Advertisement

The Neural Plasticity of Giftedness

  • M. Layne Kalbfleisch

Abstract

Based on known types of neural plasticity such as phantom limb, pediatric hemispherectomy, and synesthesia, this chapter proposes that giftedness is a type of neural plasticity not well understood. Three questions guide the exploration of this idea. First, how does state of mind contribute to the acquisition and demonstration of giftedness? Second, what is the contribution of stress to the acquisition or demonstration of expertise? Finally, what are the contributions of sensory, perceptual, and motivational mechanisms to superlative higher level cognition and resulting performance state(s)? A larger paradigm is required to integrate existing empirical and theoretical information to guide the exploration of the potential nature of individual differences, human performance, and creativity on an elaborate scale. This chapter will reconcile these topics and issues into a general theory of giftedness as another type of neural plasticity.

Keywords

State of mind Neural plasticity Fluid intelligence Reasoning Cerebellum Basal ganglia fMRI Domain general ability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreasen, N. C., O’Leary, D. S., Cizadlo, T., Arndt, S., Rezai, K., & Ponto, L. (1996). Schizophrenia and cognitive dysmetria: A positron-emission tomography study of dysfunctional prefrontal-thalamic-cerebellar circuitry. Proceedings of the National Academy of Science, 93(18), 9985–9990.Google Scholar
  2. Amabile, T. (1996).Creativity in context. Boulder, CO: Westview Press.Google Scholar
  3. Amminger, G. P., Schlogelhofer, M., Lehner, T., Looser Ott, S., Friedrich, M. H., & Aschauer, M. (2000). Premorbid performance IQ deficit in schizophrenia. Acta Psychiatrica Scandinavica, 102, 414–422.Google Scholar
  4. Baddeley, A. D. (1986). Working memory. Oxford: Clarendon Press.Google Scholar
  5. Baron-Cohen, S. (2004). The cognitive neuroscience of autism. Journal of Neurology, Neurosurgery, and Psychiatry, 75(7):945–948.Google Scholar
  6. Barron, F., & Harrington, D.M. (1981). Creativity, intelligence, and personality. Annual Review of Psychology, 32, 439–476.Google Scholar
  7. Bartsch, K., & Wellman H. M. (1995). Children talk about the mind. London: Oxford University Press.Google Scholar
  8. Battaglia, D., Chieffo, D., Lettori, D., Perrino, F., Di Rocco, C., & Guzzetta, F. (2006). Cognitive assessment in epilepsy surgery of children. Child’s nervous system, 22(8), 744–759.Google Scholar
  9. Bechara, A., Damasio, H., Tranel, D., & Damasio, A.R. (2005). The Iowa gambling task and the somatic marker hypothesis: Some questions and answers. Trends in Cognitive Sciences, 9(4):159–164.Google Scholar
  10. Beilock, S. L., Bertenthal, B. I., McCoy, A. M., & Carr, T. H. (2004a). Haste does not always make waste: Expertise, direction of attention, and speed versus accuracy in performing sensorimotor skills. Psychonomic Bulletin & Review, 11(2), 373–379.Google Scholar
  11. Beilock, S. L., & Carr, T. H. (2005). When high-powered people fail: Working memory and ‘choking under pressure’ in math. Psychological Science, 16, 101–105.Google Scholar
  12. Beilock, S. L., Kulp, C. A., Holt, L. E., & Carr, T. H. (2004b). More on the fragility of performance: Choking under pressure in mathematical problem solving. Journal of Experimental Psychology: General, 133, 584–600.Google Scholar
  13. Beilock, S. L., Wierenga, S. A., & Carr, T. H. (2002). Expertise, attention, and memory in sensorimotor skill execution: Impact of novel task constraints on dual-task performance and episodic memory. The Quarterly Journal of Experimental Psychology. A, Human Experimental Psychology, 55(4), 1211–1240.Google Scholar
  14. Berquin, P. C., Giedd, J. N., Jacobsen, L. K., Hamburger, S. D., Krain, A. L., & Rapoport, J. L., et al. (1998). Cerebellum in attention-deficit hyperactivity disorder: A morphometric MRI study. Neurology, 50, 1087–1093Google Scholar
  15. Berry, J. W., & Irvine, S. H. (1986). Bricolage: Savages do it daily. In R. J. Sternberg & R. K. Wagner (Eds.), Practical Intelligence: Nature and origins of competence in the everyday world (pp. 271–306). Cambridge: Cambridge University Press.Google Scholar
  16. Black, I. (1997). Trophic interactions and brain plasticity. In M. Gazzaniga (Ed.), The cognitive neurosciences. Cambridge, MA: MIT Press.Google Scholar
  17. Blackwood, N., Ffytche, D., Simmons, A., Bentall, R., Murray, R., & Howard, R. (2004). The cerebellum and decision making under uncertainty. Cognitive Brain Research, 20, 46–53.Google Scholar
  18. Blair, C. (2006). How similar are fluid cognition and general intelligence? A developmental neuroscience perspective on fluid cognition as an aspect of human cognitive ability. Behavioral and Brain Sciences, 29, 109–160.Google Scholar
  19. Boatman, D., Vining, E. P., Freeman, J., & Carson, B. (2003). Auditory processing studied prospectively in two hemidecorticectomy patients. Journal of Child Neurology, 18(3), 228–232.Google Scholar
  20. Bor, D., & Owen, A. (2007). Cognitive training: Neural correlates of expert skills. Current Biology, 17(3): R95–97.Google Scholar
  21. Borsook, D., Becerra, L., Fishman, S., Edwards, A., Jennings, C.L., & Stojanovic, M. et al. (1998). Acute plasticity in the human somatosensory cortex following amputation. Neuroreport, 9(6), 1013–1017.Google Scholar
  22. Bransford, J., Brown, A. L.,& Cocking, R. L. (Eds.) (1999). How people learn: Brain, mind, experience, and school. Washington, D.C: National Academy PressGoogle Scholar
  23. Bruner, J. (1979). On knowing: Essays for the left hand. Cambridge, MA: Harvard University Press.Google Scholar
  24. Carlsson, I., Wendt, P. E., & Risberg, J. (2000). On the neurobiology of creativity. Differences in frontal activity between high and how creative subjects. Neuropsychologia, 38, 873–885.Google Scholar
  25. Castellanos, F. X., Lee, P. P., Sharp, W., Jeffries, N. O., Greenstein, D. K., & Clasen L. S., et al. (2002). Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder. JAMA, 288, 1740–1748.Google Scholar
  26. Catheline-Antipoff, N., & Poinso, F. (1994). Gifted children and dysharmonious development. Archives of Pediatrics, 1(11), 1034–1039.Google Scholar
  27. Chen, R., Cohen, L. G., & Hallett, M. (2002). Nervous system reorganization following injury. Neuroscience, 111(4), 761–773.Google Scholar
  28. Colum, R., Jung, R. E., & Haier, R. J. (2006). Distributed brain sites for the g-factor of intelligence. NeuroImage, 31, 1359–1365.Google Scholar
  29. Courchesne, E., Redcay, E., Morgan, J. T., & Kennedy, D. P. (2005). Autism at the beginning: Microstructural and growth abnormalities underlying the cognitive and behavioral phenotype of autism. Development and Psychopathology, 17(3), 577–597.Google Scholar
  30. Craggs, J. G., Sanchez, J., Kibby, M. Y., Gilger, J. W., & Hynd, G. W. (2006). Brain morphology and neuropsychological profiles in a family displaying dyslexia and superior nonverbal intelligence. Cortex, 42(8), 1107–1118.Google Scholar
  31. Csikszentmihalyi, M. (1990). Flow: The psychology of optimal experience. New York: Harper and Row.Google Scholar
  32. Cytowic, R. E. (2002). Synesthesia: A union of the senses (2nd ed). Cambridge, MA: MIT Press.Google Scholar
  33. Dabrowski, K. (1967). Personality-shaping through positive disintegration. Boston: Little Brown.Google Scholar
  34. Damasio, A. R. (1996). The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 351(1346), 1413–1420.Google Scholar
  35. Davidson, R. J. (2002). Anxiety and affective style: Role of prefrontal cortex and amygdala. Biological Psychiatry, 51, 68–80.Google Scholar
  36. De Geus, E. J. C., & Boomsma, D. I. (2002). A genetic neuroscience approach to human cognition. European Psychology, 6(4), 241–253.Google Scholar
  37. Diamond, A., & Herzberg, C. (1996). Impaired sensitivity to visual contrast in children treated early and continually for phenylketonuria. Brain, 119, 523–538.Google Scholar
  38. Diamond, A., Prevor, M. B., Callendar, G., & Druin, D. P. (1997). Prefrontal cognitive deficits in children treated early and continuously for PKU. Monographs of the Society for Research in Child Development, 62(4), Serial No. 252.Google Scholar
  39. Dickens, W. T., & Flynn, J. R. (2001). Heritability estimates versus large environmental effect: The IQ paradox resolved. Psychological Review, 108, 346–369.Google Scholar
  40. Doctorow, E. L. (2006). Creationists: Selected essays: 1993–2006. Mississauga, ON: Random HouseGoogle Scholar
  41. Duncan, J. (2003). Intelligence tests predict brain response to demanding task events. Nature Neuroscience, 6(3), 207–208.Google Scholar
  42. Duncan, J., Burgess, P., & Emslie, H. (1995). Fluid intelligence after frontal lobe lesions. Neuropsychologia, 33, 261–268.Google Scholar
  43. Duncan, J., Emslie, H., Williams, P., Johnson, R., & Freer C. (1996). Intelligence and the frontal lobe: The organization of goal-directed behavior. Cognitive Psychology, 30(3), 257–303.Google Scholar
  44. Duncan, J., & Owen, A. M. (2000). Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends in Neuroscience, 23(10), 475–483.Google Scholar
  45. Duncan, J., Seltz, R. J., Kolodny, J., Bor, D., Herzog, H., & Ahmed, A., et al. (2000). A neural basis for general intelligence. Science, 289(5478), 399–401.Google Scholar
  46. Dunn, B. D., Dalgleish, T., & Lawrence, A. D. (2006). The somatic marker hypothesis: A critical evaluation. Neuroscience and biobehavioral reviews, 30(2), 239–271.Google Scholar
  47. Durston, S., Tottenham, N. T., Thomas, K. M., Davidson, M. C., Eigsti, I. M., & Yang, Y., et al. (2003). Differential patterns of striatal activation in young children with and without ADHD. Biological Psychiatry, 53(10), 871–878.Google Scholar
  48. Eikhoff, S. B., Amunts, K., Mohlberg, H., & Zilles, K. (2006). Human parietal operculum. II. Cytoarchitectonic mapping of subdivisions. Cerebral Cortex. 16(2), 268–279.Google Scholar
  49. Eikhoff, S. B., Schleicher, A., Zilles, K., & Amunts, K. (2006). Human parietal operculum. I. Cytoarchitectonic mapping of subdivisions. Cerebral Cortex, 16(2), 254–267.Google Scholar
  50. Elliott, R., Frith, C. D., & Dolan, R. J. (1997). Differential neural response to positive and negative feedback in planning and guessing tasks. Neuropsychologia, 35, 1395–1404.Google Scholar
  51. Eysenck, H. J. (1986). Toward a new model of intelligence. Personality and individual differences, 7, 731–736.Google Scholar
  52. Feldman, D. H. (1999). The development of creativity. In R. Sternberg (Ed.), The handbook of creativity (pp. 169–186). New York: Cambridge University Press.Google Scholar
  53. Feldman, D. H., Czikszentmihalyi, M., & Gardner, H. (1994). Changing the world: A framework for the study of creativity. Westport, CT: Praeger.Google Scholar
  54. Fischer, S, Drosopoulos, S, Tsen, J, & Born, J. (2006). Implicit learning – explicit knowing: A role for sleep in memory system interaction. Journal of Cognitive Neuroscience, 18(3), 311–319.Google Scholar
  55. Flynn, J. R. (1984). The mean IQ of Americans: Massive gains 1932–1978. Psychological Bulletin, 95, 29–51.Google Scholar
  56. Flynn, J. R. (1987). Massive IQ gains in 14 nations: What IQ tests really measure. Psychological Bulletin, 101, 171–191.Google Scholar
  57. Frangou, S., Chitins, X., & Williams, S. C. R. (2004). Mapping IQ and gray matter density in healthy young people. NeuroImage, 23, 800–805.Google Scholar
  58. Garon, N., & Moore, C. (2004). Complex decision-making in early childhood. Brain and cognition, 55(1), 158–70.Google Scholar
  59. Geake, J. G., & Hansen P. (2005). Neural correlates of intelligence as revealed by fMRI of fluid analogies, NeuroImage, 26(2), 555–564.Google Scholar
  60. Geidd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., & Zijdenbos A., et al. (1999). Brain development during childhood and adolescence: A longitudinal MRI study. Nature Neuroscience, 2(10), 861–863.Google Scholar
  61. Giedd, J. N., Lenroot, R., Greenstein, D., Wallace, G. L., Ordaz, S., & Molloy E.A., et al. (2006). Puberty-related influences on brain development. Molecular and Cellular Endocrinology, 254255:154–162.Google Scholar
  62. Gilger, J. W., & Kaplan, B. J. (2001). Atypical brain development: A conceptual framework for understanding developmental learning disabilities. Developmental Neuropsychology, 20(2), 465–481Google Scholar
  63. Goel, V., Buchel, C., Frith, C., & Dolan, R. J. (2000). Dissociation of mechanisms underlying syllogistic reasoning. Neuroimage, 12, 504–514.Google Scholar
  64. Goel, V., & Dolan, R. (2001). Functional neuroanatomy of three-term relational reasoning, Neuropsychologia, 39(9), 901–909.Google Scholar
  65. Goel, V, Dolan, R. J. (2003). Reciprocal neural response within lateral and ventral medial prefrontal cortex during hot and cold reasoning. NeuroImage, 20, 2314–2321.Google Scholar
  66. Goel, V., Dolan, R. J. (2004). Differential involvement of left prefrontal cortex in inductive and deductive reasoning. Cognition, 93, B109–B121.Google Scholar
  67. Goel, V., Gold, B., Kapur, S., & Houle, S. (1997). The seats of reason? An imaging study of deductive and inductive reasoning. Neuroreport, 8(5),1305–1310.Google Scholar
  68. Goel, V., Gold, B., Kapur, S., & Houle, S. (1998). Neuroanatomical correlates of human reasoning. Journal of Cognitive Neuroscience, 10, 293–302.Google Scholar
  69. Graber, J. A., & Petersen, A. C. (1991). Cognitive changes at adolescence: Biological perspectives in brain maturation and cognitive development. In K. R. Gibson & A. C. Petersen (Eds.) Brain maturation and cognitive development: Comparative and cross-cultural perspectives. New York: Aldine de Gruyter.Google Scholar
  70. Gray, J. R., Chabris, C. F., & Braver, T. S. (2003). Neural mechanisms of general fluid intelligence. Nature Neuroscience, 6(3), 316–322.Google Scholar
  71. Graybiel, A. M. (1998). The basal ganglia and chunking action repertoires. Neurobiology of Learning and Memory, 70(1– 2), 119–136.Google Scholar
  72. Gunnel, D., Harrison, G., Rasmussen, F., Fouskakis, D., & Tynelius, P. (2002). Associations between premorbid intellectual performance, early life exposures, and dearly onset schizophrenia. British Journal of Psychiatry, 181, 298–305.Google Scholar
  73. Haier, R. J., Jung, R. E., Yeo, R. A., Head, K., & Alkire, M.T. (2004). Structural brain variation and general intelligence. NeuroImage, 23, 425–433.Google Scholar
  74. Haier, R. J., Jung, R. E., Yeo, R. A., Head, K., & Alkire, M. T. (2005). The neuroanatomy of general intelligence: Sex matters. NeuroImage, 25(1), 320–327.Google Scholar
  75. Haier, R. J., White, N. S., & Alkire, M. T. (2003). Individual differences in general intelligence correlate with brain function during nonreasoning tasks. Intelligence, 31(5), 429–441.Google Scholar
  76. Heaton, P., & Wallace, G. L. (2004). Annotation: The savant syndrome. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 45(5), 899–911.Google Scholar
  77. Hobson, J. A., & Pace-Schott, E. F. (2002). The cognitive neuroscience of sleep: Neuronal systems, consciousness, and learning. Nature Reviews Neuroscience, 3, 679–693.Google Scholar
  78. Hubbard, E. M., & Ramachandran, V. S. (2005). Neurocognitive mechanisms of synesthesia. Neuron, 48(3), 509–520.Google Scholar
  79. Igawa, M., Atsumi, Y., Takahashi, K., Shiotsuka, S., Hirasawa, H., & Yamamoto R., et al. (2001). Activation of visual cortex in REM sleep measured by 24-channel NIRS imaging. Psychiatry and Clinical Neurosciences, 55(3), 187–188.Google Scholar
  80. Jamison K.R. (1995). Manic-depressive illness and creativity. Scientific American, 272(2), 62–67.Google Scholar
  81. Jamison, K. R., Gerner, R. H., Hammen, C., & Padesky, C. (1980). Clouds and silver linings: Positive experiences associated with primary affective disorders. The American Journal of Psychiatry, 137(2), 198–202.Google Scholar
  82. Johnston , M. V. (2004). Clinical disorders of brain plasticity. Brain & Development, 26(2), 73–80.Google Scholar
  83. Jung, R. E., & Haier, R. J. (2007). The Parieto-Frontal Integration Theory (P-FIT) of Intelligence: Converging neuroimaging evidence. Behavioral and Brain Sciences, 30(2), 135–154.Google Scholar
  84. Jung, R. E., Haier, R. J., Yeo, R. A., Rowland, L. M., Petropoulos, H., & Levine, A. S., et al. (2005). Sex differences in N-acetylaspartate correlates of general intelligence: An 1H-MRS study of normal human brain. Neuroimage, 26(3), 965–972.Google Scholar
  85. Kalbfleisch, M. L. (2004). The functional anatomy of talent. The Anatomical Record, Part B: The New Anatomist, 277(1), 21–36.Google Scholar
  86. Kalbfleisch, M. L., & Banasiak, M. (2007). ADHD. In J. A. Plucker & C. M. Callahan (Eds.), Critical Issues and Practices in Gifted Education. Waco, TX: Prufrock Press (pp. 15–30).Google Scholar
  87. Kalbfleisch, M. L., & Iguchi, C. (2007). Twice Exceptional Learners. In J. A. Plucker, & C. M. Callahan (Eds.), Critical issues and practices in gifted education. Waco, TX: Prufrock Press (pp. 685–696).Google Scholar
  88. Kalbfleisch, M. L., VanMeter, J. W., & Zeffiro, T. A.. (2006). The influences of task difficulty and response correctness on neural systems supporting fluid reasoning. Cognitive Neurodynamics, online first – DOI 10.1007/s11571-006-9007-4/ ISSN 1871-4080 (Print) 1871–4099 (Online).Google Scholar
  89. Kalbfleisch, M. L., Van Meter, J. W., & Zeffiro, T. A. (2007). The influences of task difficulty and response correctness on neural systems supporting fluid reasoning. Cognitive Neurodynamics, 1(1), 71–84.Google Scholar
  90. Karatekin, C., Lazareff, J.A., & Asarnow, R. F. (2000). Relevance of the cerebellar hemispheres for executive functions. Pediatric Neurology, 22(2), 106–112.Google Scholar
  91. Kaufman, F., Kalbfleisch, M. L., & Castellanos, F. X. (2000). Gifted and ADHD: What do we know? Monograph for Senior Scholars Series: National Research Center on the Gifted and Talented. Storrs, CT.Google Scholar
  92. Kilts, C. D., Schweitzer, J. B., Quinn, C. K., Gross, R. E., Faber, T. L., & Muhammad, F., et al. (2001). Neural activity related to drug craving in cocaine addiction. Archives of General Psychiatry, 58, 334–341.Google Scholar
  93. Kim, S., Ugurbil, P., & Strick, P. (1994). Activation of a cerebellar output nucleus during cognitive processing. Science, 265, 949–951.Google Scholar
  94. Koechlin, E., Basso, G., Pietrini, P., Panzer, S., & Grafman, J. (1999). The role of the anterior prefrontal cortex in human cognition. Nature, 399, 148–151.Google Scholar
  95. Koizumi, H. (2001). Trans-disciplinarity. Neuroendocrinology Letters, 22, 219–221.Google Scholar
  96. Kremen, W. S., Seidman, L. J., Faraone, S. V., & Tsuang, M. T. (2001). Intelligence quotient and neuropsychological profile in patients with schizophrenia and in normal volunteers. Biological Psychiatry, 50, 453–462.Google Scholar
  97. Landau, S. M., & D’Esposito, M. (2004). Implicit sequence learning in pianists and nonpianists: An fMRI study of motor expertise. Society for Neuroscience, abstract 774.11.Google Scholar
  98. Levi-Strauss, C. (1966). The savage mind. London: Weidenfield and Nicholson.Google Scholar
  99. Leiner, H. C., Leiner, A. L., & Dow, R. S. (1986). Does the cerebellum contribute to mental skills? Behavioral Neuroscience, 100, 443–454.Google Scholar
  100. Luo, Q., Perry, C., Peng, D., Jin, Z., Xu, D.,& Ding, G., et al. (2003). The neural substrate of analogical reasoning: An fMRI study. Brain Research. Cognitive Brain Research, 17, 527–534.Google Scholar
  101. Maia, T. V., & McClelland, J. L. (2004). A reexamination of the evidence for the somatic marker hypothesis: What participants really know in the Iowa gambling task. Proceedings of the National Academy of Science, 101(45), 16075–1680.Google Scholar
  102. Maki, A., Yamashita, Y., Ito, Y., Watanabe, E., Mayanagi, Y., & Koizumi, H. (1995). Spatial and temporal analysis of human motor activity using noninvasive NIR topography. Medical Physics, 22(12), 1997–2005.Google Scholar
  103. Martindale, C., Anderson, K., Moore, K., & West, A. N. (1996). Creativity, oversensitivity, and the rate of habituation. Personality and Individual Differences, 20, 423–427.Google Scholar
  104. McCandliss, B. D., Noble, K. G. (2003). The development of reading impairment: A cognitive neuroscience model. Mental Retardation and Developmental Disabilities Research Reviews, 9, 196–205.Google Scholar
  105. Middleton, F. A., & Strick, P. L. (1994). Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science, 266, 458–461.Google Scholar
  106. Middleton, F. A., & Strick, P. L. (2000). Basal ganglia and cerebellar loops: Motor and cognitive circuits. Brain Research Reviews, 31, 236–250.Google Scholar
  107. Molinari, M.., Filippini, V., & Leggio, M. G. (2002). Neuronal plasticity of interrelated cerebellar and cortical networks. Neuroscience, 111(4), 863–870.Google Scholar
  108. Moore, C. D., Cohen, M. X., & Ranganath, C. (2006). Neural mechanisms of expert skills in visual working memory. The Journal of Neuroscience, 26(43), 11187–11196.Google Scholar
  109. Mottron, L., Dawson, M., Soulieres, I., Hubert, B., & Burack, J. (2006). Enhanced perceptual functioning in autism: An update, and eight principles of autistic perception. Journal of Autism and Developmental Disorders, 36(1), 27–43.Google Scholar
  110. Naglieri, J. (1997). The naglieri nonverbal ability test. San Antonio, TX: Psychological Corporation.Google Scholar
  111. Niogi, S. N., & McCandliss, B. D. (2006). Left lateralized white matter microstructure accounts for individual differences in reading ability and disability. Neuropsychologia, 44, 2178–2188.Google Scholar
  112. Norman, D. A., & Shallice, T. (1980). Attention to action: Willed and automatic control of behaviour. Reprinted in M. Gazzaniga (Ed.) (2000) Cognitive neuroscience: A reader. Oxford: Blackwell.Google Scholar
  113. O’Boyle, M. W., Benbow, C. P., & Alexander, J .E. (1995). Sex differences, hemispheric laterality, and associated brain activity in the intellectually gifted. Developmental Neuropsychology, 11(4), 415–443.Google Scholar
  114. O’Boyle, M. W., Cunnington, R., Silk, T. J., Vaughan, D., Jackson, G., & Syngeniotis, A., et al. (2005). .Mathematically gifted male adolescents activate a unique brain network during mental rotation. Brain Research. Cognitive Brain Research, 25(2), 583–587.Google Scholar
  115. Osherson, D., Perani, D., Cappa, S., Schnur, T., Grassi, F., & Fazio, F. (1998). Distinct brain loci in deductive versus probabilistic reasoning. Neuropsychologia, 36, 369–376.Google Scholar
  116. Overman, W. H. (2004). Sex differences in early childhood, adolescence, and adulthood on cognitive tasks that rely on orbital prefrontal cortex. Brain and Cognition, 55, 134–147.Google Scholar
  117. Palmeri, T. J., Wong, A. C.-N., & Gauthier, I. (2004). Computational approaches to the development of perceptual expertise. Trends in Cognitive Sciences, 8(8), 378–386.Google Scholar
  118. Paulus, M. P., Hozack, N., Frank, L., & Brown, G. G. (2002). Error rate and outcome predictability affect neural activation in prefrontal cortex and anterior cingulate during decision-making. Neuroimage, 15(4), 836–846.Google Scholar
  119. Peigneux, P., Laureys, S., Fuchs, S., Destrebecqz, A., Collette, F., & Delbeuck X. et al. (2003). Learned material content and acquisition level modulate cerebral reactivation during posttraining rapid-eye-movements sleep. Neuroimage, 20(1), 125–134.Google Scholar
  120. Pennartz, C., Groenewegen, H., & DaSilva, F. (1994). The nucleus accumbens as a complex of functionally distinct neuronal ensembles: An integration of behavioral, eletrophysiological, and anatomical data. Progress in Neurobiology, 42, 719–761.Google Scholar
  121. Piechowski, M. M. (1979). Developmental potential. In N. Colangelo & R. T. Zaffrann (Eds.), New voices in counseling the gifted. Dubuque, IW: Kendall Hunt.Google Scholar
  122. Posner, M. I., & Snyder, C. R. R. (1975). Attention and cognitive control. In R. Solso (Ed.), Information processing and cognition: The Loyola Symposium. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  123. Posthuma, D., de Geus, E. J. C., & Boomsma, D. I. (2001). Perceptual speed and IQ are associated through common genetic factors. Behavior Genetics,31(6), 593–602.Google Scholar
  124. Posthuma, D., Mulder, E., Boomsma, D. I., & deGeus, E. J. C. (2002). Genetic analysis of IQ, processing speed and stimulus-response incongruency effects. Biological Psychology, 61, 157–182.Google Scholar
  125. Prabhakaran, V., Rypma, B., & Gabrieli, J. D. (2001). Neural substrates of mathematical reasoning: A functional magnetic resonance imaging study of neocortical activation during performance of the necessary arithmetic operations test. Neuropsychology, 15(1), 115–127.Google Scholar
  126. Pugh, K., Mencl, W., Jenner, A., Katz, L., Frost, S., & Lee J., et al. (2001). Neurobiological studies of reading and reading disability. Journal of Communication Disorders, 34, 479–492.Google Scholar
  127. Pulsifer, M. B., Brandt, J., Salorio, C. F., Vining, E. P., Carson, B. S., & Freeman J. M. (2004). The cognitive outcome of hemispherectomy in 71 children. Epilepsia, 45(3), 243–254.Google Scholar
  128. Ramachandran, V. S. (2005). Plasticity and functional recovery in neurology. Clinical Medicine, 5(4), 368–373.Google Scholar
  129. Ramachandran, V. S., & Hubbard, E. M. (2001). Psychophysical investigations into the neural basis of synaesthesia. Proceedings of the Royal Society of London. Series B Biological Science, 268(1470), 979–983.Google Scholar
  130. Ramachandran, V. S., & Rogers-Ramachandran, D. (1996). Synaesthesia in phantom limbs induced with mirrors. Proceedings Biological Sciences, 263(1369), 377–386.Google Scholar
  131. Ramachandran, V. S., Rogers-Ramachandran, D., & Stewart, M. (1991). Perceptual correlates of massive cortical reorganization. Science, 252(5014), 1857–1860.Google Scholar
  132. Rao, S. M., Bobholz, J. A., Hammeke, T. A., Rosen, A. C., Woodley, S. J., & Cunningham, J. M., et al. (1997). Functional MRI evidence for subcortical participation in conceptual reasoning skills. Neuroreport, 8(8), 1987–1993.Google Scholar
  133. Rapoport, M., Van Reekum, R., & Mayberg, H. (2000). The role of the cerebellum in cognition and behavior: A selective review. The Journal of Neuropsychiatry and Clinical Neurosciences, 12(2), 193–198.Google Scholar
  134. Ravizza, S. M., & Ivry R. B. (2001). Comparison of the basal ganglia and cerebellum in shifting attention. Journal of Cognitive Neuroscience, 13(3), 285–297.Google Scholar
  135. Rich, A. N., Bradshaw, J. L., & Mattingley, J. B. (2005). A systematic, large scale study of synaesthesia: Implications for the role of early experience in lexical-colour associations. Cognition, 98(1), 53–84.Google Scholar
  136. Rogers, R., Ramnani, N., Mackay, C., Wilson, J., Jezzard, P, & Carter, C., et al. (2004). Distinct portions of the anterior cingulate cortex and medial prefrontal cortex are activated by reward processing in separable phases of decision-making cognition. Biological Psychiatry, 5(6), 594–602.Google Scholar
  137. Rogers, R. D., Everitt, B. J., Baldacchino, A., Blackshaw, A. J., Swainson, R., & Wynne, et al. (1999). Dissociable deficits in the decision-making cognition of chronic amphetamine abusers, opiate abusers, patients with focal damage to prefrontal cortex, and tryptophan-depleted normal volunteers: Evidence for monoaminergic mechanisms. Neuropsychopharmacology, 20(4), 322–339.Google Scholar
  138. Rubia, K., Overmeyer, S., Taylor, E., Brammer, M., Williams, S. C., & Simmons A., et al. (1999). Hypofrontality in attention deficit hyperactivity disorder during higher-order motor control: A study with functional MRI. The American Journal of Psychiatry, 156(6), 891–896.Google Scholar
  139. Ruff, C. C., Knauff, M., Fangmeier, T., & Spreer, J. (2003). Reasoning and working memory: Common and distinct neuronal processes. Neuropsychologia, 41, 1241–1253.Google Scholar
  140. Sakai, K., & Passingham, R. E. (2006). Prefrontal set activity predicts rule-specific neural processing during subsequent cognitive performance. Journal of Neuroscience, 26 (4), 1211–1218.Google Scholar
  141. Sato, H., Kiguchi, M., Maki, A., Fuchino, Y., Obata, A., & Yoro, T., et al. (2006). Within-subject reproducibility of near-infrared spectroscopy signals in sensorimotor activation after 6 months. Journal of Biomedical Optics, 11(1), 14–21.Google Scholar
  142. Saxe, R., Carey, S., & Kanwisher, N. (2004). Understanding other minds: Linking developmental psychology and functional neuroimaging. Annual Review of Psychology, 55, 87–124.Google Scholar
  143. Schmahmann, J.D., & Pandya, D. N. (1995). Prefrontal cortex projections to the basilar pons in rhesus monkey: Implications for the cerebellar contribution to higher function. Neuroscience Letters, 199, 175–178.Google Scholar
  144. Schmithorst, V. J., & Holland, S. K. (2006). Functional MRI evidence for disparate developmental processes underlying intelligence in boys and girls. Neuroimage, 31(3), 1366–1379.Google Scholar
  145. Schmithorst, V. J., & Holland, S. K. (2007). Sex differences in the development of neuroanatomical functional connectivity underlying intelligence found using Bayesian connectivity analysis. Neuroimage, 35(1), 406–419 (January 11 – E-pub ahead of print).Google Scholar
  146. Schmithorst, V. J., Wilke, M., Dardzinski, B.J., & Holland, S. K. (2005). Cognitive functions correlate with white matter architecture in a normal pediatric population: A diffusion tensor MRI study. Human Brain Mapping, 26(2), 139–147.Google Scholar
  147. Shaw, P., Greenstein, D., Lerch, J., Clasen, L., Lenroot, R., & Gogtay, N., et al. (2006). Intellectual ability and cortical development in children and adolescents. Nature, 440(7084), 676–679.Google Scholar
  148. Shaywitz, B., Shaywitz, S., Pugh, K., Mencl, W., Fulbright, K., & Skudlarski, P., et al. (2002). Disruption of posterior brain systems for reading in children with developmental dyslexia. Biological Psychiatry 52, 101–110.Google Scholar
  149. Shulman, R. G, Rothman, D. L., Behar, K. L., & Hyder, F. (2004). Energetic basis of brain activity: Implications for neuroimaging. Trends in Neurosciences, 27(8), 489–495.Google Scholar
  150. Silk, T., Vance, A., Rinehart, N., Egan, G., O’Boyle, M., & Bradshaw, J. L., et al. (2005). Fronto-parietal activation in attention-deficit hyperactivity disorder, combined type: Functional magnetic resonance imaging study. British Journal Psychiatry, 187, 282–283.Google Scholar
  151. Silk, T. J., Rinehart, N., Bradshaw, J. L., Tonge, B., Egan, G., & O’Boyle, M. W., et al. (2006). Visuospatial processing and the function of prefrontal-parietal networks in autism spectrum disorders: A functional MRI study. The American Journal of Psychiatry, 163(8), 1440–1443.Google Scholar
  152. Singer, J. (1995). Mental processes and brain architecture: Confronting the complex adaptive systems of human thought (an overview). In H. Morowitz & J. Singer (Eds.), The mind, the brain, and CAS. Addison-Wesley, New York.Google Scholar
  153. Smilek, D., Dixon, M. J., Cudahy, C., & Merikle, P. M. (2002). Synesthetic color experiences influence memory. Psychological Science, 13(6), 548–555.Google Scholar
  154. Sowell, E. R., Thompson, P. M., Tessner, K. D., & Toga, A. W. (2001). Mapping continued brain growth and gray matter density reduction in dorsal frontal cortex: Inverse relationships during postadolescent brain maturation. The Journal of Neuroscience, 21(22), 8819–8829.Google Scholar
  155. Sowell, E. R., Thompson, P. M., Welcome, S. E., Henkenius, A. L., Toga, A. W., & Peterson, B. S. (2003). Cortical abnormalities in children and adolescents with attention-deficit hyperactivity disorder. Lancet, 362(9397), 1699–1707.Google Scholar
  156. Sowell, E. R., Thompson, P. N., Holmes, C. J., Jernigan, T. L., & Toga, A.W. (1999). In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nature Neurosciense, 2(10), 859–861.Google Scholar
  157. Suzki, A., Hirota, A., Takasawa, N., & Shigemasu, K. (2003). Application of the somatic marker hypothesis to individual differences in decision making. Biological Psychiatry, 65, 81–88.Google Scholar
  158. Taga, G., Asakawa, K., Maki, A., Konishi, Y., & Koizumi, H. (2003). Brain imaging in awake infants by near-infrared optical topography. Proceedings of the National Academy of Science, 100(19), 10722–10727.Google Scholar
  159. Talwar, V., & Lee, K. (2002a). Emergence of white-lie telling in children between 3 and 7 years of age. Merrill-Palmer Quarterly, 48, 160–181.Google Scholar
  160. Talwar, V., & Lee, K. (2002b). Development of lying to conceal a transgression: Children’s control of expressive behavior during verbal deception. International Journal of Behavioral Development, 26, 436–444.Google Scholar
  161. Tannenbaum, A. J., & Baldwin, L. J. (1983). Giftedness and learning disability: A paradoxical combination. In L. H. Fox, L. Brody, & D. Tobin (Eds.), Learning-disabled gifted children: Identification and programming (pp. 11–36). Baltimore: University Park Press.Google Scholar
  162. Tervaniemi, M., Rytkonen, M., Schroger, E., Ilminiemi, R.J., & Naatanen, R. (2001). Superior formation of cortical memory traces for melodic patterns in musicians. Learning and Memory, 8, 295–300.Google Scholar
  163. Thompson, P., Cannon, T.D., & Toga, A.W. (2002). Mapping genetic influences on human brain structure: A review. Annals Medicine, 34(7–8), 523–536.Google Scholar
  164. Thompson, P. M., Giedd, J. N., Woods, R. P., MacDonald, D., Evans, A.C., & Toga, A.W. (2000). Growth patterns in the developing brain detected by using continuum mechanical tensor maps. Nature, 404(6774), 190–193.Google Scholar
  165. Torrance, E. P. (1966). The Torrance Test of Creative Thinking (TTCT). Lexington, MA: Personnel Press, Ginn and Company.Google Scholar
  166. Vaidya, C. J., Bunge, S. A., Dudukovic, N. M., Zalecki, C. A., Elliott, G.R., & Gabrieli, J. D. (2005). Altered neural substrates of cognitive control in childhood ADHD: Evidence from functional magnetic resonance imaging. The American Journal of Psychiatry, 162(9), 1605–1613.Google Scholar
  167. van den Heuvel, O. A., Groenewegen, H. J., Barkhof, F., Lazeron, R.H., van Dyck, R., & Veltman, D. J. (2003). Frontostriatal system in planning complexity: A parametric functional magnetic resonance version of Tower of London task. NeuroImage, 18, 367–374.Google Scholar
  168. Vernon, P. A. (1987). Speed of information processing and intelligence. Norwood, NJ: Ablex.Google Scholar
  169. Wagner, R. K. (2000). Practical intelligence. In R. J. Sternberg (Ed.), Handbook of intelligence (pp. 380–395). Cambridge: Cambridge University Press.Google Scholar
  170. Waldrop, M. M. (1992). Complexity. New York: Simon and Schuster.Google Scholar
  171. Waltz, J. A., Knowlton, B. J., Holyoak, K. J., Boone, K. B., Mishkin, F.S., & Santos, M., et al. (1999). A system for relational reasoning in the human prefrontal cortex. Psychological Science, 10, 119–125.Google Scholar
  172. Werth, R. (2006). Visual functions without the occipital lobe or after cerebral hemispherectomy in infancy. European Journal of Neuroscience. 24(10), 2932–2944.Google Scholar
  173. Wharton, C. M., Grafman, J., Flitman, S. S., Hansen, E. K., Brauner, J., & Marks, A., et al. (2000). Toward neuroanatomical models of analogy: A positron emission tomography study of analogical mapping. Cognitive Psychology, 40, 173–197.Google Scholar
  174. White, N. M. (1997). Mnemonic functions of the basal ganglia. Current Opinion in Neurobiology, 7, 164–169.Google Scholar
  175. Whitmore, J., & Maker, C. J. (1985). Intellectual giftedness in disabled persons. Austin, TX: PRO-ED.Google Scholar
  176. Whitmore, J. R. (1980). Giftedness, conflict, and underachievement. Boston: Allyn & Bacon.Google Scholar
  177. Wilson, A. E., Smith, M. D., & Ross, H. S. (2003). The nature and effects of young children’s lies. Social Development, 12, 21–45.Google Scholar
  178. Wimmer, H., & Perner, J. (1983). Beliefs about beliefs: Representation and constraining function of wrong beliefs in young children’s understanding of deception. Cognition 13, 103–128.Google Scholar
  179. Winner, E. (2001). The origins and ends of giftedness. American Psychologist, 55(1), 159–169.Google Scholar
  180. Winner, E., von Karolyi, C., Malinsky, D., French, L., Seliger, C., & Ross, E., et al. (2001). Dyslexia and visual-spatial talents: Compensation vs deficit model. Brain Lang, 76(2), 81–110.Google Scholar
  181. Witelson, S. F., Kigar, D.L., & Harvey, T. (1999). The exceptional brain of Albert Einstein. The Lancet, 353, 2149–2153.Google Scholar
  182. Wright, I. C., Sham, P., Murray, R. M., Weinberger, D. R., & Bullmore, E. T. (2002). Genetic contributions to regional variability in human brain structure: Methods and preliminary results. NeuroImage, 17(1), 256–271.Google Scholar
  183. Yamashita, Y., Maki, A., & Koizumi, H. (2001). Wavelength dependence of the precision of noninvasive optical measurement of oxy-, deoxy-, and total-hemoglobin concentration. Medical Physics, 28(6), 1108–1114.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.George Mason UniversityArlingtonUSA

Personalised recommendations