Scholar
  84. LaFleur, G.J., Jr., Raldúa, D., Fabra, M., Carnevali, O., Denslow, N., Wallace, R.A., Cerdà, J. Derivation of major yolk proteins from parental vitellogenins and alternative processing during oocyte maturation in Fundulus heteroclitus. Biol. Reprod.73:815–824 (2005).Google Scholar
  85. Lang, F., Busch, G.L., Volkl, H. The diversity of volume regulatory mechanisms. Cell Physiol. Biochem. 8:1–45 (1998).PubMedGoogle Scholar
  86. Lange, R.H. Lipoprotein crystals in the yolk platelet of a teleost, Pelvicachromis pulcher (Cichlidae). Cell Tissue Res. 209:511–513 (1980).PubMedGoogle Scholar
  87. Lignot, J.H., Cutler, C.P. Hazon, N., Cramb, G. Immunolocalization of aquaporin-3 in the gill and the gastrointestinal tract of the European eel Anguilla anguilla (L.). J. Exp. Biol. 205:2653–2663 (2002).Google Scholar
  88. Ling, G.N. The physical state of potassium ion in the living cell. Scanning Microsc. 4:737–750 (1990).PubMedGoogle Scholar
  89. Liu, Z., Shen, J., Carbrey, J.M., Mukhopadhyay, R., Agre, P., Rosen, B. Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9. Proc. Natl. Acad. Sci. USA 99:6053–6058 (2002).PubMedGoogle Scholar
  90. Long, J.A. The Rise of Fishes. 500 Millions Years of Evolution. The John Hopkins University Press, Baltimore (1996).Google Scholar
  91. Ma, T., Yang, B., Verkman, A.S. cDNA cloning of a functional water channel from toad urinary bladder epithelium. Am. J. Physiol. 271:C1699–1704 (1996).PubMedGoogle Scholar
  92. Maarstoel, M.J., Fyhn, H.J., Kjesbu, O.S., Solemdal, P. Free amino acid content as a potential criterion of egg quality in Atlantic cod (Gadus morhua). In: Walther, B.T., Fyhn, H.J. (eds.) Physiological and Biochemical Aspects of Fish Development. University of Bergen, Bergen, pp. 99–103 (1993).Google Scholar
  93. Mallya, S., Partin, J.S., Valdizan, M.C., Lennarz, W.J. Proteolysis of the major yolk glycoproteins is regulated by acidification of the yolk platelets in sea urchin embryos. J. Cell Biol. 117:1211–1221 (1992).PubMedGoogle Scholar
  94. Mangor-Jensen, A., Waiwood, K.G., Peterson, R.H. Water balance in eggs of striped bass (Morone saxatilis). J. Fish Biol. 43:345–353 (1993).Google Scholar
  95. Manley, G.T., Binder D.K., Papadopoulos, M.C., Verkman, A.S. New insights into water transport and edema in the central nervous system from phenotype analysisn of aquaporin-4 null mice. Neuroscience 129:983–991 (2004).PubMedGoogle Scholar
  96. Marshall, W.S. Gonadotropin stimulation of K+secretion and Na+absorption by brook trout (Salvelinus fontinalis) sperm duct epithelium. Gen. Comp. Endocrinol. 75:118–128 (1989).PubMedGoogle Scholar
  97. Masuda, K., Iuchi, I., Iwamori, M., Nagai, Y., Yamagami, K. Presence of a substance crossreacting with cortical alveolar material in “yolk vesicles” of growing oocytes of Oryzias latipes. J. Exp. Zool. 238:261–265 (1986).Google Scholar
  98. Matsubara, T., Sawano, K. Proteolytic cleavage of vitellogenin and yolk proteins during vitellogenin uptake and oocyte maturation in barfin flounder (Verasper moseri). J. Exp. Zool. 272:34–45 (1995).Google Scholar
  99. Matsubara, T., Adachi, S., Ijiri, S., Yamauchi, K. Change of lipovitellin during in vitro oocyte maturation in Japanese flounder Paralichthys olivaceus. Fish. Sci. 61:478–481 (1995).Google Scholar
  100. Matsubara, T., and Koya, Y. Course of proteolytic cleavage in three classes of yolk proteins during oocyte maturation in barfin flounder Verasper moseri, a marine teleost spawning pelagic eggs. J. Exp. Zool. 278:189–200 (1997).Google Scholar
  101. Matsubara, T., Ohkubo, N., Andoh, T., Sullivan, C. V., Hara, A. Two forms of vitellogenin, yielding two distinct lipovitellins, play different roles during oocyte maturation and early development of barfin flounder, Verasper moseri, a marine teleost that spawns pelagic eggs. Dev. Biol. 213:18–32 (1999).PubMedGoogle Scholar
  102. McPherson, R., Greeley, M.S., Jr., Wallace, R.A. The influence of yolk protein proteolysis on hydration in the oocytes of Fundulus heteroclitus. Develop. Growth Differ. 31:475–483 (1989).Google Scholar
  103. Mellinger, J. La flottabilité des oeufs des teléostéens. L’Anné Biologique 33:117–138 (1994).Google Scholar
  104. Milroy, T.H. The physical and chemical changes taking plaice in the ova of certain marine teleosteans during maturation. Fish Board Scot. 16th Ann. Rep. 16 Part 3:135–152 (1898).Google Scholar
  105. Morishita, Y., Sakube, Y., Sasaki, S., Ishibashi, K. Molecular mechanisms and drug development in aquaporin water channel diseases: aquaporin superfamily (superaquaporins): expansion of aquaporins restricted to multicellular organisms. J. Pharmacol. Sci. 96:276–279 (2004).PubMedGoogle Scholar
  106. Murakami, M., Iuch, I., Yamagami, K. Yolk phosphoprotein metabolism during early development of the fish, Oryzias latipes. Develop Growth Differ. 32:619–627 (1990).Google Scholar
  107. Nardelli, D., von-het Ship, F.D., Gerber-Huber, S., Haefliger, J.A., Gruber, M., Ab, G., Wahli, W. Comparison of the organization and fine structure of a chicken and a Xenopus laevis vitellogenin gene. J. Biol. Chem. 262:15337–15385 (1987).Google Scholar
  108. Nelson, N., Harvey, W.R. Vacuolar and plasma membrane proton-adenosinetriphosphatases. Physiol. Rev. 79:361–385 (1999).PubMedGoogle Scholar
  109. Nielsen, S., Smith, B.L., Christensen, E.I., Agre, P. Distribution of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia. Proc. Natl. Acad. Sci. USA 90:7275–7279 (1993a).PubMedGoogle Scholar
  110. Nielsen, S., Smith, B.L., Christensen, E.I., Knepper, M.A., Agre, P. CHIP28 water channels are localized in constitutively water-permeable segments of the nephron. J. Cell Biol. 120:371–383 (1993b).PubMedGoogle Scholar
  111. Nissling, A., Westin, L. Egg buoyancy of Baltic cod (Gadus morhua) and its implications for cod stock fluctuations in the Baltic. Mar. Biol. 111:33–35 (1991).Google Scholar
  112. Nissling, A., Kryvi, H., Vallin, L. Variations in egg buoyancy of Baltic cod Gadus morhua and its implications for egg survival in prevailing conditions in the Baltic sea. Mar. Ecol. Prog. Ser. 110:67–74 (1994).Google Scholar
  113. Nissling, A., Müller, A., Hinrichsen, H.-H. Specific gravity and vertical distribution of sprat eggs in the Baltic sea. J. Fish Biol. 63:280–299 (2003).Google Scholar
  114. Nordin, J.H., Beaudoin, E.L., Liu, X. Identification of yolk granules in Blatella germanica eggs coincident with proteolytic processing of vitellin. Arch. Insect Biochem. Physiol. 18:177–192 (1991).Google Scholar
  115. Ohkubo, N., Matsubara, T. Sequential utilization of free amino acids, yolk proteins and lipids in developing eggs and yolk-sac larvae of barfin flounder Verasper moseri. Mar. Biol. 140:187–196 (2002).Google Scholar
  116. Okumura, H., Kayaba, T., Kazeto, Y., Hara, A., Adachi, S., Yamauchi, K. Changes in the electrophoretic patterns of lipovitellin during oocyte development in the Japanese eel Anguilla japonica. Fish Sci. 61:529–530 (1995).Google Scholar
  117. Oshiro, T., Hibiya, T. Water absorption of oocytes in the plaice Limanda yokohamae during meiotic maturation and its role in rupturing follicles. Bull. Jpn. Soc. Sci. Fish. 47:835–841 (1981a).Google Scholar
  118. Oshiro, T., Hibiya, T. Relationship of yolk globules fusion to oocyte water absorption in the plaice Limanda yokohamae during meiotic maturation. Bull. Jpn. Soc. Sci. Fish. 47:1123–1130 (1981b).Google Scholar
  119. Oshiro, T., Hibiya, T. In vitro yolk globule fusion in the oocytes of the plaice Limanda yokohamae. Bull. Jpn. Soc. Sci. Fish. 48:181–186 (1982).Google Scholar
  120. Patiño, R., Yoshizaki, G., Thomas, P., Kagawa, H. Gonadotropic control of ovarian follicle maturation: the two stage concept and its mechanisms. Comp. Biochem. Physiol. 129B:427–439 (2001).Google Scholar
  121. Pillay, C.S., Elliot, E., Dennison, C. Endolysosomal proteolysis and its regulation. Biochem. J. 363:417–429 (2002).PubMedGoogle Scholar
  122. Podrabsky, J.E., Carpenter, J.F., Hand, S.C. Survival of water stress in annual fish embryos: dehydration avoidance and egg envelope amyloid fibers. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280:R123–R131 (2001).PubMedGoogle Scholar
  123. Postlethwait, J.H., Woods, I.G., Ngo-Hazelett, P., Yan Y.L., Kelly, P.D., Chu, F., Huang, H., Hill-Force, A., Talbot, W.S. Zebrafish comparative genomics and the origins of vertebrate chromosomes. Genome Res. 10:1890–1902 (2000).PubMedGoogle Scholar
  124. Postlethwait, J., Amores, A., Cresko, W., Singer, A., Yan, Y.L. Subfunction partitioning, the teleost radiation and the annotation of the human genome. Trends Genet. 20:481–490 (2004).PubMedGoogle Scholar
  125. Potts, W.T., Rudy, P.P. Water balance in the egg of the Atlantic salmon, Salmo salar. J. Exp. Biol. 50:223–237 (1969).PubMedGoogle Scholar
  126. Preston, G.M., Carroll, T.P., Guggino, W.B., Agre, P. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256:385–387 (1992).PubMedGoogle Scholar
  127. Preston, G.M., Jung, J.S., Guggino, W.B., Agre, P. The mercury-sensitive residue at cysteine 189 in the CHIP28 water channel. J. Biol. Chem. 268:17–20 (1993).PubMedGoogle Scholar
  128. Preston, G.M. Cloning gene family members using the polymerase chain reaction with degenerate oligonucleotide primers. Meth. Mol. Biol. 69:97–113 (1997).Google Scholar
  129. Raldúa, D., Fabra, M., Bozzo, M.G., Weber, E., Cerdà, J. Cathepsin B-mediated yolk protein degradation during killifish oocyte maturation is blocked by a H+-ATPase inhibitor: effects on the hydration mechanism. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290:R456–R466 (2006).PubMedGoogle Scholar
  130. Reith, M., Munholland, J., Kelly, J., Finn, R.N., Fyhn, H.J. Lipovitellins derived from two forms of vitellogenin are differentially processed during oocyte maturation in haddock (Melanogrammus aeglefinus). J. Exp. Zool. 291:58–67 (2001).PubMedGoogle Scholar
  131. Riis-Vestergaard, J. Energy density of marine pelagic eggs. J. Fish Biol. 60:1511–1528 (2002).Google Scholar
  132. Rogers, S., Wells, R., Rechsteiner, M. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234:364–368 (1986).PubMedGoogle Scholar
  133. Rønnestad, I., Fyhn, H.J., Gravningen, K. The importance of free amino acids to the energy metabolism of eggs and larvae of turbot (Scophthalmus maximus). Mar. Biol. 114:517–524 (1992).Google Scholar
  134. Rønnestad, I., Groot, E.P., Fyhn, H.J. Compartmental distribution of free amino acids and protein in developing yolk-sac larvae of Atlantic halibut (Hippoglossus hippoglossus). Mar. Biol. 116:349–354 (1993).Google Scholar
  135. Rønnestad, I., Fyhn, H.J. Metabolic aspects of free amino acids in developing marine fish eggs and larvae. Rev. Fish. Sci. 1:239–259 (1993).Google Scholar
  136. Russell, F.S. The eggs and planktonic stages of British marine fishes. Academic Press, London (1976).Google Scholar
  137. Santos, C.R.A., Estevao, M.D., Fuentes, J., Cardoso, J.C.R., Fabra, M., Passos, A.L., Detmers, F.J., Deen, P.M.T., Cerdà, J., Power, D.M. Isolation of a novel aquaglyceroporin from a marine teleost (Sparus auratus): function and tissue distribution. J. Exp. Biol. 207:1217–1227 (2004).PubMedGoogle Scholar
  138. Selman, K., Wallace, R.A. Oocyte growth in the sheepshead minnow: uptake of exogenous proteins by vitellogenic oocytes. Tissue Cell 14:555–571 (1982).PubMedGoogle Scholar
  139. Selman, K., Wallace, R.A. Gametogenesis in Fundulus heteroclitus. Am. Zool. 26:173–192 (1986).Google Scholar
  140. Selman, K., Wallace, R.A., Barr. V. Oogenesis in Fundulus heteroclitus IV. Yolk-vesicle formation. J. Exp. Zool., 239:277–288 (1986).Google Scholar
  141. Selman, K., Wallace, R.A., Barr, V. Oogenesis in Fundulus heteroclitus V. The relationship of yolk vesicles and cortical alveoli. J. Exp. Zool. 246:42–56 (1988).Google Scholar
  142. Selman, K., Wallace, R.A. Cellular aspects of oocyte growth in teleosts. Zool. Sci. 6:211–231 (1989).Google Scholar
  143. Selman, K., Wallace, R.A., Sarka, A., Qi, X. Stages of oocyte development in the zebrafish, Brachydanio rerio. J. Morphol. 218:203–224 (1993).Google Scholar
  144. Selman, K., Wallace, R.A., Cerdà, J. Bafilomycin A1 inhibits proteolytic cleavage and hydration but not yolk crystal disassembly and meiosis during maturation of sea bass oocytes. J. Exp. Zool. 290:265–278 (2001).PubMedGoogle Scholar
  145. Seoka, M., Yamada, S., Iwata, Y., Yanagisawa, T., Nakagawa, T., Kumai, H. Differences in the biochemical content of buoyant and non-buoyant eggs of the Japanese eel, Anguilla japonica. Aquaculture 216:355–362 (2003).Google Scholar
  146. Shi, L.B., Verkman, A.S. Selected cysteine point mutations confer mercurial sensitivity to the mercurial-insensitive water channel MIWC/AQP-4. Biochemistry 35:538–544 (1996).PubMedGoogle Scholar
  147. Sire, M.F., Babin, P.J., Vernier, J.M. Involvement of the lysosomal system in yolk protein deposit and degradation during vitellogenesis and embryonic development in trout. J. Exp. Zool. 269:69–83 (1994).Google Scholar
  148. Soin, S.G. Adaptative characteristics of the structure and development of fish eggs and embryos promoting their respiration. Vestnik Moskovskogo (Moscow University Herald) (ser. 6) 1:9–31 (1964).Google Scholar
  149. Solemdal, P. The effect of salinity on buoyancy, size and development of flounder eggs. Sarsia 29:431–442 (1967).Google Scholar
  150. Solemdal, P. Transfer of Baltic flatfish to a marine environment and the long term effects on reproduction. OIKOS Suppl. 15:268–276 (1973).Google Scholar
  151. Stahlberg, H., Heymann, B., Mitsuoka, K., Fujiyoshi, Y., Engel, A. The aquaporin superfamily: structure and function. In: Hohmann, S., Nielsen, S., Agre, P. (eds.), Current Topics in Cell Membranes, Vol. 51. Academic Press, San Diego, pp. 39–119 (2001).Google Scholar
  152. Stevens, R.E. Hormone-induced spawning of striped bass for reservoir stocking. Prog. Fish Cult. 28:431–442 (1966).Google Scholar
  153. Sui, H., Han, B.G., Lee, J.K., Walian, P., Jap, B.K. Structural basis of water-specific transport through the AQP1 water channel. Nature. 414:872–878 (2001).PubMedGoogle Scholar
  154. Takata, K., Matsuzaki, T., Tajika, Y. Aquaporins: water channel proteins of the cell membrane. Prog. Histochem. Cytochem. 39:1–83 (2004).PubMedGoogle Scholar
  155. Tanii, H., Hasegawa, T., Hirakawa, N., Suzuki, M., Tanaka, S. Molecular and cellular characterization of a water-channel protein, AQP-h3, specifically expressed in the frog ventral skin. J. Membr. Biol. 188:43–53 (2002).PubMedGoogle Scholar
  156. Taylor, M.H. Lunar synchronization of fish reproduction. Trans. Am. Fish. Soc. 113:484–493 (1984).Google Scholar
  157. Telfer, W.H., Anderson, L.M. Functional transformations accompanying the initiation of a terminal growth phase in the cecropia moth oocyte. Dev. Biol. 17:512–535 (1968).PubMedGoogle Scholar
  158. Tocher, D.R., Sargent, J.R. Analysis of lipids and fatty acids in ripe roes of some northwest European marine fish. Lipids 19:492–499 (1984).Google Scholar
  159. Thorsen, A., Fyhn, H.J. Osmotic effectors during preovulatory swelling of marine fish eggs. Proc. 4th Int. Symp. Reprod. Pysiol. Fish 91:312–314 (1991).Google Scholar
  160. Thorsen, A., Fyhn, H.J., Wallace, R.A. Free amino acids as osmotic effectors for oocyte hydration in marine fishes. In: Walther, B.T., Fyhn, H.J. (eds.), Physiological and Biochemical Aspects of Fish Development. University of Bergen, Bergen, pp. 94–98 (1993).Google Scholar
  161. Thorsen, A., Fyhn, H.J. Final oocyte maturation in vivo and in vitro in marine fishes with pelagic eggs; yolk protein hydrolysis and free amino acid content. J. Fish Biol. 48:1195–1209 (1996).Google Scholar
  162. Thorsen, A., Kjesbu, O.S., Fyhn, H.J., Solemdal, P. Physiological mechanisms of buoyancy in eggs from brackish water cod. J. Fish Biol. 48:457–477 (1996).Google Scholar
  163. Tsukaguchi, H., Weremowicz, S., Morton, C.C., Hediger, M.A. Functional and molecular characterization of the human neutral solute channel aquaporin-9. Am. J. Physiol. Renal Phsyiol. 277:F685–F696 (1999).Google Scholar
  164. Uehlein, N., Lovisolo, C., Siefritz, F., Kaldenhoff, R. The tobacco aquaporin NtAQP1 is a membrane CO2pore with physiological functions. Nature 425:734–737 (2003).PubMedGoogle Scholar
  165. Ulrich, E. Etude des ultrastructures au cours de l’ovogenèse d’un poisson téléostéen, le danio, Brachydanio rerio (Hamilton-Buchanan). J. Microsc. 8:447–478 (1969).Google Scholar
  166. Verkman, A.S. Lessons on renal physiology from transgenic mice lacking aquaporin water channels. J. Am. Soc. Nephrol. 10:1126–1135 (1999).PubMedGoogle Scholar
  167. Verkman, A.S. Physiological importance of aquaporins: lessons from knockout mice. Curr. Opin. Nephrol. Hypertens. 9:517–522 (2000).PubMedGoogle Scholar
  168. Verkman, A.S. Role of aquaporin water channels in eye function. Exp. Eye Res. 76:137–143 (2003).PubMedGoogle Scholar
  169. Virkki, L.V., Cooper, G.J., Boron, W.F. Cloning and functional expression of a MIP (AQP0) homolog from killifish (Fundulus heteroclitus) lens. Am. J. Physiol. 281:R1994–R2003 (2001).Google Scholar
  170. Virkki, L.V., Franke, C., Somieski, P., Boron, W.F. Cloning and functional characterization of a novel aquaporin from Xenopus laevis oocytes. J. Biol. Chem. 277:40610–40616 (2002).PubMedGoogle Scholar
  171. Wallace, R.A., Selman, K. Oogenesis in Fundulus heteroclitus. I. Preliminary observations on oocyte maturation in vivo and in vitro. Dev. Biol. 62:354–369 (1978).Google Scholar
  172. Wallace, R.A., Selman, K. Physiological aspects of oogenesis in two species of sticklebacks, Gasterosteus aculeatus L. and Apeltes quadracus (Mitchill). J. Fish Biol. 14:551–564 (1979).Google Scholar
  173. Wallace, R.A. Selman, K. Cellular and dynamic aspects of oocyte growth in teleosts. Am. Zool. 21:325–343 (1981).Google Scholar
  174. Wallace, R.A. Vitellogenesis and oocyte growth in non-mammalian vertebrates. In: Browder, L.W. (ed.), Developmental Biology, Vol. 1. Plenum Press, New York, pp. 127–177 (1985).Google Scholar
  175. Wallace, R.A., Begovac, P.C. Phosvitins in Fundulus oocytes and eggs. Preliminary chromatographic and electrophoretic analyses together with biological considerations. J. Biol. Chem. 260:11268–11274 (1985).PubMedGoogle Scholar
  176. Wallace, R.A, Selman, K. Major proteins changes during vitellogenesis and maturation of Fundulus oocytes. Dev. Biol. 110:492–498 (1985).Google Scholar
  177. Wallace, R.A., Greeley, M.S., Jr., McPherson, R. Analytical and experimental studies on the relationship between Na+, K+, and water-uptake during volume increases associated with Fundulus oocyte maturation in vitro. J. Comp. Physiol. 162B:241–248 (1992).Google Scholar
  178. Walz, T., Smith, B.L., Agre, P., Engel, A. The three-dimensional structure of human erythrocyte aquaporin CHIP. EMBO J. 13:2985–2993 (1994).PubMedGoogle Scholar
  179. Watanabe, W.O., Kuo, C-M. Water and ion balance in hydrating oocytes of the grey mullet, Mugil cephalus (L.), during hormone-induced final maturation. J. Fish Biol. 28:425–437 (1986).Google Scholar
  180. Wilson, R.W., Wilson, J.M., Grosell, M. Intestinal bicarbonate secretion by marine teleost fish-why and how? Biochim. Biophys. Acta 1566:182–193 (2002).PubMedGoogle Scholar
  181. Wright, P.A., Fyhn, H.J. Ontogeny of nitrogen metabolism and excretion. In: Wright, P.A., Anderson, P.M. (eds.), Nitrogen Excretion. Fish Physiology, Vol. 20. Academic Press, San Diego, pp. 141–201 (2001).Google Scholar
  182. Yamahama, Y., Uto, N., Tamotsu, S., Miyata, T., Yamamoto, Y., Watabe, S., Takahashi, S.Y. In vivo activation of pro-form Bombyx cysteine protease (BCP) in silkmoth eggs: localization of yolk proteins and BCP, and acidification of yolk granules. J. Insect Physiol. 49:131–140 (2003).PubMedGoogle Scholar
  183. Yamamoto, K. Studies on the formation of fish eggs. XI. The formation of a continuous mass of yolk and the nature of the lipids contained in it in the oocyte of the flounder, Liopsetta obscura. J. Fac. Sci. Hokkaido Univ. 8:344–351 (1957).Google Scholar
  184. Yamamoto, K., Yamazaki, F. Rhythm of development in the oocyte of the goldfish, Caraussius auratus. Bull. Fac. Fish. Hokkaido Univ. 12:93–110 (1961).Google Scholar
  185. Yamamoto, K., Oota, I. Fine structure of yolk globules in the oocyte of the zebrafish, Brachydanio rerio. Annot. Zool. Jpn. 40:20–27 (1967).Google Scholar
  186. Yasui, M., Kwon, T.H., Knepper, M.A., Nielsen, S., Agre, P. Aquaporin-6: an intracellular vesicle water channel protein. Proc. Natl. Acad. Sci. USA 96:5808–5813 (1999a).PubMedGoogle Scholar
  187. Yasui, M., Hazama, A., Kwon, T.H., Nielsen, S., Guggino, W.B., Agre, P. Rapid gating and anion permeability of an intracellular aquaporin. Nature 402:184–187 (1999b).PubMedGoogle Scholar
  188. Yool, A.J., Brokl, O.H., Pannabecker, T.L., Dantzler, W.H., Stamer, W.D. Tetraethylamonium block of water flux in aquaporin-1 channels expressed in kidney thin limbs of Henle’s loop and a kidney-derived cell line. BMC Physiology. www.biomedcentral.com/1472–6793/2/4 (2002).
  189. Yoshizaki, G., Patiño, R., Thomas, P., Bolamba, D., Chang, X. Effects of maturation-inducing hormone on heterologous gap junctional coupling in ovarian follicles of Atlantic croaker. Gen. Comp. Endocrinol. 124:359–366 (2001).PubMedGoogle Scholar
  190. Yoshizaki, N., Moriyama, A., Yonezawa, S. Purification and properties of embryonic cysteine proteinase which participates in yolk-lysis of Xenopus laevis. Comp. Biochem. Physiol. 119B:571–576 (1998).Google Scholar
  191. Yoshizaki, N., Soga, M., Ito, Y., Mao, K.M., Sultana, F., Yonezawa, S. Two-step consumption of yolk granules during the development of quail embryos. Develop. Growth Differ. 46:229–238 (2004).Google Scholar
  192. Zhu, Y., Rice, C.D., Pang, Y., Pace, M., Thomas, P. Cloning, expression, and characterization of a membrane progestin receptor and evidence it is an intermediary in meiotic maturaton of fish oocytes. Proc. Natl. Acad. Sci. USA 100:2231–2236 (2003).PubMedGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Joan Cerdà
    • 1
  • Mercedes Fabra
    • 1
  • Demetrio Raldúa
    • 1
  1. 1.IRTA, Institute of Marine Sciences of Barcelona, CSIC, and Center of AquacultureSpain

Personalised recommendations