Multiple Giftedness in Adults: The Case of Polymaths

  • Robert Root-BernsteinEmail author


Creativity researchers often assert that specialization is a requirement for adult success, that skills and knowledge do not transfer across domains, and that the domain dependence of creativity makes general creativity impossible. The supposed absence of individuals who have made major contributions to multiple domains supposedly supports the specialization thesis. This chapter challenges all three legs of the specialization thesis. It describes individuals who have made major contributions to multiple domains; reviews prior literature demonstrating polymathy among creative adults; and presents data from an ongoing study of Nobel laureates in literature, science and economics that confirms this creativity–polymathy connection.


Polymathy Polymaths Creativity Specialization thesis Domain dependence of creativity General creativity Multiple domains Creative adults 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amabile, T. M. (1996). Creativity in context: Update to the social psychology of creativity. Boulder CO: Westview.Google Scholar
  2. Anderson, P. (1999). Dr. Minor Myers gives talk on multi-talented personalities. Elm Student Newspaper of Washington College, vol 70 (n.p.). Accessed 28 July 2006
  3. Anonymous. 120 years of electronic music. Electronic musical instruments 1870–1990. Accessed 9 Sep 2006.
  4. Anonymous, (Eds). 1956. Art and the artist. Berkeley: University of California Press.Google Scholar
  5. Baer, J. (1998). The case for domain specificity in creativity. Creativity Research Journal, 11, 173–177.CrossRefGoogle Scholar
  6. Basbanes, N. A. (1997). In focus: Preserving the creative wisdom of the past. Nicholas A. Basbanes (web blog) 2(5). Accessed 28 July 2006
  7. Bell Telephone. 1961. Music from mathematics. Selections of music composed and played by mathematicians – both human and electronic. Princeton NJ: Bell Telephone.Google Scholar
  8. Burns, K. H. History of electronic and computer music, including automatic instruments and composition machines. Accessed 9 Sep 2006.
  9. Calaprice, A. (Ed.). (2000). The expanded quotable Einstein. Princeton: Princeton University Press.Google Scholar
  10. Capanna, A. 2002. Iannis Xenakis – Architect of light and sound. Nexus Network Journal, 3(2). Accessed 6 Sept 2006.
  11. Carey, S., & Spelke E. (1994). Domain specific knowledge and conceptual change. In L. A. Hirschfeld & S. A. Gelman (Eds.), Mapping the mind: Domain specificity in cognition and culture (pp. 169–200). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  12. Cassidy, D. (1992). Uncertainty. The life and science of Werner Heisenberg. New York: W. H. Freeman.Google Scholar
  13. Churchill, W. S. (1950). Painting as a pastime. New York: Whittlesey House, McGraw-Hill.Google Scholar
  14. Clark, R. W. (1985). The life of Ernst Chain. Penicillin and beyond. New York: St. Martin’s Press.Google Scholar
  15. Cohen, M. A. (1987). Poet and Painter: The aesthetics of E. E. Cummings’s early work. Detroit: Wayne State University Press.Google Scholar
  16. Cohen, M. N. (Ed.). (1989). Lewis Carroll: Interviews and recollections. London: Macmillan.Google Scholar
  17. Cox, C. M. (1926). The early mental traits of three hundred geniuses. Stanford, CA: Stanford University Press.Google Scholar
  18. Cranefield, P. (1966). The philosophical and cultural interests of the biophysics movement of 1847. Journal of the History of Medicine, 21, 1–7.Google Scholar
  19. Csikszentmihalyi, M. (1996). Creativity. Flow and the psychology of discovery and invention. New York: Harper Collins.Google Scholar
  20. Cummings, E. E. (1945). Paintings and drawings of E. E. Cummings. Rochester, NY: Memorial Art Gallery of the University of Rochester.Google Scholar
  21. Dale, A. S. (1985) . The art of G. K. Chesterton. Chicago: Loyola University Press.Google Scholar
  22. Debye, P. (1966). ‘Peter J. W.Debye’. In: the Way of the Scientist. Interviews from the World of Science and Technology. New York: Simon and Schuster, pp. 77–86.Google Scholar
  23. Depero, F. (1915). itManifesto of the Futurist Reconstruction of the Universe . Accessed 4 September 2006.
  24. Dewey, J. (1934). Art as experience. New York: Minton, Balch.Google Scholar
  25. Fehr, H. (1912). Enquete de l’enseignmement mathematique sur la methode de travail des mathematiciens. Paris: Gauthier-Villars.Google Scholar
  26. Feist, G. J. (2005). Domain-specific creativity in the physical sciences. In J. C. Kaufman & J. Baer (Eds.), Creativity across domains: Faces of the muse (pp. 123–138). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  27. Feldman, D. H., Csikszentmihalyi, M., & Gardner H. (1994). Changing the world: A framework for the study of creativity. Westport, CT: Praeger.Google Scholar
  28. Gabo, N. (1962). Of divers arts. Princeton, NJ: Bollingen Press.Google Scholar
  29. Gardner, H. (1983). Frames of mind: The theory of multiple intelligences. New York: Basic Books.Google Scholar
  30. Gardner, H. (1993). Creating minds: An anatomy of creativity seen through the lives of Freud, Einstein, Picasso, Stravinsky, Eliot, Graham and Gandhi. New York: Basic Books.Google Scholar
  31. Gardner, H. (1999). Intelligence reframed: Multiple intelligences for the 21st century. New York: Basic Books.Google Scholar
  32. Gruber, H. E. (1984). Darwin on man: A psychological study of scientific creativity (2nd ed.). Chicago: University of Chicago Press.Google Scholar
  33. Gruber, H. E. (1988a) Networks of enterprise in creative scientific work. In B. Gholson, A. Houts, R. A. Neimayer, & W. Shadis (Eds.), Psychology of science and metascience. Cambridge, England: Cambridge University Press.Google Scholar
  34. Gruber, H. E. (1988b). The evolving systems approach to creative work. Creativity Research Journal, 1, 27–51.Google Scholar
  35. Hadamard, J. (1945). The psychology of invention in the mathematical field. Princeton: Princeton University Press.Google Scholar
  36. Hammond, W. G., & Scull, C. (1995). J. R. R. Tolkien artist & illustrator. Boston: Houghton Mifflin.Google Scholar
  37. Handley-Read, C. (1951). The art of Wyndham Lewis. London: Faber and Faber.Google Scholar
  38. Hedstrom, P., Feuk, D., Hook, E., Lalander, A., & Soderstrom, G. (2001). Strindberg painter and photographer. New Haven, CT: Yale University Press.Google Scholar
  39. Heisenberg, W. (1972). Physics and beyond. Encounters and conversations. New York: Harper Torchbooks.Google Scholar
  40. Heisenberg, W. (1974). Across the Frontiers. P. Heath, trans. New York: Harper and Row.Google Scholar
  41. Hiebert, E. N. (1983). Walther Nernst and the application of physics to chemistry. In R. Aris, H. T. Davis, & R. H. Stuewer (Eds.), Springs of scientific creativity (pp. 203–231). Minneapolis: University of Minnesota Press.Google Scholar
  42. Hiller, L. A., Jr. Archives (University at Buffalo – SUNY):
  43. Hiller, L. A. Jr., Exhibit Summary (University at Buffalo – SUNY):
  44. Hiller, L. A., Jr. (1986). Lejaren Hiller: Computer music retrospective, 1957–1985. Mainz, W. Germany: Wergo Schallplatten.Google Scholar
  45. Hjerter, K. G. (1986). Doubly gifted: The author as visual artist. New York: Abrams.Google Scholar
  46. Hoffmann, R. (1988a, March). How I work as poet and scientist. The Scientist, 10.Google Scholar
  47. Hoffmann, R. (1988b). The metamict state. Orlando, FL: University of Florida Press.Google Scholar
  48. Hoffmann, R. (2006). The metaphor unchained. American Scientist, 94(5); 406–407.Google Scholar
  49. Johnson, K., & Coates, S. (1999). Nabokov’s blues: The scientific odyssey of a literary genius. Cambridge, MA: Zoland.Google Scholar
  50. Karmiloff-Smith, A. (1992). Beyond modularity: A developmental perspective on cognitive science. Cambridge, MA: MIT Press.Google Scholar
  51. Katterman, L. (1999). Cluade E. Shannon. University of Michigan research. Accessed 1 August 2006.
  52. Kaufman, J. C., & Baer, J. (2004). Hawking’s haiku, Madonna’s math: Why it is hard to be creative in every room of the house. In R. J. Sternberg, E. L. Grigorenko, & J. L.Singer (Eds.), Creativity: From potential to realization (pp. 3–20). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
  53. Kaufman, J. C., & Baer, J. (Eds.). (2005). Creativity across domains: Faces of the muse (pp. 313–320). Mahway, NJ: Lawrence Erlbaum.Google Scholar
  54. Kelly, R. (1996). The art of George du Maurier. Aldershot, UK: Scolar Press.Google Scholar
  55. Keynes, G. (1970). Drawings of William Blake. New York: Dover.Google Scholar
  56. King, B. (2000). Derek Walcott: A Caribbean life. Oxford: Oxford University Press.Google Scholar
  57. Koestler, A. (1976). The act of creation. London: Hutchinson.Google Scholar
  58. Levitin, D. J. (2006). This is your brain on music. New York: Dutton.Google Scholar
  59. Liukkonen, P. (1999). Biographies prepared by Pietri Liukkonen Pegasos. Retrieved November 30, 2002 from
  60. Marter, J. (1991). Alexander Calder. Cambridge: Cambridge University Press.Google Scholar
  61. Matthews, M. V. Wikipedia. Accessed 24 August 2006.
  62. Matossian, N. 1986. Xenakis. London: Kan & Averil; New York: Taplinger.Google Scholar
  63. Milgram, R., & Hong, E. (1993). Creative thinking and creative performance in adolescents as predictors of creative attainments in adults: A follow-up study after 18 years. In R. Subotnik & K. Arnold (Eds.), Beyond Terman: Longitudinal studies in contemporary gifted education. Norwood, NJ: Ablex.Google Scholar
  64. Miller, H. (1974). Insomnia or the devil at large. Garden City, NY: Doubleday.Google Scholar
  65. Moebius, P. J. (1900). Ueber die anlage zur mathetmatik. Leipzig: Barth.Google Scholar
  66. Moszkowski, A. (1973). Conversations with Einstein. New York: Horizon.Google Scholar
  67. Mueller, R. E. (1967). The science of art. New York: John Day.Google Scholar
  68. Myers, M. (2003). Packing for college. National Consortium of Specialized Schools of Mathematics, Sciences & Technology Journal. Accessed 28 July 2006.
  69. Myers, M. (2006) Polymaths (unpublished book manuscript).Google Scholar
  70. Nash, S. A., & Merkert J. (1985). Naum Gabo. Sixty years of constructivism. New York: Neues Press.Google Scholar
  71. Ostwald, W. (1905). Kunst und wissenshcaft. Leipzig: Von Veit.Google Scholar
  72. Ostwald, W. (1906). Letters to a painter on the theory and practice of painting (H. W. Morse, Trans.). Boston: Ginn.Google Scholar
  73. Ostwald, W. (1907–1909). Psychographischen studien. Annalen der Naturphilosophie, 6–8, passim.Google Scholar
  74. Ostwald, W. (1909). Grosse maenner. Leipzig: Akademische Verlagsgesselshaft.Google Scholar
  75. Pearson, H. (1950). G. B. S. A postscript. New York: Harper and Brothers.Google Scholar
  76. Pierce, J. R. (1990). Telstar, a history. SMEC Vintage Electrics. Accessed 1 August 2006.
  77. Planck, M. (1949). Scientific autobiography and other papers. Trans. Frank Gaynor. New York: Philosophical Library.Google Scholar
  78. Platt, W. & Baker, R. A. (1931). The relationship of the scientific ’hunch’ to research. Journal of Chemical Education, 8, 1969–2002.CrossRefGoogle Scholar
  79. Poincare, H. (1946). The Foundations of Science, trans. G. B. Halsted. Lancaster, PA: Science Press.Google Scholar
  80. Pribic, R. (Ed.). (1990). Nobel laureates in literature: A biographical dictionary. New York: Garland Publishing.Google Scholar
  81. Ramon y Cajal, S. (1951). Precepts and counsels on scientific investigation: Stimulants of the Spirit (J. M. Sanchez-Perez, Trans.). Mountain View, CA: Pacific Press Publishing Association.Google Scholar
  82. Root-Bernstein, M. M., & Root-Bernstein, R. S. (2003). Martha Graham and the Polymathic Imagination: A Case of Multiple Intelligences or Universal Tools for Thinking? Journal of Dance Education, 3, 16–27.CrossRefGoogle Scholar
  83. Root-Bernstein, R. S. (1987). Harmony and beauty in biomedical research. Journal of Molecular and Cellular Cardiology, 19, 1–9.Google Scholar
  84. Root-Bernstein, R. S. (1996). The sciences and arts share a common creative aesthetic. In A. I. Tauber (Ed.), The elusive synthesis: Aesthetics and science (pp. 49–82). Boston: Kluwer.Google Scholar
  85. Root-Bernstein, R. S. (1989). Discovering: Inventing and solving problems at the frontiers of scientific knowledge. Cambridge MA: Harvard University Press.Google Scholar
  86. Root-Bernstein, R. S. (2000). Art advances science. Nature, 407, 134.CrossRefGoogle Scholar
  87. Root-Bernstein, R. S. (2001a). Music, creativity, and scientific thinking. Leonardo, 34(1), 63–68.Google Scholar
  88. Root-Bernstein, R. S. (2001b). Van’t Hoff on imagination and genius. In W. J. Hornix & S. H. W. M. Mannaerts (Eds.), Van’t Hoff and the emergence of chemical thermodynamics: Centennial of the first Nobel prize for chemistry 1901–2001. Delft: Delft University Press.Google Scholar
  89. Root-Bernstein, R. S. (2002). Aesthetic cognition. Journal of the Philosophy of Science, 16(1), 61–77.Google Scholar
  90. Root-Bernstein, R. S. (2003). Sensual chemistry: Aesthetics as a motivation for research. Hyle: The Journal of the Philosophy of Chemistry, 9, 35–53.Google Scholar
  91. Root-Bernstein, R. S. (2005a). Roger Sperry: ambicerebral man. Leonardo, 38, 224–225.Google Scholar
  92. Root-Bernstein, R. S. (2005b). Desmond Morris’s two spheres. Leonardo, 38, 318–321.Google Scholar
  93. Root-Bernstein, R. S. (2006a). Frederick Banting, painter. Leonardo, 39, 154.Google Scholar
  94. Root-Bernstein, R. S. (2006b). Albert Michelson, painter of light. Leonardo, 39, 232.Google Scholar
  95. Root-Bernstein, R. S. (2006c). Wilhelm Ostwald and the science of art. Leonardo, 39, 417–419.Google Scholar
  96. Root-Bernstein, R. S., Bernstein, M., & Garnier, H. (1993). Identification of scientists making long-term high-impact contributions, with notes on their methods of working. Creativity Research Journal, 6, 329–343.CrossRefGoogle Scholar
  97. Root-Bernstein, R. S., Bernstein, M., & Garnier, H. (1995). Correlations between avocations, scientific style, work habits, and professional impact of scientists. Creativity Research Journal, 8,115–137.CrossRefGoogle Scholar
  98. Root-Bernstein, R. S., & Root-Bernstein, M. M. (1999). Sparks of genius: The thirteen thinking tools of the world’s most creative people. Boston: Houghton Mifflin.Google Scholar
  99. Root-Bernstein, R. S., & Root-Bernstein, M. M. (2004). Artistic scientists and scientific artists: The link between polymathy and creativity. In R. J. Sternberg, E. L. Grigorenko E. L., & Singer, J. L. (Eds.), Creativity: From potential to realization (pp. 127–152). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
  100. Rothenberg, A. 1979. The emerging goddess: the creative process in art, science, and other fields. Chicago: Chicago University Press.Google Scholar
  101. Runco, M. A. (2004). Everyone has creative potential. In R. J. Sternberg, E. L. Grigorenko, & J. L. Singer (Eds.), Creativity: From potential to realization (pp. 21–30). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
  102. Sanford, J. (2005). Memorial Resolution: John Robinson Pierce. Standford Report Accessed 1 August 2006.
  103. Schwarz, P. W. (1969). The hand and eye of the sculptor. New York: Praeger.Google Scholar
  104. Scott, Raymond. (2006). Wikipedia. Accessed 9 September 2006.
  105. Seagoe, M. (1975). Terman and the gifted. Los Altos, CA: W. Kaufmann.Google Scholar
  106. Steinbeck J., & Ricketts, E. F. (1971). Sea of Cortez. Mamaroneck, NY: Paul P. Appel. (original work published 1941).Google Scholar
  107. Sternberg, R. J, Grigorenko, E., & Singer J. L. (Eds.). (2004). Creativity: From potential to realization. Washington, DC: American Psychological Association.Google Scholar
  108. Szladits, L. L., & Simmonds, H. (1969). Pen & brush: The author as artist. New York: The New York Public Library.Google Scholar
  109. Tolkien, C. (1992). Pictures by J. R. R. Tolkien. Boston: Houghton Mifflin.Google Scholar
  110. Valdez, S. (2000). George Rickey at Maxwell Davidson. Art in America. Accessed 18 August 2006.
  111. van’t Hoff, J. H. (1878). De verbeeldingskracht in de wetenschap. Rotterdam: P. M. Bazenkijk. German ed. (1912). Die Phantasie in der Wissenschaft (E. Cohen, Trans.). In Jacobus Henricus van’t Hoff, sein leben und wirken (pp. 150–165). Leipzig: Akademsische Verlagsgesellschaft. English ed. (1967). Imagination in Science (G. F. Springer, Trans.). Molecular Biology, Biochemistry, and Biophysics, 1,1–18.Google Scholar
  112. Viereck, G. E. (1929, October 26). What life means to Einstein: An interview by George Sylvester Viereck. The Saturday Evening Post, pp. 46–50.Google Scholar
  113. Walcott, D. (2000). Tiepelo’s hound. New York: Farrar, Straus, Giroux.Google Scholar
  114. Walcott, D. (2005). Another life: Paintings and watercolours (Exhibition catalogue) New York: NYU Press.Google Scholar
  115. Wamser, C. C., & Wamser, C. A. (2006, May). Lejaren A. Hiller, Jr.: Computer Composition. unpublished talk, American Chemical Society, Atlanta, GA, May 2006.Google Scholar
  116. Wertheimer, M. (1959). Productive thinking. New York: Harper.Google Scholar
  117. White, R. K. (1931). The versatility of genius. Journal of Social Psychology, 2, 482.CrossRefGoogle Scholar
  118. Wikipedia.. Electronic musical instrument. Accessed 9 Sep 2006.
  119. Wilton, A. (1990). Painting and poetry. Turner’s verse book and his work of 1804–1812. London: Tate Gallery.Google Scholar
  120. Xenakis, I. 1971a. Musique, architecture. Tournai: Casterman.Google Scholar
  121. Xenakis, I. 1971b. Formalized music: Thought and mathematics in composition. Bloomington: Indiana University Press.Google Scholar
  122. Xenakis, I. 1985. Arts-sciences alloys: The thesis defense of Iannis Xenakis. S. Kanach, transl. New York: Pendragon Press.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Michigan State UniversityUSA

Personalised recommendations