Green Cryosestic Algae

  • Jiří Komárek
  • Linda Nedbalová
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 11)

Cryoseston inhabits one of the most extreme environments in the Earth biosphere. The phototrophic components are composed exclusively from microorganisms, adapted to life conditions of melting snow. All species occurring in cryosestic assemblages evidently colonised the snowfields secondarily, their ancestors originating from other habitats.

Cryosestic communities develop in snowfields and on the surface of glaciers, where the temperature surpasses 0ºC periodically (daily, or over variously long time periods), and the snow changes locally from solid to liquid state. It means, that the temperature adaptability of cryosestic species must allow to start the intense metabolic activities immediately after melting their cells accommodated in snow. Such adaptation also occurs in algae from other biotopes (in subaerophytic, endolithic and terrestrial habitats), but it is the conditio sine qua non in typical cryosestic algae. Another precondition is that the cryosestic microflora can develop only in snowfields and glaciers remaining and persisting in air temperatures above 0ºC over some periods, and under convenient irradiance conditions (cf. Hoham and Duval, 2001). This situation occurs mainly in mountains and polar and subpolar regions over the spring and summer periods.


Liquid Water Content South Orkney Island Photon Fluence Rate Polar Biol Secondary Carotenoid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreoli, C., Lokhorst, G.M., Mani, A.M., Scarabel, L., Moro, I., La Rocca, N. and Tognetto, L. (1998) Koliella antarctica sp. nov. (Klebsormidiales) a new marine green microalga from the Ross Sea (Antarctica), Arch. Hydrobiol./Algolog. Stud. 90, 1-8.Google Scholar
  2. Bidigare, R.R., Ondrusek, M.E., Iturriaga, R., Harvey, H.R., Hoham, R.W. and Macko, S.A. (1993) Evidence for a photoprotective function for secondary carotenoids of snow algae, J. Phycol. 29, 427-434.CrossRefGoogle Scholar
  3. Bischof, K., Hanelt, D., Aguilera, J., Karsten, U., Vögele, B., Sawall, T. and Wiencke, C. (2002) Seasonal variation in ecophysiological patterns in macroalgae from an Arctic fjord. I. Sensitivity of photosynthesis to ultraviolet radiation, Mar. Biol. 140, 1097-1106.CrossRefGoogle Scholar
  4. Blumthaler, M., Ambach, W. and Rehwald, W. (1992) Solar UV-A and UV-B radiation fluxes at two alpine stations at different altitudes, Theor. Appl. Climatol. 46, 39-44.CrossRefGoogle Scholar
  5. Blumthaler, M., Webb, A.R., Seckmeyer, G., Bais, A.F., Huber, M. and Mayer, B. (1994) Simultaneous spectroradiometry: a study of solar UV irradiance at two altitudes, Geophys. Res. Lett. 21, 2805-2808.CrossRefGoogle Scholar
  6. Bolsenga, S.J. (1983) Spectral reflectances of snow and fresh-water ice from 340 through 1100 nm, J. Glaciol. 29, 296-304.Google Scholar
  7. Curl, H., Hardy, J.T. and Ellermeier, R. (1972) Spectral absorption of solar radiation in alpine snow-fields, Ecology 53, 1189-1194.CrossRefGoogle Scholar
  8. Döhler, G. (1988) Effect of UV-B (280-320 nm)radiation on the 15N-nitrate assimilation of some algae, Plant Physiol. (Life Sci. Adv.) 7, 79-84.Google Scholar
  9. Döhler, G. (1994) UV-effects on the nitrogen metabolism of marine phytoplankton and adaptation to UV radiation. In: R.H. Biggs and M.E.B. Joyner (eds.) Stratospheric ozone depletion/UV-B radi-ation in the biosphere, Springer-Verlag, Berlin, pp. 163-174.Google Scholar
  10. Droop, M.R. (1955) Carotenogenesis in Haematococcus pluvialis, Nature 175, 42.CrossRefGoogle Scholar
  11. Duval, B. and Hoham, R.W. (2000) Snow algae in the northeastern U.S.: photomicrographs, obser-vations and distribution of Chloromonas spp. (Chlorophyta), Rhodora 102, 365-372.Google Scholar
  12. Duval, B., Duval, E. and Hoham, R.W. (1999a) Snow algae of the Sierra Nevada, Spain, and High Atlas mountains of Morocco, Int. Microbiol. 2, 39-42.Google Scholar
  13. Duval, B., Shetty K. and Thomas, W.H. (1999b) Phenolic compounds and antioxidant properties in the snow alga Chlamydomonas nivalis after exposure to UV light, J. Appl. Phycol. 11, 559-566.CrossRefGoogle Scholar
  14. Elster, J. (1999) Algal versatility in various extreme environments. In: J. Seckbach (ed.) Enigmatic microorganisms and life in extreme environments, Kluwer Academic Publishers, Dordrecht.Google Scholar
  15. Falkowski, P.G. and La Roche, J. (1991) Acclimation to spectral irradiance in algae, J. Phycol. 27, 8-14.CrossRefGoogle Scholar
  16. Fogg, G.E. (1967) Observations of the snow algae of the South Orkney Islands, Philos. Trans. R. Soc. Lond. B252, 279-287.CrossRefGoogle Scholar
  17. Foti, M., Piatelli, M., Amico, V. and Ruberto, G. (1994) Antioxidant activity of phenolic meroditer-penoids from marine algae, J. Photochem. Photobiol. 26, 159-164.CrossRefGoogle Scholar
  18. Fukushima, H. (1963) Studies on cryophytes in Japan, J. Yokohama Munic. Univ., Ser. C, Nat. Sci. 43,1-146.Google Scholar
  19. Goodwin T.W. (ed.) (1980) The biochemistry of carotenoids. I. Plants. Chapman and Hall, New York.Google Scholar
  20. Gorton, H.L. and Vogelman, T.C. (2003) Ultraviolet radiation and the snow alga Chlamydomonas nivalis (Bauer) Wille, Photochem. Photobiol. 77, 608-615.CrossRefPubMedGoogle Scholar
  21. Gorton, H.L., Williams, W.E. and Vogelman, T.C. (2001) The light environment and cellular optics of the snow alga Chlamydomonas nivalis (Bauer) Wille, Photochem. Photobiol. 73, 611-620.CrossRefPubMedGoogle Scholar
  22. Heber, U., Bilger, W., Bligny, R. and Lange O.L. (2000) Phototolerance of lichen, mosses and higher plants in an alpine environment: analysis of photoreactions, Planta 211, 770-780.CrossRefPubMedGoogle Scholar
  23. Hindák, F. and Komárek, J. (1968) Cultivation of the cryosestonic alga Koliella tatrae (Kol) Hind., Biol. Plant. 10, 95-97.CrossRefGoogle Scholar
  24. Hoham, R.W. (1973) Pleiomorphism in the snow alga Raphidonema nivale Lagerh. (Chlorophyta), and a revision of the genus Raphidonema Lagerh., Syesis 6, 255-263.Google Scholar
  25. Hoham, R.W. (1974a) New findings in the life history of the snow alga Chlainomonas rubra (Stein et Brooke) comb. nov. (Chlorophyta, Volvocales), Syesis 7, 239-247.Google Scholar
  26. Hoham, R.W. (1974b) Chlainomonas kolii (Hardy et Curl) comb. nov. (Chlorophyta, Volvocales), a revision of the snow alga, Trachelomonas kolii Hardy et Curl (Euglenophyta, Euglenales), J. Phycol. 10, 392-396.Google Scholar
  27. Hoham, R.W. (1975a) The life history and ecology of the snow alga Chloromonas pichinchae (Chlorophyta, Volvocales), Phycologia 14, 213-226.Google Scholar
  28. Hoham, R.W. (1975b) Optimum temperatures and temperature ranges for growth of snow algae, Arctic Alpine Res. 7, 13-24.CrossRefGoogle Scholar
  29. Hoham, R.W. (1976) The effect of coniferous litter and different snow meltwaters upon the growth of two species of snow algae in axenic culture, Arctic Alpine Res. 8, 377-386.CrossRefGoogle Scholar
  30. Hoham, R.W. (1992) Environmental influences on snow algal microbes. In: B. Shafer(ed.) Proceedings of the 60th Annual Western SnowConference, pp. 78-83.Google Scholar
  31. Hoham, R.W., Berman, J.D., Rogers, H.S., Felio, J.H., Ryba, J.B. and Miller, P.R. (2006) Two new species of green snow algae from Upstate New York, Chloromonas chenangoensis sp nov and Chloromonas tughillensis sp nov (Volvocales, Chlorophyceae) and the effects of light on their life cycle development, Phycologia 45, 319-330.Google Scholar
  32. Hoham, R.W. and Blinn, D.W. (1979) Distributionof cryophilic algae in an arid region, the American Southwest, Phycologia 18, 133-145.Google Scholar
  33. Hoham, R.W., Bonome, T.A., Martin, C.W. and Leebens-Mack, J.H. (2002) A combined 18S rDNA and rbcL phylogenetic analysis of Chloromonas and Chlamydomonas (Chlorophyceae, Volvocales) emphasizing snow and other cold-temperature habitats, J. Phycol. 38, 1051-1064.CrossRefGoogle Scholar
  34. Hoham, R.W. and Duval, B. (2001) Microbial ecology of snow and freshwater ice, In: H.G. Jones, J.W. Pomeroy, D.A. Walker and R.W. Hoham (eds.) Snow ecology: An interdisciplinary examination of snow-covered ecosystems, Cambridge University Press, Cambridge, pp. 168-228.Google Scholar
  35. Hoham, R.W., Laursen, A.E., Clive, S.O. and Duval, B. (1993) Snow algae and other microbes in sev-eral Alpine areas in New England, In: M. Ferrick (ed.) Proceedings of the 50th Annual Eastern Snow Conference, pp. 165-173.Google Scholar
  36. Hoham, R.W, Marcarelli, A.M., Rogers, H.S., Ragan, M.D., Petre, B.M., Ungerer, M.D., Barnes, J.M. and Francis, D.O. (2000) The importance of light and photoperiod in sexual reproduction and geographical distribution in the green snow alga, Chloromonas sp.-D (Chlorophyceae, Volvocales), Hydrol. Processes 14, 3309-3321.Google Scholar
  37. Hoham, R.W. and Mullet, J.E. (1977) The life history and ecology of the snow alga Chloromonas cryophila sp. nov. (Chlorophyta, Volvocales), Phycologia 16, 53-68.Google Scholar
  38. Hoham, R.W. and Mullet, J.E. (1978) Chloromonas nivalis (Chod.) Hoh. & Mull. comb. nov., and additional comments on the snow alga, Scotiella, Phycologia 17, 106-107.Google Scholar
  39. Hoham, R.W., Mullet, J.E. and Roemer, S.C. (1983) The life history and ecology of the snow alga Chloromonas polyptera comb. nov. (Chlorophyta, Volvocales), Can. J. Bot. 61, 2416-2428.CrossRefGoogle Scholar
  40. Hoham, R.W., Roemer, S.C. and Mullet, J.E. (1979) The life history and ecology of the snow alga Chloromonas brevispina comb. nov. (Chlorophyta, Volvocales), Phycologia 18, 55-70.Google Scholar
  41. Hoham, R.W., Schlag, E.M., Kang, J.Y., Hasselwander, A.J., Behrstock, A.F., Blackburn, I.R., Johnson, R.C. and Roemer, S.C. (1998) The effects of irradiance levels and spectral composition on mating strategies in the snow alga, Chloromonas sp.-D., from the Tughill Plateau, New York State, Hydrol. Processes 12, 1627-1639.Google Scholar
  42. Hoham, R.W., Yatsko, C.P., Germain, L. and Jones, H.G. (1989) Recent discoveries of snow algae in upstate New York and Quebec Province and preliminary reports on snow chemistry. In: J. Lewis (ed.) Proceedings of the 46th Annual Eastern Snow Conference, pp. 196-200.Google Scholar
  43. , P. (1973) A field method for measuring the photosynthesis of snow and aerophytic algae, Arch. Hydrobiol./Algolog. Stud. 8, 363-371.Google Scholar
  44. , P. and Hindák, F. (1970) Cryptomonasfrigoris spec. nova (Cryptophyceae), the new cyst-forming flagellate from the snow of the HighTatras, Biologia 25, 241-250.Google Scholar
  45. Johannessen, M. and Henriksen, A. (1978) Chemistry of snow meltwater: changes in concentration during melting, Water Resources Res. 14, 615-619.CrossRefGoogle Scholar
  46. Jones, H.G. (1987) Chemical dynamics of snow cover and snowmelt in a boreal forest. In: H.G. Jones and W.J. Orville-Thomas (eds.) NATO ASI Series C Mathemat. Phys. Sci., Vol. 211, Seasonal snowcovers physics, chemistry, hydrology, Reidel, Dordrecht, pp. 531-574.Google Scholar
  47. Jones, H.G. (1991) Snow chemistry and biological activity: a particular perspective on nutrient cycling, In: T.D. Davies (ed.) Seasonal snowpacks, NATO ASI Series, Vol. G28, Springer-Verlag, Berlin, pp. 173-228.Google Scholar
  48. Jones, H.G. (1999) The ecology of snow-covered systems: a brief overview of nutrient cycling and life in the cold, Hydrol. Processes 13, 2135-2147.CrossRefGoogle Scholar
  49. Karsten, U., Franklin, L.A., Luning, K. and Wiencke, C. (1998) Natural ultraviolet radiation and photosynthetically active radiation induce formation of mycosporine-like amino acids in the marine macroalga Chondrus crispus (Rhodophyta), Planta 205, 257-262.CrossRefGoogle Scholar
  50. Kawecka, B. and Drake, B. (1978) Biology and ecology of snow algae. 1. The sexual reproduction of Chlamydomonas nivalis (Bauer) Wille (Chlorophyta, Volvocales), Acta Hydrobiol. 20, 111-116.Google Scholar
  51. Kociánová, M.,Sˇtursová, H.,Sˇtursa, J., Vaneˇk, J. and Vávra, V. (1989) Nové nálezy cˇerveného sneˇhu v Krkonoších [New sites with red snow in Giant Mountains], Opera Corcontica 26, 151-158.Google Scholar
  52. Kol, E. (1968) Kryobiologie, In: H.J. Elster and W. Ohle (eds.) Die Binnengewässer 24 Schweizerbart. Verlagsbuchh., Stuttgart, 216 pp.Google Scholar
  53. Komárek, J., Hindák, F. and Javornicky, P. (1973) Ecology of the green kryophilic algae from Belanské Tatry Mountains (Czechoslovakia), Arch. Hydrobiol./Algolog. Stud. 9, 427-449.Google Scholar
  54. Komárek, J. and Ruºzˇicˇka, J. (1969) Effect of temperature on the growth of Scenedesmus quadricauda (Turp.) Bréb. In: B. Fott (ed.) Studies in Phycology, Academia, Praha, pp. 262-292.Google Scholar
  55. Komárek, O. and Komárek, J. (1999) Diversity of freshwater and terrestrial habitats and their oxyphototroph microflora in the Arctowski Station region, South Shetlands Islands, Polish Polar Res. 20, 259-282.Google Scholar
  56. Komárek, O. and Komárek, J. (2001) Contribution to the taxonomy and ecology of green cryosestic algae in the summer season 1995-1996 at King George Island, S. Shetland Islands, Nova Hedwigia, Beih. 123, 121-140. In: J. Elster et al. (eds.) Proceedings of the International conference ˇ, Czech Republic.Google Scholar
  57. Kuhn, M. (2001) The nutrient cycle through snow and ice, a review, Aquat. Sci. 63, 150-167.CrossRefGoogle Scholar
  58. Ling, H.U. (1996) Snow algae of the Windmill Islands region, Antarctica, Hydrobiologia 336, 99-106.Google Scholar
  59. Ling, H.U. (2001) Snow algae of the Windmill Islands, continental Antarctica: Desmotetra aureo-spora, sp. nov. and D. antarctica, comb. nov., J. Phycol. 37, 160-174.CrossRefGoogle Scholar
  60. Ling, H.U. (2002) Snow algae of the Windmill Islands, continental Antarctica Chlorosarcina antarc-tica comb. nov. (Chlorophyceae, Chlorophyta) from pink snow, with discussion of Chlorosarcina and allied genera, Phycologia 41, 1-9.CrossRefGoogle Scholar
  61. Ling, H.U. and Seppelt, R.D. (1993) Snow algae of the Windmill Islands, continental Antarctica. 2. Chloromonas rubroleosa sp. nov. (Volvocales, Chlorophyta), an alga of red snow, Eur. J. Phycol. 28,77-84.CrossRefGoogle Scholar
  62. Ling, H.U. and Seppelt, R.D. (1998) Snow algae of the Widmill Island, continental Antarctica. 3. Chloromonas polyptera (Volvocales, Chlorophyta), Polar Biol. 20, 320-324.Google Scholar
  63. , J.(1993) First record of cryosestonin the Bohemian Forest Mts. (Sˇumava), Arch. Hydrobiol./Algolog. Stud. 69, 83-89.Google Scholar
  64. MacIntyre, H.L., Kana, T.M., Anning, T. and Geider, R.J. (2002) Photoacclimation of photosynthe-sis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria, J. Phycol. 38, 17-38.CrossRefGoogle Scholar
  65. Margesin, R. and Schinner, F. 1994 Properties ofcold-adapted microorganisms and their potential role in biotechnology, J. Biotech. 33, 1-14.CrossRefGoogle Scholar
  66. Marshall, W.A. and Chalmers, M.O. (1997) Airborne dispersal of Antarctic terrestrial algae and cyanobacteria, Ecography 20, 585-594.CrossRefGoogle Scholar
  67. Morgan-Kiss, R.M., Priscu, J.C., Pocock, T., Gudynaite-Savitch, L.G. and Huner, N.P.A. (2006) Adaptation and acclimation of photosynthetic microorganisms to permanently cold environ-ments, Microbiol. Mol. Biol. Rev. 70, 222-252.CrossRefPubMedGoogle Scholar
  68. Müller, T., Bleiss, W., Martin, C.D., Rogaschewski, S. and Fuhr, G. (1998) Snow algae from north-west Svalbard their identification, distribution, pigment and nutrient content, Polar Biol. 20, 14-32.CrossRefGoogle Scholar
  69. Müller, T., Leya, T. and Fuhr, G. (2001) Persistent snow algal fields in Spitsbergen: field observation and a hypothesis about the annual cell circulation, Arctic Alpine Res. 33, 42-51.CrossRefGoogle Scholar
  70. Newton, A.P.W. (1982) Red-colored snow algae in Svalbard - some environmental factors determin-ing the distribution Chlamydomonas nivalis (Chlorophyta, Volvocales), Polar Biol. 1, 167-172.CrossRefGoogle Scholar
  71. Novis, P.M. (2002a) New records of snow algae for New Zealand, from Mt Philistine, Arthur’s Pass National Park, New Zealand J. Bot. 40, 297-312.Google Scholar
  72. Novis, P.M. (2002b) Ecology of the snow alga Chlainomonas kolii(Chlamydomonadales, Chlorophyta) in New Zealand, Phycologia 41, 280-292.Google Scholar
  73. Ohtani, S., Bo, C. and Nakatsubo, T. (1998) Distribution of snow algae at King George Island, Antarctica, with reference to physical and chemical characters of snow, Chinese J. Polar Res. 10, 191-203.Google Scholar
  74. Painter, T.H., Duval, B., Thomas, W.H., Mendez, M., Heintzelman, S. and Dozier, J. (2001) Detection and quantification of snow algae with an airborne imaging spectrometer, Appl. Environ. Microbiol. 67, 5267-5272.CrossRefPubMedGoogle Scholar
  75. Remias, D., Lütz-Meindl, U. and Lütz, C. (2005) Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis, Eur. J. Phycol. 40, 259-268.CrossRefGoogle Scholar
  76. Rˇezanka, T., Nedbalová, L. and Sigler, K. (2007) Unusual short and medium chain polyunsaturated fatty acids from the snow alga Chloromonas brevispina, Microbiol. Res., doi: 10.1016/j.micres. 2006.11.021.Google Scholar
  77. Roser, D.J., Melick, D.R., Ling, H.U. and Seppelt, R.D. (1992) Polyol and sugar content of the terrestrial plants from continental Antarctica, Antarct. Sci. 4, 413-420.Google Scholar
  78. Roser, D.J., Melick, D.R., Ling, H.U. and Seppelt, R.D. (1992) Polyol and sugar content of the ter-restrial plants from continental Antarctica, Antarct. Sci. 4, 413-420.Google Scholar
  79. Ru°zˇicˇka, J. (1971) Morphologische Variabilität der Algen, hervorgerufen durch Kultivierungsbedingugnen, Arch. Hydrobiol./Algolog. Stud. 4, 146-177.Google Scholar
  80. Sommaruga, R. and Garcia-Pichel, F. (1999) UV-absorbing mycosporine-like compounds in planc-tonic and benthic organisms from a high mountain lake, Arch. Hydrobiol. 144, 255-269.Google Scholar
  81. Stein, J. (1963) A Chromulina (Chrysophyceae) from snow, Can. J. Bot. 41, 1367-1370.CrossRefGoogle Scholar
  82. Stibal, M. (2003) Ecological and physiological characteristics of snow algae from Czech and Slovak mountains, Czech Phycol. 3, 141-152.Google Scholar
  83. Stibal, M. and Elster, J. (2005) Growth and morphology variation as a response to changing environ-mental factors in two Arctic species of Raphidonema (Trebouxiophyceae) from snow and soil, Polar Biol. 28, 558-567.CrossRefGoogle Scholar
  84. Sutton, F.A. (1972) The physiology and life histories of selected cryophytes of the Pacific NorthWest., Ph.D. Thesis, Oregon State University, Corvallis, 98 pp.Google Scholar
  85. Tearle, P.W. (1987) Cryptogamic carbohydrate release and microbial response during spring freeze-thaw cycles in Antarctic fellfield fines, Soil Biol. Biochem. 19, 381-390.Google Scholar
  86. TerBraak, C.J.F. and Sˇmilauer, P. (1998) CANOCO Release 4. Reference manual and user’s guide to CANOCO for Windows: Software for Canonical Community Ordination. Microcomputer Power, Ithaca, New York.Google Scholar
  87. Tinkler, J.H., Böhm, F., Schalch, W. and Truscott, T.G. (1994) Dietary carotenoids protect human cells from damage, J. Photochem. Photobiol. B: Biol. 26, 283-285.CrossRefGoogle Scholar
  88. Thomas, W.H. (1972) Observations on snow algae in California, J. Phycol. 8, 1-9.Google Scholar
  89. Tranter, M., Davies, T.D., Abrahams, P.W., Blackwood, I., Brimblecombe, P. and Vincent, C.E. (1987) Spatial variability in the chemical composition of snowcover in a small, remote Scottish catch-ment, Atmosph. Environ. 21, 853-862.CrossRefGoogle Scholar
  90. Vincent, W.F. and Roy, S. (1993) Solar ultraviolet-B radiation and aquatic primary production: dam-age, protection, and recovery, Environ. Rev. 1, 1-12.Google Scholar
  91. Williams, W.E., Gorton, H.L. and Vogelman, T.C. (2003) Surface gas-exchange processes of snow algae, Proc. Natl. Acad. Sci. U.S.A. 100, 562-566.CrossRefPubMedGoogle Scholar
  92. Xiong, F., Lederer, F., Lukavsky,, J. and Nedbal, L. (1996) Screening of freshwater alga (Chlorophyta, Chromophyta) for the ultraviolet-B sensitivity of the photosynthetic apparatus, J. Plant Physiol. 148,42-48.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Jiří Komárek
    • 1
    • 2
  • Linda Nedbalová
    • 1
    • 3
  1. 1.Institute of BotanyAcademy of Sciences of the Czech RepublicCzech Republic
  2. 2.University of South BohemiaCzech Republic
  3. 3.Charles University in PraguePragueCzech Republic

Personalised recommendations