Advertisement

Measuring Methane Emission of Ruminants by In Vitro and In Vivo Techniques

  • C.R. Soliva
  • H.D. Hess

Keywords

Methane Emission Rumen Fluid Atmospheric Methane Respiratory Chamber Sodium Hydrogen Carbonate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    AFRC 1993. Energy and protein requirements of ruminants. CAB International, Wallingford, UKGoogle Scholar
  2. 2.
    AOAC, Association of official analytical chemists (1980) Official methods of analysis. 14th ed. Association of Official Analytical Chemists, Washington DC. 1141 ppGoogle Scholar
  3. 3.
    Brouwer, E. 1965. Report of sub-committee on constants and factors, p. 441–443. In K.L. Blaxter, (ed.), Energy metabolism, Academic Press, London, UKGoogle Scholar
  4. 4.
    Carro, M.D., P. Lebzien, and K. Rohr. 1995. Effect of pore size of nylon bags and dilution rate on fermentation parameters in a semi-continuous artificial rumen. Small Ruminant Res. 15:113–119CrossRefGoogle Scholar
  5. 5.
    Czerkawski, J.W., and G. Breckenridge. 1977. Design and development of a long-term rumen simulation technique (Rusitec). Br. J. Nutr. 38:371–384CrossRefGoogle Scholar
  6. Demeyer, D.I. 1991. Quantitative aspects of microbial metabolism in the rumen and hindgut, p. 217–237. In J.P. Jouany, (ed.), Rumen Microbial Metabolism and Ruminant Digestion, INRA Editions, Paris, FranceGoogle Scholar
  7. 7.
    Johnson, D.E., K.A. Johnson, G.M. Ward, and M.E. Branine. 2000. Ruminants and other animals, p. 112–133. In M. A.K. Khalil (ed.), Atmospheric methane: Its role in the global environment. Springer Verlag, Berlin, GermanyGoogle Scholar
  8. 8.
    Johnson, K.A. and D.E. Johnson. 1995. Methane emission from cattle. J. Anim. Sci. 73:2483–2492Google Scholar
  9. 9.
    Khalil, M.A.K. 2000. Atmospheric methane: an introduction, p.1–8. In M.A.K. Khalil (ed.), Atmospheric methane: Its role in the global environment. Springer Verlag, Berlin, GermanyGoogle Scholar
  10. 10.
    Machmüller, A., D.A. Ossowski, M. Wanner, and M. Kreuzer. 1998. Potential of various fatty feeds to reduce methane release from rumen fermentation in vitro (Rusitec). Anim. Feed Sci. Technol. 71:117–130CrossRefGoogle Scholar
  11. 11.
    Machmüller, A., C.R. Soliva, and M. Kreuzer. 2002. In vitro ruminal methane suppression by lauric acid as influenced by dietary calcium. Can. J. Anim. Sci. 82:233–239Google Scholar
  12. 12.
    McDougall, E.I. 1948. Studies on ruminant saliva 1. The composition and output of sheep’s saliva. Biochem. J. 43:99–109Google Scholar
  13. 13.
    Menke, K.H., L. Raab, A. Salewski, H. Steingass, D. Fritz, and W. Schneider. 1979. The estimation of the digestibility and metabolizable energy content of ruminant feeding-stuff from the gas production when they are incubated with rumen liquor in vitro. J. Agric. Sci. 93:217–222CrossRefGoogle Scholar
  14. 14.
    Menke, K.H., and H. Steingass. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Develop. 28:7–55Google Scholar
  15. 15.
    Moss, A.R., and D.I. Givens. 1993. Effect of supplement type and grass silage:concentrate ratio on methane production by sheep. Proc. Br. Soc. Anim. Prod. Paper No. 52Google Scholar
  16. 16.
    Naumann, C., and R. Bassler. 1997. VDLUFA-Methodenbuch Band III, Die chemische Untersuchung von Futtermitteln. 3rd ed., VDLUFA-Verlag, Darmstadt, GermanyGoogle Scholar
  17. 17.
    Owens, A.J., J.M. Steed, D.L. Filkin, C. Miller, and J.P. Jesson. 1982. The potential effects of increased methane on atmospheric ozone. Geophys. Res. Lett. 9:1105–1108Google Scholar
  18. 18.
    Soliva, C.R., I.K. Hindrichsen, L. Meile, M. Kreuzer, and A. Machmüller. 2003. Effects of lauric and myristic acid on rumen methanogens and methanogenesis in vitro. Lett. Appl. Microbiol. 37:35–39CrossRefGoogle Scholar
  19. Sutter, F. 1993. Einfluss einer reduzierten Proteinversorgung auf den Protein- und Energieumsatz von Milchkühen bei Laktationsbeginn. Diss. Nr. 10101, ETH ZürichGoogle Scholar
  20. 20.
    Tangerman, A., and F.M. Nagengast. 1996. A gas chromatographic analysis of fecal short-chain fatty acids, using the direct injection method. Anal. Biochem. 236:1–8CrossRefGoogle Scholar
  21. Thomson, E.F. 1996. Description of simplified open-circuit respiration equipment for cattle. Laboratory Practive, 1315–1317Google Scholar
  22. Thomson, E.F. 1979. Energy metabolism of sheep and cattle during compensatory growth. Diss. Nr. 6382, ETH ZürichGoogle Scholar
  23. 23.
    Wuebbles, D.J., and K. Hayhoe. 2002. Atmospheric methane and global change. Earth-Sci. Rev. 57:117–210Google Scholar

Copyright information

© IAEA 2007

Authors and Affiliations

  • C.R. Soliva
    • 1
  • H.D. Hess
    • 1
  1. 1.Animal NutritionInstitute of Animal ScienceETH ZurichSwitzerland

Personalised recommendations