Neuropsychological Characteristics of Academic and Creative Giftedness

Abstract

Evidence for interpretable neural correlates of giftedness comes from two main lines of enquiry. First, studies comparing the neural functioning of gifted children with age-matched peers not identified as gifted consistently report that gifted subjects display enhanced frontal cortical activation and inter-hemispheric functional connectivity. Second, studies which compare the neural function and structure of high-IQ adults with those of average IQ consistently report that high-IQ subjects display relatively enhanced inferior lateral prefrontal cortical (PFC) activations, together with relatively enhanced activations in a network of other cortical regions including the inferior parietal cortex. The salience of PFC activations is supported by neuroanatomical studies in which the grey matter densities of high-IQ subjects in frontal regions are significantly higher than average. These data can account for enhanced executive capability as one important neuropsychological characteristic of gifted people and a more efficacious working memory as another.

Keywords

Neuropsychology of giftedness Neural structure Neural function Frontal cortex Parietal cortex Fronto-parietal network Executive function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, J. E., O’Boyle, M. W., & Benbow, C. P. (1996). Developmentally advanced EEG alpha power in gifted male and female adolescents. International Journal of Psychophysiology, 23, 25–31.CrossRefGoogle Scholar
  2. Baddeley, A., & Sala, S. D. (1998). Working memory and executive control. In A. C. Roberts, T. W. Robbins, & L. Weiskrantz (Eds.), The prefrontal cortex: Executive and cognitive functions (pp. 9–21). Oxford: Oxford University Press.Google Scholar
  3. Birbaumer, N., Lutzenberger, W., Rau, H., Braun, C., & Mayer-Kress, G. (1996). Perception of music and dimensional complexity of brain activity. International Journal of Bifurcation and Chaos, 6(2), 267–278.CrossRefGoogle Scholar
  4. Carlsson, I., Wendt, P. E., & Risberg, J. (2000). On the neurobiology of creativity. Differences in frontal activity between high and low creative subjects. Neuropsychologia, 38, 873–885.CrossRefGoogle Scholar
  5. Carroll, J. B. (1993). Human cognitive abilities: A survey of factor analytic studies. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  6. Carson, S. H., Peterson, J. B., & Higgins, D. M. (2003). Decreased latent inhibition is associated with high-functioning individuals. Journal of Personality and Social Psychology, 85(3), 499–506.CrossRefGoogle Scholar
  7. Chen, A. C. N. & Buckley, K. C. (1988). Neural perspectives of cerebral correlates of giftedness. International Journal of Neuroscience, 9(41), 115–125.CrossRefGoogle Scholar
  8. Clark, B. (1997). Growing up gifted (5th ed.). Upper Saddle River, NJ: Prentice Hall.Google Scholar
  9. Cowan, N. (2005). Working memory capacity. Psychology Press: New York.CrossRefGoogle Scholar
  10. Csikszentmihalyi, M. (1998). Creativity and genius: A systems perspective. In A. Steptoe (Ed.), Genius and the mind: Studies of creativity and temperament (pp. 39–64). Oxford: Oxford University Press.Google Scholar
  11. Dehaene, S., Kerszberg, M., & Changeux, J.-P. (1998). A neuronal model of a global workspace in effortful cognitive tasks. Proceedings of the National Academy of Sciences USA, 95, 14529–14534.CrossRefGoogle Scholar
  12. Duncan, J. (2001). An adaptive coding model of neural function in prefrontal cortex. Nature Reviews Neuroscience, 2(11), 820–829.CrossRefGoogle Scholar
  13. Duncan, J., & Owen, A. M. (2000). Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends in Neurosciences, 23, 475–483.CrossRefGoogle Scholar
  14. Duncan, J., Seitz, R. J., Kolodny, J., Bor, D., Herzog, H., & Ahmed, A., et al. (2000). A neural basis for intelligence. Science, 289, 457–460.CrossRefGoogle Scholar
  15. Fardell, R., & Geake, J. G. (2003). Vertical semester organisation in a rural secondary school as a vehicle for acceleration of gifted students, Australasian Journal of Gifted Education, 11(2), 16–30.Google Scholar
  16. Frangou, S., Chitins, X., & Williams, S. C. (2004). Mapping IQ and gray matter density in healthy young people. NeuroImage, 23(3), 800–805.CrossRefGoogle Scholar
  17. Fuster, J. M. (2003). Cortex and mind: Unifying cognition. Oxford: Oxford University Pres.Google Scholar
  18. Gagné, F. (1985). Giftedness and talent: Reexamining a reexamination of the definitions. Gifted Child Quarterly, 29(3), 103–112.CrossRefGoogle Scholar
  19. Geake, J. G. (1996). Why Mozart? An information processing account of musical abilities. Research Studies in Music Education Journal, 7, 28–45.CrossRefGoogle Scholar
  20. Geake, J. G. (1997). Thinking as evolution in the brain: Implications for giftedness. Australasian Journal of Gifted Education, 6(1), 27–33.Google Scholar
  21. Geake, J. G. (2005a). The neurological basis of intelligence: Implications for education – An abstract. Gifted and Talented, 9(1), 8.Google Scholar
  22. Geake, J. G. (2005b). An fMRI study of fluid analogical reasoning: Towards an understanding mathematical thinking.Symposium on mathematical and scientific education. Copenhagen: Learning Lab Denmark, December.Google Scholar
  23. Geake, J. G. (2006). Mathematical brains. Gifted and Talented, 10(1), 2–7.Google Scholar
  24. Geake, J. G., & Cooper, P. W. (2003). Implications of cognitive neuroscience for education. Westminster Studies in Education, 26(10), 7–20.CrossRefGoogle Scholar
  25. Geake, J. G., & Dodson, C. S. (2005). A neuro-psychological model of the creative intelligence of gifted children. Gifted & Talented International, 20(1), 4–16.Google Scholar
  26. Geake, J. G., & Hansen, P. (2005). Neural correlates of intelligence as revealed by fMRI of fluid analogies, NeuroImage, 26(2), 555–564.CrossRefGoogle Scholar
  27. Geake, J. G., & Hansen, P. C. (2006). Functional neural correlates of high creative intelligence as determined by abilities at fluid analogising, Society for Neuroscience Annual Meeting, Atlanta, Georgia, October 17.Google Scholar
  28. Geake, J. G., & Hansen, P. C. (submitted). Neural correlates of high creative intelligence as determined by abilities at fluid analogising.Google Scholar
  29. Geake, J. G., & Kringelbach, M. L. (2007). Imaging imagination: Brain scanning of the imagined future. In I. Roth (Ed.), Imaginative minds. London: Proceedings of the British Academy, 147, 307–326.Google Scholar
  30. Geake, J. G., & O’Boyle, M. (2000). On Educating the very able in mathematics: A sampling of current empirical research. Proceedings of Mathematics 2000 Festival, 10–13 January, University of Melbourne, pp. 153–156.Google Scholar
  31. Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive Science, 7, 155–170.CrossRefGoogle Scholar
  32. Giedd, J. N., Blumethal, J., Jeffires, N. O., Castellanos, F. X., Liu, H., & Zijdenbois, A., et al. (1999). Brain development during childhood and adolescence: A longitudinal MRI study. Nature Neuroscience, 2(10), 861–863.CrossRefGoogle Scholar
  33. Gleick, J. (1992). Genius: Richard Feynman and modern physics. Abacus.Google Scholar
  34. Gray, J. R., Chabris, C. F., & Braver, T. S. (2003). Neural mechanisms of general fluid intelligence. Nature Neuroscience, 6(3), 316–322.CrossRefGoogle Scholar
  35. Gross, M. U. M. (2004). Exceptionally gifted children (2nd ed.). London: Routledge Farmer.Google Scholar
  36. Haier, R. J., & Benbow, C. P. (1995). Sex differences and lateralisation in temporal lobe glucose metabolism during mathematical reasoning. Developmental Neuropsychology, 11(4), 405–414.CrossRefGoogle Scholar
  37. Haier, R. J., Jung, R. E., Yeo, R. A., Head, K., & Alkire, M. T. (2004). Structural brain variation and general intelligence. NeuroImage, 23(1), 425–433.CrossRefGoogle Scholar
  38. Haier, R. J., White, N. S., & Alkire, M. T. (2003). Individual differences in general intelligence correlate with brain function during nonreasoning tasks. Intelligence, 31(5), 429–441.CrossRefGoogle Scholar
  39. Hofstadter, D. (1995). Fluid concepts and creative analogies. Basic Books, New York.Google Scholar
  40. Hofstadter, D. (2001). Analogy as the core of cognition. In D. Gentner, K. J. Holyoak, & B. N. Kokinov (Eds.), The analogical mind: Perspectives from cognitive science (pp. 499–538). Cambridge MA: MIT Press,.Google Scholar
  41. Holyoak, K. J., & Thagard, P. (1995). Mental leaps: Analogy in creative thought. Cambridge MA: The MIT Press.Google Scholar
  42. Howard, D. (1997). Language in the human brain. In M. D. Rugg (Ed.), Cognitive neuroscience (pp. 277–304). Hove UK: Psychology Press.Google Scholar
  43. James, W. (1895/1950). The principles of psychology. New York: Henry Holt.Google Scholar
  44. Johnson, J., Im-Bolter, N., & Pascual-Leone, J. (2003). Development of mental attention in gifted and mainstream children: The role of mental capacity, inhibition, and speed of processing. Child Development, 74(6), 1594–1614.CrossRefGoogle Scholar
  45. Jung, R. E., & Haier, R. J. (2007). The Parieto-Frontal integration theory (P-FIT) of intelligence: Converging neuroimaging evidence. Behavioral and Brain Sciences, 30, 135–154.CrossRefGoogle Scholar
  46. Kalbfleisch, M. L. (2004). Functional neural anatomy of talent. The Anatomical Record Part B: The New Anatomist, 277B(1), 21–36.CrossRefGoogle Scholar
  47. Kanevsky, L. S. (1995). Learning potentials of gifted students. Roeper Review, 17, 157–163.CrossRefGoogle Scholar
  48. Kolb, B., & Wishaw, I. Q. (1996). Fundamentals of human neuropsychology (4th ed.). New York: W.H. Freeman & Co.Google Scholar
  49. LeDoux, J. (1998). The Emotional Brain. New York: Phoenix.Google Scholar
  50. Lee, K. H., Choi, Y. Y., Gray, J. R., Cho, S. H., Chae, J.-H., & Lee, S., et al. (2006). Neural correlates of superior intelligence: Stronger recruitment of posterior parietal cortex. Neuroimage, 29(2), 578–586.CrossRefGoogle Scholar
  51. Lehrl, S., & Fisher, B. (1990). A basic information psychological parameter (BIP) for the reconstruction of concepts of intelligence. European Journal of Personality, 4, 259–286.CrossRefGoogle Scholar
  52. Livne, N. L., Livne, O. E., & Milgram, R. M. (1999). Assessing academic and creative abilities in mathematics at four levels of understanding. International Journal of Mathematics Education in Science and Technology, 30(2), 227–242.CrossRefGoogle Scholar
  53. Luria, A. R. (1973). The working brain. New York: Basic Books.Google Scholar
  54. Mitchell, M. (1993). Analogy-making as perception: A computer model. Cambridge MA: The MIT Press.Google Scholar
  55. Mills, D. L., Plunkett, K., Prat, C., & Schafer, G. (2005). Watching the infant brain learn words: Effects of vocabulary size and experience. Cognitive Development, 20, 19–31.CrossRefGoogle Scholar
  56. Mithen, S. (1996). The prehistory of the mind: The cognitive origins of art and science. London: Thames and Hudson.Google Scholar
  57. Mithen, S. (2005). The singing neanderthals. London: Phoenix.Google Scholar
  58. O’Boyle, M. W. (2000). Neuroscientific research findings and their potential application to gifted educational practice. Australasian Journal of Gifted Education, 9(1), 6–10.Google Scholar
  59. O’Boyle, M. W., Alexander, J. E., & Benbow, C. P. (1991).Enhanced right hemisphere activation in the mathematically precocious: A preliminary EEG investigation. Brain Cognition, 17(2), 138–153.CrossRefGoogle Scholar
  60. O’Boyle, M. W., & Benbow, C. P. (1990). Enhanced right hemisphere involvement during cognitive processing may relate to intellectual precocity. Neuropsychologia, 28(2), 211–216.CrossRefGoogle Scholar
  61. O’Boyle, M. W., Benbow, C. P., & Alexander, J. E. (1995). Sex differences, hemispheric laterality, and associated brain activity in the intellectually gifted. Developmental Neuropsychology, 11(4), 415–443.CrossRefGoogle Scholar
  62. O’Boyle, M. W., Cunnington, R., Silk, T., Vaughan, D., Jackson, G., & Syngeniotis, A., et al. (2005). Mathematically gifted male adolescents activate a unique brain network during mental rotation. Cognitive Brain Research, 25, 583–587.CrossRefGoogle Scholar
  63. O’Boyle, M. W., Gill, H. S., Benbow, C. P., & Alexander, J. E.. (1994). Concurrent finger-tapping in mathematically gifted males: Evidence for enhanced right hemisphere involvement during linguistic processing. Cortex, 30(3), 519–526.Google Scholar
  64. Orzhekhovskaia, N. S. (1996). The cytoarchitectonic characteristics of the frontal fields of the brain in gifted people. Morfologiia, 109(3), 7–9.Google Scholar
  65. Porter, L. (1997). A proposed model describing the realisation of gifted potential. Australasian Journal of Gifted Education, 6(2), 33–43.Google Scholar
  66. Renzulli, J. S. (1986). The three-ring conception of giftedness: A developmental model for creative productivity. In R. J. Sternberg & J. E. Davidson (Eds.), Conceptions of giftedness (pp. 53–92). Cambridge MA: Cambridge University Press.Google Scholar
  67. Rolls, E. T. (1999). The brain and emotion. Oxford: Oxford University Press.Google Scholar
  68. Ryan, M., & Geake, J. G. (2003). A study of a vertical curriculum in mathematics for gifted primary pupils, Australasian Journal of Gifted Education, 11(2), 31–41.Google Scholar
  69. Rypma, B., Prabhakaran, V., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. (1999). Load-dependent roles of frontal brain regions in the maintenance of working memory. NeuroImage, 9, 216–226.CrossRefGoogle Scholar
  70. Samco, M. R., Caplovitz, G. P., Hsieh, P.-J., & Tse, P. U. (2005). Neural correlates of human creativity revealed using diffusion tensor imaging [Abstract]. Journal of Vision, 5(8), 906.CrossRefGoogle Scholar
  71. Shapiro, M. L., & Eichenbaum, H. (1997). Learning and memory: Computational principles and neural mechanisms. In M. D. Rugg (Ed.), Cognitive neuroscience (pp. 77–130). Hove UK: Psychology Press.Google Scholar
  72. Shavinin. (2006). Personal communication. October 2006.Google Scholar
  73. Shaw, P., Greenstein, D., Lerch, J., Clasen, L., Lenroot, R., & Gogtay, N., et al. (2006). Intellectual ability and cortical development in children and adolescents. Nature, 440(7084), 676–679.CrossRefGoogle Scholar
  74. Singh, H., & O’Boyle, M. W. (2004). Interhemispheric interaction during global-local processing in mathematically gifted adolescents, average-ability youth, and college students. Neuropsychology, 18(2), 671–677.CrossRefGoogle Scholar
  75. Steptoe, A. (Ed.) (1998). Genius and the mind: Studies of creativity and temperament. Oxford: Oxford University Press.Google Scholar
  76. Vigneau, F., Caissie, A. F., & Bors, D. A. (2006). Eye-movement analysis demonstrates strategic influences on intelligence. Intelligence, 34, 261–272.CrossRefGoogle Scholar
  77. Zhang, Q., Shi, J., Luo, Y., Zhao, D., & Yang, J. (2006). Intelligence and information processing during a visual search task in children: An event-related potential study. Neuroreport, 17(7), 747–752.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.University of New EnglandArmidaleAustralia

Personalised recommendations