The Margin of the Sea

Survival at the Top of the Tides
  • David Garbary
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 11)

From the upper reaches of the intertidal zone to the beginnings of terrestrial vegetation is a region of shoreline that is often sparsely inhabited by algae, and typically includes conspicuous expanses of bare rock. Inspection of the habitat reveals scattered or even abundant lichens, and often extremely patchy to extensive populations of macroscopic algae. The physiological ecology of photosynthetic algae in this part of the intertidal zone comprises the primary theme of this chapter. The organisms discussed here typically have extensive populations above mean high water neap tide (see Lüning, 1990; Lobban and Harrison, 1994; Little and Kitching, 1996, for introduction to tides and zonation). In general, these organisms are found exposed on bare rock and not in the rock pools where greater species richness occurs and less stringent environmental conditions are imposed. In terms of physiological constraints, the high intertidal and adjacent supratidal zone is among the most stressful encountered by organisms in general (Tomanek and Helmuth, 2002), and by marine macroalgae in particular (Davison and Pearson, 1996).

First, the rigors of the environment are explored, and then the various adaptive strategies of algae to survive and thrive in this habitat are discussed. Davison and Pearson (1996) reviewed stress tolerance in intertidal seaweeds as a whole; however, here the focus is on the upper intertidal zone and on disruptive stresses that cause damage or limit growth.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, B.S. and Foster, M.S. (1999) The effects of insolation and grazing on populations of the splash zone alga Prasiola meridionalis (Chlorophyta). Phycologia 38: 349-355.Google Scholar
  2. Biebl, R. (1970) Vergleichende Untersuchungen zur Temperaturresistenz von Meeresalgen entlang der pazifischen Küste Nordamerikas. Protoplasma 69: 61-83.CrossRefGoogle Scholar
  3. Bock, C., Jacob, A., Kirst, G.O., Leibfritz, D. and Mayer, A. (1996) Metabolic changes of the Antarctic green alga Prasiola crispa subjected to water stress investigated by in vivo P-31 NMR. J. Exp. Bot. 47: 241-249.CrossRefGoogle Scholar
  4. Boedeker, C. and Karsten, U. (2005) The occurrence of mycosporine-like amino acids in the gameto-phytic and sporophytic stages of Bangia (Bangiales, Rhodophyta). Phycologia 44: 403-408.CrossRefGoogle Scholar
  5. Brown, M.T. (1987) Effects of desiccation on photosynthesis of intertidal algae from a southern New Zealand shore. Bot. Mar. 30: 121-127.CrossRefGoogle Scholar
  6. Chapman, A.R.O. (1989) Abundance of Fucus spiralis and ephemeral seaweeds in a high eulittoral zone: effects of grazers, canopy and substratum type. Mar. Biol. 102: 565-572.CrossRefGoogle Scholar
  7. Chapman, A.R.O. (1995) Functional ecology of fucoid algae: twenty-three years of progress. Phycologia 34: 1-32.Google Scholar
  8. Charron, J.B.F., Ouellet, F., Pelletier, M., Danyluk, J., Chauve, C. and Sarhan, F. (2005) Identification, expression, and evolutionary analyses of plant lipocalins. Plant Physiol. 139: 2017-1028.CrossRefPubMedGoogle Scholar
  9. Cleary, A. (2000) Plasma membrane-cell wall connections: roles in mitosis and cytokinesis revealed by plasmolysis of Tradescantia virginiana leaf epidermal cells. Protoplasma 215: 21-34.CrossRefGoogle Scholar
  10. Collen, J., Roeder, V., Rousvoal, S., Kloareg, B. and Boyen, C. (2006) An expressed sequence tag analysis of thallus and regenerating protoplasts of Chondrus crispus (Gigartinales, Rhodophyceae). J. Phycol. 42: 104-112.CrossRefGoogle Scholar
  11. Cubit, J.D. (1984) Herbivory and seasonal abundance of algae on a high intertidal rocky shore. Ecology 65: 1904-1917.CrossRefGoogle Scholar
  12. Davey, M.C. (1989) The effects of freezing and desiccation on photosynthesis and survival of terres-trial Antarctic algae and Cyanobacteria. Polar Biol. 10: 29-36.CrossRefGoogle Scholar
  13. Davison, I.R., Dudgeon, S.R. and Ruan, H-M. (1989) The effect of freezing on seaweed photosyn-thesis. Mar. Ecol. Prog. Ser. 58: 123-131.CrossRefGoogle Scholar
  14. Davison, I.R. and Pearson, G.A. (1996) Stress tolerance in intertidal seaweeds. J. Phycol. 32: 197-211.CrossRefGoogle Scholar
  15. Dring, M.J. (2005) Stress resistance and disease resistance in seaweeds: the role of reactive oxygen metabolism. Adv. Bot. Res. 43: 175-207.CrossRefGoogle Scholar
  16. Dring, M.J. and Brown, F.A. (1982) Photosynthesis of intertidal brown algae during and after periods of emersion: a renewed search for physiological causes of zonation. Mar. Ecol. Prog. Ser. 8: 301-308.CrossRefGoogle Scholar
  17. Dromgoole, F.I. (1980) Desiccation resistance of intertidal and subtidal algae. Botanica Marina 23: 149-159.CrossRefGoogle Scholar
  18. Farrell, T.M. (1991) Models and mechanisms ofsuccession - an example from a rocky intertidal community. Ecol. Monogr. 61: 95-113.CrossRefGoogle Scholar
  19. Foster, M.S. (1990) Organization of macroalgal assemblages in the northeast Pacific: the assumption of homogeneity and the illusion of generality. Hydrobiologia 192: 21-33.CrossRefGoogle Scholar
  20. Foster, M.S. (1992) How important is grazing to seaweed evolution and assemblage structure in the north-east Pacific? In: D.M. John, S.J. Hawkins and J.H. Proce (eds.) Plant-Animal Interactions in the Marine Benthos. Clarendon Press, Oxford, UK, pp. 61-85.Google Scholar
  21. Garbary, D.J. and Deckert, R.J. (2001) Three part harmony - Ascophyllum and its symbionts, In: J. Seckbach (ed.) Symbiosis: Mechanisms Netherlands, pp. 309-321.Google Scholar
  22. Hanelt, D., Wiencke, C. and Nultsch, W. (1997) Arctic macroalgae in the field. J. Photochem. Harker, M., Berkaloff, C., Lemoine, Y., Britton, and Model Systems. Kluwer, Dordrecht, The Influence of UV radiation on photosynthesis of Photobiol. B: Biol. 38: 40-47.Google Scholar
  23. G., Young, A.J., Duval, J.-C., Rmiki, N.-E. and Rousseau, B. (1999) Effects of light and desiccation on the operation of the xanthophylls cycle in two marine brown algae. Eur. J. Phycol. 34: 35-42.Google Scholar
  24. Hawkes, M.W. (1983) Anatomy of Apophlaea sinclairii - an enigmatic red alga endemic to New Zealand. Jpn. J. Phycol. 31: 55-64.Google Scholar
  25. Henry, C.A., Jordan, J.R. and Kropf, D.L. (1996) Localized membrane-wall adhesions in Pelvetia zygotes. Protoplasma 190: 39-52.CrossRefGoogle Scholar
  26. Holzinger, A., Karsten, U., Lutz, C. and Wiencke, C. (2006) Ultrastructure and photosynthesis in the supralittoral green macroalga Prasiola crispa from Spitsbergen (Norway) under UV exposure. Phycologia 45: 168-177.CrossRefGoogle Scholar
  27. Hoyer, K., Karsten, U., Sawall, T. and Wiencke, C. (2001) Photoprotective substances in Antarctic macroalgae and their variation with respect to depth distribution, different tissues and develop-ment stages. Mar. Ecol. Prog. Ser. 211: 117-129.CrossRefGoogle Scholar
  28. Huiskes, A.H.L., Gremmen, N.J.M. and Francke, J.W. (1997) The delicate stability of lichen symbiosis: comparative studies on the photosynthesis of the lichen Mastodia tesselata and its free-living phyco-biont, the alga Prasiola crispa, In: B. Battaglia, J. Valencia and D. Walton (eds.) Antarctic Communities. Species, Structures and Survival. Cambridge University Press, Cambridge, pp. 234-240.Google Scholar
  29. Jackson, A.E. and Seppelt, R.D. (1997) Physiological adaptations to freezing and UV radiation expo-sure in Prasiola crispa, an Antarctic terrestrial alga, In: B. Battaglia, J. Valencia and D.W.H. Walton (eds.) Antarctic Communities: Species, Structure, and Survival. Cambridge University Press, Cambridge, pp. 226-233.Google Scholar
  30. Jacob, A. (1992) Physiology and ultrastructure of Antarctic green alga Prasiola crispa ssp. Antarctica subjected to osmotic stress and desiccation. Rep. Polar Res. 102: 1-144.Google Scholar
  31. Jacob, A., Kirst, G.O., Wiencke, C. and Lehmann, H. (1991) Physiological responses of the Antarctic green alga Prasiola crispa spp. antarctica under salinity stress. J. Plant Physiol. 139: 57-62.Google Scholar
  32. Jacob, A., Lehmann, H. Kirst, G.O. and Wiencke, C. (1992a) Changes in the ultrastructure of Prasiola crispa spp. antarctica under salinity stress. Botanica Acta 105: 41-46Google Scholar
  33. Jacob, A., Wiencke, C., Lehmann, H. and Kirst, G.O. (1992b) Physiology and ultrastructure in the green alga Prasiola crispa from Antarctica. Botanica Marina 35: 297-303.CrossRefGoogle Scholar
  34. Ji, Y. and Tanaka, J. (2002) Effect of desiccation on the photosynthesis of seaweeds from the inter-tidal zone in Honshu, Jpn. Phycol. Res. 50: 145-153.CrossRefGoogle Scholar
  35. Karsten, U. (1999) Seasonal variation in heteroside concentrations of field-collected Porphyra species (Rhodophyta) from different biogeographic regions. New Phytol. 143: 561-571.CrossRefGoogle Scholar
  36. Karsten, U. and Kirst, G.O. (1989) Intracellular solutes, photosynthesis and respiration of the green alga Blidingia minima in response to salinity stress. Botanica Acta 102: 123-128.Google Scholar
  37. Karsten, U. and West, J.A. (2000) Living in the intertidal zone - seasonal effects on heterosides and sun-screen compounds in the red alga Bangia atropurpurea (Bangiales). J. Exp. Mar. Biol. Ecol. 254: 221-234.CrossRefPubMedGoogle Scholar
  38. Karsten, U., Wiencke, C. and Kirst, G.O. (1991a) The effect of salinity changes upon the physiology of eulittoral green macroalgae from Antarctica and southern Chile. I. Cell viability, growth, pho-tosynthesis and dark respiration. J. Plant Physiol. 138: 667-673.Google Scholar
  39. Karsten, U., Wiencke, C. and Kirst, G.O. (1991b) The effect of salinity changes upon the physiology of eulittoral green macroalgae from Antarctica and southern Chile. II. Intracellular inorganic ions and organic compounds. J. Exp. Bot. 42: 1533-1539.CrossRefGoogle Scholar
  40. Karsten, U., Wiencke, C. and Kirst, G.O. (1992) DMSP accumulation in green macroalgae from polar to temperate regions: interactive effects of light vs salinity and light vs temperature. Polar Biol. 12: 603-607.CrossRefGoogle Scholar
  41. Karsten, U., Barrow, K.D. and King, R.J. (1993) The floridoside, L-isofloridoside, and D-isofloridoside in the red alga Porphyra columbina. Seasonal and osmotic effects. Plant Physiol. 103: 485-491.PubMedGoogle Scholar
  42. Karsten, U., Sawall, T., Hanelt, D., Bischof, K., Figueroa, F.L., Flores-Moya, A. and Wiencke, C. (1998) An inventory of UV-absorbing mycosporine-like amino acids in macroalgae from polar to warm temperate regions. Botanica Marina 41: 443-453.CrossRefGoogle Scholar
  43. Karsten, U., Freidl, T., Schumann, R., Hoyer, K. and Lembcke, S. (2005) Mycosporine-like amino acids (MAAs) and phylogenies in green algae: Prasiola and its relatives from the Trebouxiophyceae (Chlorophyta). J. Phycol. 41: 557-577.CrossRefGoogle Scholar
  44. Kim, J.H. (1997) The role of herbivory, and direct and indirect interactions, in algal succession. J. Exp. Mar. Biol. Ecol. 217: 119-135.CrossRefGoogle Scholar
  45. Kim, K.Y. and Garbary, D.J. (2006) Fluorescence responses of photosynthesis to extremes of hypos-alinity, freezing and desiccation in the intertidal crust Hildenbrandia rubra (Hildenbrandiales, Rhodophyta). Phycologia 45: 680-686.CrossRefGoogle Scholar
  46. Kirst, G.O. (1990) Salinity tolerance of eukaryoticmarine algae. Ann. Rev. Plant Physiol. Plant Mol. Biol. 41: 21-53.CrossRefGoogle Scholar
  47. Korbee, N., Huovinen, P., Figueroa, F.L., Aguilera, J. and Karsten, U. (2005) Availability of ammo-nium influences photosynthesis and the accumulation of mycosporine-like amino acids in two Porphyra species (Bangiales, Rhodophyta). Mar. Biol. 146: 645-654.CrossRefGoogle Scholar
  48. Lamare, M.D., Lesser, M.P., Barker, M.F., Barry, T.M. and Schimanski, K.B. (2004) Variation in sun-screen compounds (mycosporine-like amino acids) for marine species along a gradient of ultraviolet radiation transmission within Doubtful Sound, New Zealand. N. Z. J. Mar. Freshwater Res. 38: 775-793.CrossRefGoogle Scholar
  49. Levitt, G.J. and Bolton, J.J. (1991) Seasonal patterns of photosynthesis and physiological parameters and the effects of emersion in littoral seaweeds. Botanica Marina 34: 403-410.CrossRefGoogle Scholar
  50. Li, R. and Brawley, S.H. (2004) Improved survival under heat stress in intertidal embryos (Fucus spp.) simultaneously exposed to hypersalinity and the effect of parental thermal history. Mar. Biol. 144: 205-213.CrossRefGoogle Scholar
  51. Lipkin, Y., Beer, S. and Eshel, A. (1993) The ability of Porphyra linearis (Rhodophyta) to tolerate pro-longed periods of desiccation. Botanica Mar. 36: 517-523.CrossRefGoogle Scholar
  52. Little, C. and Kitching, J.A. (1996) The Biology of Rocky Shores. Oxford University Press, Oxford.Google Scholar
  53. Lobban, C.S. and Harrison, P. J. (1994) Seaweed Ecology and Physiology. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  54. Lud, D., Buma, A.G.J., van de Pol, W., Moerduk, T.C.W. and Huiskes, A.H.L. (2001a) DNA damage and photosynthetic performance in the Antarctic terrestrial alga Prasiola crispa ssp. antarctica (Chlorophyta) under manipulated UV-B radiation. J. Phycol. 37: 459-467.CrossRefGoogle Scholar
  55. Lud, D., Huiskes, A.H.L. and Ott, S. (2001b) Morphological evidence for the symbiotic character of Turgidosculum complicatum Kohlm. & Kohlm. (=Mastodia tesselata Hook. f. & Harvey). Symbiosis 31: 141-151.Google Scholar
  56. Lüning, K. (1990) Seaweeds. Their Environment, Biogeography, and Ecophysiology. Wiley-Interscience, New York.Google Scholar
  57. Mak, Y.M. and Williams, G.A. (1999) Littorinids control high intertidal biofilm abundances on trop-ical, Hong Kong rocky shores. J. Exp. Mar. Biol. Ecol. 233: 81-94.CrossRefGoogle Scholar
  58. Oates, B.R. and Murray, S.N. (1983) Photosynthesis, dark respiration and desiccation resistance of the intertidal seaweeds Hesperophycus harveyanus and Pelvetia fastigiata f. gracilis. J. Phycol. 19: 371-380.CrossRefGoogle Scholar
  59. Pearson, G.A. and Davison, I.R. (1993) Freezing rate and duration determine the physiological response of intertidal fucoids to freezing. Mar. Biol. 115: 353-362.CrossRefGoogle Scholar
  60. Peinado, N.K., Díaz, R.T.A., and Figueroa, F.L. (2004) Ammonium and UV radiation stimulate the accumulation of mycosporine-like amino acids in Porphyra columbina (Rhodophyta) from Patagonia, Argentina. J. Phycol. 40: 248-259.CrossRefGoogle Scholar
  61. Pfetzing, J., Stengel, D.B., Cuffe, M.M., Savage, A.V. and Guiry, M.D. (2000) Effects of temperature and prolonged emersion on photosynthesis, carbohydrate content and growth of the brown intertidal alga Pelvetia canaliculata. Botanica Marina 43: 399-407.CrossRefGoogle Scholar
  62. Pueschel, C. (1982) Ultrastructural observations of tetrasporangia and conceptacles in Hildenbrandia (Rhodophyta: Hildenbrandiales). Br. Phycol. J. 17: 333-341.CrossRefGoogle Scholar
  63. Reed, R.H., Davison, I.R., Chudek, J.A. and Foster, R. (1985) The osmotic role of mannitol in the Phaeophyta: an appraisal. Phycologia 24: 35-47.Google Scholar
  64. Rindi, F., Guiry, M.D., Barbiero, R.P. and Cinelli, F. (1999) The marine and terrestrial Prasiolales (Chlorophyta) of Galway City Ireland: a morphological and ecological study. J. Phycol. 35: 469-482.CrossRefGoogle Scholar
  65. Robinson, S.A., Walsley, J. and Tobin, A.K. (2003) Living on the edge - plants and global change in continental and maritime Antarctica. Glob. Change Biol. 9: 1681-1717.CrossRefGoogle Scholar
  66. Robles, C.D. and Cubit, J. (1981) Influence of biotic factors in an upper intertidal community: dipteran larvae grazing on algae. Ecology 62: 1536-1547.CrossRefGoogle Scholar
  67. Rugg, D.A. and Norton, T.A. (1987) Pelvetia canaliculata, a high-shore seaweed that shuns the sea, In: R.M.M. Crawford (ed.) Plant Life in Aquatic and Amphibious Habitats. Blackwell, Oxford, pp. 347-358.Google Scholar
  68. Schonbeck, M.W. and Norton, T.A. (1979) Drought-hardening in the upper shore seaweeds Fucus spi-ralis and Pelvetia canaliculata. J. Ecol. 67: 687-696.CrossRefGoogle Scholar
  69. Scrosati, R. and DeWreede, R.E. (1998) The impact of frond crowding on frond bleaching in the clonal intertidal alga Mazzaella cornucopiae (Rhodophyta, Gigartinaceae) from British Columbia, Canada. J. Phycol. 34: 228-232.CrossRefGoogle Scholar
  70. Smith, C.M. and Berry, J.A. (1986) Recovery of photosynthesis after exposure of intertidal algae to osmotic and temperature stresses: comparative studies of species with differing distributional limits. Oecologia 70: 6-12.CrossRefGoogle Scholar
  71. Smith, C.M., Satoh, K. and Fork, D.C. (1986) The effects of osmotic tissue dehydration and air dry-ing on morphology and energy transfer in two species of Porphyra. Plant Physiol. 80: 843-847.CrossRefPubMedGoogle Scholar
  72. Smith, V.R. and Gremmen, N.J.M. (2001) Photosynthesis in a sub-Antarctic shore-zone lichen. New Phytol. 149: 291-299.CrossRefGoogle Scholar
  73. Tomanek, L. and Helmuth, B. (2002) Physiological ecology or rocky intertidal organisms: a synergy of concepts. Integr. Comp. Biol. 42: 771-775.CrossRefGoogle Scholar
  74. Wiencke, C. and Läuchli, A. (1983) Tonoplast fine structure and osmotic regulation in Porphyra umbilicalis. Planta 159: 342-346.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • David Garbary
    • 1
  1. 1.Department of BiologySt. Francis Xavier UniversityAntigonishCanada

Personalised recommendations