Pseudomonas pp 193-224 | Cite as

Role of Membrane Structure During Stress Signalling and Adaptation in Pseudomonas

  • Christine Baysse
  • Fergal O'Gara

Bacteria are exposed to a wide range of stress-inducing fluctuating conditions in the environment. These stresses include extreme temperatures, changes in osmotic pressure, the presence of toxic compounds, desiccation and nutrient fluctuation. A quick adaptive response by the bacteria is required for survival. Ubiquitous microorganisms such as Pseudomonas are able to modulate their gene expression in response to a wide range of environmental stressors enabling successful physiological/ biochemical adaptation. While stress responses in bacteria are well studied, the sequence of events leading to cell death or adaptation, and in particularly the primary sensor(s) involved, remain to be elucidated.


Membrane Fluidity Acyl Chain Quorum Sensing Pseudomonas Putida Histidine Kinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aguilar, P.S., Cronan, J.E., Jr., and de Mendoza, D., 1998, A Bacillus subtilis gene induced by cold shock encodes a membrane phospholipid desaturase. J. Bacteriol., 180:2194–2200.PubMedGoogle Scholar
  2. 2.
    Aguilar, P.S., Hernandez-Arriaga, A.M., Cybulski, L.E., Erazo, A.C., and de Mendoza, D., 2001, Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis. EMBO J., 20:1681–1691.PubMedCrossRefGoogle Scholar
  3. 3.
    Albanesi, D., Mansilla, M.C., and de Mendoza, D., 2004, The membrane fluidity sensor DesK of Bacillus subtilis controls the signal decay of its cognate response regulator. J. Bacteriol., 186:2655–2663.PubMedCrossRefGoogle Scholar
  4. 4.
    Annous, B.A., Becker, L.A., Bayles, D.O., Labeda, D.P., and Wilkinson, B.J., 1997, Critical role of anteiso-C15:0 fatty acid in the growth of Listeria monocytogenes at low temperatures. Appl. Environ. Microbiol., 63:3887–3894.PubMedGoogle Scholar
  5. 5.
    Barry, J.A., and Gawrisch, K., 1994, Direct NMR evidence for ethanol binding to the lipid-water interface of phospholipid bilayers. Biochemistry, 33:8082–8088.PubMedCrossRefGoogle Scholar
  6. 6.
    Baysse, C., Cullinane, M., Denervaud, V., Burrowes, E., Dow, J.M., Morrissey, J.P., Tam, L., Trevors, J.T., and O’Gara, F., 2005, Modulation of quorum sensing in Pseudomonas aeruginosa through alteration of membrane properties. Microbiology, 151:2529–2542.PubMedCrossRefGoogle Scholar
  7. 7.
    Bechor, O., Smulski, D.R., Van Dyk, T.K., LaRossa, R.A., and Belkin, S., 2002, Recombinant microorganisms as environmental biosensors: pollutants detection by Escherichia coli bearing fabA’::lux fusions. J. Biotechnol., 94:125–132.PubMedCrossRefGoogle Scholar
  8. 8.
    Betts, J.C., Lukey, P.T., Robb, L.C., McAdam, R.A., and Duncan, K., 2002, Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol. Microbiol., 43:717–731.PubMedCrossRefGoogle Scholar
  9. 9.
    Black, P.N., DiRusso, C.C., Metzger, A.K., and Heimert, T.L., 1992, Cloning, sequencing, and expression of the fadD gene of Escherichia coli encoding acyl coenzyme A synthetase. J. Biol. Chem., 267:25513–20513.PubMedGoogle Scholar
  10. 10.
    Block, R., and Haseltine, A.W., 1975, Purification and properties of stringent factor. J. Biol. Chem., 250:1212–1217.PubMedGoogle Scholar
  11. 11.
    Brown, K.L., and Hancock, R.E., 2006, Cationic host defense (antimicrobial) peptides. Curr. Opin. Immunol., 18:24–30.PubMedCrossRefGoogle Scholar
  12. 12.
    Burrowes, E., Abbas, A., O’Neill, A., Adams, C., and O’Gara, F., 2005, Characterisation of the regulatory RNA RsmB from Pseudomonas aeruginosa PAO1. Res. Microbiol., 156:7–16.PubMedCrossRefGoogle Scholar
  13. 13.
    Burrowes, E., Baysse, C., Adams, C., and O’Gara, F., 2006, Influence of the regulatory protein RsmA on cellular functions in Pseudomonas aeruginosa PAO1, as revealed by transcriptome analysis. Microbiology, 152:405–418.PubMedCrossRefGoogle Scholar
  14. 14.
    Campbell, J.W., and Cronan, J. E., Jr., 2001, Escherichia coli FadR positively regulates transcription of the fabB fatty acid biosynthetic gene. J. Bacteriol., 183:5982–5990.PubMedCrossRefGoogle Scholar
  15. 15.
    Cashel, M., 1975, Regulation of bacterial ppGpp and pppGpp. Annu. Rev. Microbiol., 29:301–318.PubMedCrossRefGoogle Scholar
  16. 16.
    Chang, Y.Y., Eichel, J., and Cronan, J.E., Jr., 2000, Metabolic instability of Escherichia coli cyclopropane fatty acid synthase is due to RpoH-dependent proteolysis. J. Bacteriol., 182:4288–4294.PubMedCrossRefGoogle Scholar
  17. 17.
    Cronan, J.E., 2003, Bacterial membrane lipids: where do we stand? Annu. Rev. Microbiol., 57:203–224.PubMedCrossRefGoogle Scholar
  18. 18.
    Cronan, J.E., Jr., 2002, Phospholipid modifications in bacteria. Curr. Opin. Microbiol., 5:202–205.PubMedCrossRefGoogle Scholar
  19. 19.
    Cronan, J.E., Jr., and Gelmann, E.P., 1975, Physical properties of membrane lipids: biological relevance and regulation. Bacteriol. Rev., 39:232–256.PubMedGoogle Scholar
  20. 20.
    Cronan, J.E., Jr., and Subrahmanyam, S., 1998, FadR, transcriptional co-ordination of metabolic expediency. Mol. Microbiol., 29:937–943.PubMedCrossRefGoogle Scholar
  21. 21.
    Cullinane, M., Baysse, C., Morrissey, J.P., and O’Gara, F., 2005, Identification of two lysophosphatidic acid acyltransferase genes with overlapping function in Pseudomonas fluorescens. Microbiology, 151:3071–3080.PubMedCrossRefGoogle Scholar
  22. 22.
    de Mendoza, D., Klages Ulrich, A., and Cronan, J.E., Jr., 1983, Thermal regulation of membrane fluidity in Escherichia coli. Effects of overproduction of beta-ketoacyl-acyl carrier protein synthase I. J. Biol. Chem., 258:2098–2101.PubMedGoogle Scholar
  23. 23.
    Denich, T.J., Beaudette, L.A., Lee, H., and Trevors, J.T., 2003, Effect of selected environmental and physico-chemical factors on bacterial cytoplasmic membranes. J. Microbiol. Methods., 52:149–182.PubMedCrossRefGoogle Scholar
  24. 24.
    Diefenbach, R., Heipieper, H.J., and Keweloh, H., 1992, The conversion of cis into trans unsaturated fatty acids in Pseudomonas putida P8: evidence for a role in the regulation of membrane fluidity. Appl. Microbiol. Biotechnol., 38:382–387.CrossRefGoogle Scholar
  25. 25.
    DiRusso, C.C., Black, P.N., and Weimar, J.D., 1999, Molecular inroads into the regulation and metabolism of fatty acids, lessons from bacteria. Prog. Lipid Res., 38:129–197.PubMedCrossRefGoogle Scholar
  26. 26.
    DiRusso, C.C., Heimert, T.L., and Metzger, A.K., 1992, Characterization of FadR, a global transcriptional regulator of fatty acid metabolism in Escherichia coli. Interaction with the fadB promoter is prevented by long chain fatty acyl coenzyme A. J. Biol. Chem., 267:8685–8691.PubMedGoogle Scholar
  27. 27.
    DiRusso, C.C., and Nystrom, T., 1998, The fats of Escherichia coli during infancy and old age: regulation by global regulators, alarmones and lipid intermediates. Mol. Microbiol., 27:1–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Doumenq, P., Acquaviva, M., Asia, L., Durbec, J.P., Le Dreau, Y., Mille, G., and Bertrand, J.C., 1999, Changes in fatty acids of Pseudomonas nautica, a marine denitrifying bacterium, in response to n-eicosane as carbon source and various culture conditions. FEMS Microbiol. Ecol., 28:151–161.CrossRefGoogle Scholar
  29. 29.
    Dubois-Brissonnet, F., Malgrange, C., Guerin-Mechin, L., Heyd, B., and Leveau, J. Y., 2001, Changes in fatty acid composition of Pseudomonas aeruginosa ATCC 15442 induced by growth conditions: consequences of resistance to quaternary ammonium compounds. Microbios, 106:97–110.PubMedGoogle Scholar
  30. 30.
    Fang, J., Barcelona, M.J., and Alvarez, P.J., 2000, Phospholipid compositional changes of five pseudomonad archetypes grown with and without toluene. Appl. Microbiol. Biotechnol., 54:382–389.PubMedCrossRefGoogle Scholar
  31. 31.
    Fontecave, M., Atta, M., and Mulliez, E., 2004, S-adenosylmethionine: nothing goes to waste. Trends Biochem. Sci., 29:243–249.PubMedCrossRefGoogle Scholar
  32. 32.
    Fouchard, S., Abdellaoui-Maane, Z., Boulanger, A., Llopiz, P., and Neunlist, S., 2005, Influence of growth conditions on Pseudomonas fluorescens strains: a link between metabolite production and the PLFA profile. FEMS Microbiol. Lett., 251:211–218.PubMedCrossRefGoogle Scholar
  33. 33.
    Galla, H.J., and Sackmann, E., 1974, Lateral diffusion in the hydrophobic region of membranes: use of pyrene excimers as optical probes. Biochim. Biophys. Acta, 339:103–115.PubMedCrossRefGoogle Scholar
  34. 34.
    Gao, J.L., Weissenmayer, B., Taylor, A.M., Thomas-Oates, J., Lopez-Lara, I.M., and Geiger, O., 2004, Identification of a gene required for the formation of lyso-ornithine lipid, an intermediate in the biosynthesis of ornithine-containing lipids. Mol. Microbiol., 53:1757–1770.PubMedCrossRefGoogle Scholar
  35. 35.
    Givskov, M., Eberl, L., Moller, S., Poulsen, L.K., and Molin, S., 1994, Responses to nutrient starvation in Pseudomonas putida KT2442: analysis of general cross-protection, cell shape, and macromolecular content. J. Bacteriol., 176:7–14.PubMedGoogle Scholar
  36. 36.
    Golovastov, V.V., Mikhaleva, N.I., Kadyrova, L.Y., and Nesmeyanova, M.A., 2000, The major phospholipid of Escherichia coli, phosphatidylethanolamine, is required for efficient production and secretion of alkaline phosphatase. Biochemistry, 65:1097–1104.PubMedGoogle Scholar
  37. 37.
    Guina, T., Wu, M., Miller, S.I., Purvine, S.O., Yi, E.C., Eng, J., Goodlett, D.R., Aebersold, R., Ernst, R.K., and Lee, K.A., 2003, Proteomic analysis of Pseudomonas aeruginosa grown under magnesium limitation. J. Am. Soc. Mass Spectrom., 14:742–751.PubMedCrossRefGoogle Scholar
  38. 38.
    Halverson, L.J., and Firestone, M.K., 2000, Differential effects of permeating and nonpermeating solutes on the fatty acid composition of Pseudomonas putida. Appl. Environ. Microbiol., 66:2414–2421.PubMedCrossRefGoogle Scholar
  39. 39.
    Haque, M.A., and Russell, N.J., 2004, Strains of Bacillus cereus vary in the phenotypic adaptation of their membrane lipid composition in response to low water activity, reduced temperature and growth in rice starch. Microbiology, 150:1397–1404.PubMedCrossRefGoogle Scholar
  40. 40.
    Hartig, C., Loffhagen, N., and Harms, H., 2005, Formation of trans fatty acids is not involved in growth-linked membrane adaptation of Pseudomonas putida. Appl. Environ. Microbiol., 71:1915–1922.PubMedCrossRefGoogle Scholar
  41. 41.
    Hazel, J.R., and Williams, E.E., 1990, The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Prog. Lipid Res., 29:167–227.PubMedCrossRefGoogle Scholar
  42. 42.
    Heath, R.J., and Rock, C.O., 1996, Roles of the FabA and FabZ beta-hydroxyacyl-acyl carrier protein dehydratases in Escherichia coli fatty acid biosynthesis. J. Biol. Chem., 271:27795–27801.PubMedCrossRefGoogle Scholar
  43. 43.
    Heipieper, H.J., and de Bont, J.A., 1994, Adaptation of Pseudomonas putida S12 to ethanol and toluene at the level of fatty acid composition of membranes. Appl. Environ. Microbiol., 60:4440–4444.PubMedGoogle Scholar
  44. 44.
    Heipieper, H.J., Diefenbach, R., and Keweloh, H., 1992, Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putida P8 from substrate toxicity. Appl. Environ. Microbiol., 58:1847–1852.PubMedGoogle Scholar
  45. 45.
    Heipieper, H.J., Meinhardt, F., and Segura, A., 2003, The cis-trans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio: biochemistry, molecular biology and physiological function of a unique stress adaptive mechanism. FEMS Microbiol. Lett., 229:1–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Heipieper, H.J., Meulenbeld, G., van Oirschot, Q., and de Bont, J., 1996, Effect of environmental factors on the trans/cis ratio of unsaturated fatty acids in Pseudomonas putida S12. Appl. Environ. Microbiol., 62:2773–2777.PubMedGoogle Scholar
  47. 47.
    Hellingwerf, K.J., 2005, Bacterial observations: a rudimentary form of intelligence? Trends Microbiol., 13:152–158.PubMedCrossRefGoogle Scholar
  48. 48.
    Henry, M.F., and Cronan, J.E., Jr., 1992, A new mechanism of transcriptional regulation: release of an activator triggered by small molecule binding. Cell, 70:671–679.PubMedCrossRefGoogle Scholar
  49. 49.
    Hesselsoe, M., Boysen, S., Iversen, N., Jorgensen, L., Murrell, J.C., McDonald, I., Radajewski, S., Thestrup, H., and Roslev, P., 2005, Degradation of organic pollutants by methane grown microbial consortia. Biodegradation, 16:435–448.PubMedCrossRefGoogle Scholar
  50. 50.
    Hoang, T.T., and Schweizer, H.P., 1997, Fatty acid biosynthesis in Pseudomonas aeruginosa: cloning and characterization of the fabAB operon encoding beta-hydroxyacyl-acyl carrier protein dehydratase (FabA) and beta-ketoacyl-acyl carrier protein synthase I (FabB). J. Bacteriol., 179:5326–5332.PubMedGoogle Scholar
  51. 51.
    Holtwick, R., Keweloh, H., and Meinhardt, F., 1999, cis/trans isomerase of unsaturated fatty acids of Pseudomonas putida P8: evidence for a heme protein of the cytochrome c type. Appl. Environ. Microbiol., 65:2644–2649.PubMedGoogle Scholar
  52. 52.
    Hsu, L., Jackowski, S., and Rock, C.O., 1991, Isolation and characterization of Escherichia coli K-12 mutants lacking both 2-acyl-glycerophosphoethanolamine acyltransferase and acyl-acyl carrier protein synthetase activity. J. Biol. Chem., 266:13783–13788.PubMedGoogle Scholar
  53. 53.
    Hurme, R., and Rhen, M., 1998, Temperature sensing in bacterial gene regulation—what it all boils down to. Mol. Microbiol., 30:1–6.PubMedCrossRefGoogle Scholar
  54. 54.
    Inaba, M., Suzuki, I., Szalontai, B., Kanesaki, Y., Los, D.A., Hayashi, H., and Murata, N., 2003, Gene-engineered rigidification of membrane lipids enhances the cold inducibility of gene expression in Synechocystis. J. Biol. Chem., 278:12191–12198.PubMedCrossRefGoogle Scholar
  55. 55.
    Inoue, K., Matsuzaki, H., Matsumoto, K., and Shibuya, I., 1997, Unbalanced membrane phospholipid compositions affect transcriptional expression of certain regulatory genes in Escherichia coli. J. Bacteriol., 179:2872–2878.PubMedGoogle Scholar
  56. 56.
    Iram, S.H., and Cronan, J.E., 2005, Unexpected functional diversity among FadR fatty acid transcriptional regulatory proteins. J. Biol.Chem., 280:32148–32156.PubMedCrossRefGoogle Scholar
  57. 57.
    Junker, F., and Ramos, J.L., 1999, Involvement of the cis/trans isomerase Cti in solvent resistance of Pseudomonas putida DOT-T1E. J. Bacteriol., 181:5693–5700.PubMedGoogle Scholar
  58. 58.
    Kaur, A., Chaudhari, A., Kaur, A., Choudhari, R., and Kaushik, R., 2005, Phospholipid fatty acid—a bioindicator of environment monitoring and assessment in soil ecosystem. Curr. Sci., 89:1103–1112.Google Scholar
  59. 59.
    Kawai, Y., Yano, I., Kaneda, K., and Yabuuchi, E., 1988, Ornithine-containing lipids of some Pseudomonas species. Eur. J. Biochem., 175:633–641.PubMedCrossRefGoogle Scholar
  60. 60.
    Kim, B.H., Kim, S., Kim, H.G., Lee, J., Lee, I.S., and Park, Y.K., 2005, The formation of cyclopropane fatty acids in Salmonella enterica serovar Typhimurium. Microbiology, 151:209–218.PubMedCrossRefGoogle Scholar
  61. 61.
    Kim, I.S., Shim, J.H., and Suh, Y.T., 2002, Changes in membrane fluidity and fatty acid composition of Pseudomonas putida CN-T19 in response to toluene. Biosci. Biotechnol. Biochem., 66:1945–1950.PubMedCrossRefGoogle Scholar
  62. 62.
    Kiran, M.D., Annapoorni, S., Suzuki, I., Murata, N., and Shivaji, S., 2005, Cis–trans isomerase gene in psychrophilic Pseudomonas syringae is constitutively expressed during growth and under conditions of temperature and solvent stress. Extremophiles, 9:117–125.PubMedCrossRefGoogle Scholar
  63. 63.
    Kiran, M.D., Prakash, J.S., Annapoorni, S., Dube, S., Kusano, T., Okuyama, H., Murata, N., and Shivaji, S., 2004, Psychrophilic Pseudomonas syringae requires trans-monounsaturated fatty acid for growth at higher temperature. Extremophiles, 8:401–410.PubMedCrossRefGoogle Scholar
  64. 64.
    Kitamura, E., Nakayama, Y., Matsuzaki, H., Matsumoto, K., and Shibuya, I., 1994, Acidic-phospholipid deficiency represses the flagellar master operon through a novel regulatory region in Escherichia coli. Biosci. Biotechnol. Biochem., 58:2305–2307.PubMedCrossRefGoogle Scholar
  65. 65.
    Klebba, P.E., and Newton, S.M., 1998, Mechanisms of solute transport through outer membrane porins: burning down the house. Curr. Opin. Microbiol., 1:238–247.PubMedCrossRefGoogle Scholar
  66. 66.
    Kulasakara, H., Lee, V., Brencic, A., Liberati, N., Urbach, J., Miyata, S., Lee, D.G., Neely, A.N., Hyodo, M., Hayakawa, Y., Ausubel, F.M., and Lory, S., 2006, Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3¢–5¢)-cyclic-GMP in virulence. Proc. Natl. Acad. Sci. U.S.A., 103:2839–2844.PubMedCrossRefGoogle Scholar
  67. 67.
    Lai, H.C., Soo, P.C., Wei, J.R., Yi, W.C., Liaw, S.J., Horng, Y.T., Lin, S.M., Ho, S.W., Swift, S., and Williams, P., 2005, The RssAB two-component signal transduction system in Serratia marcescens regulates swarming motility and cell envelope architecture in response to exogenous saturated fatty acids. J. Bacteriol., 187:3407–3414.PubMedCrossRefGoogle Scholar
  68. 68.
    Lehtonen, J.Y., and Kinnunen, P.K., 1994, Changes in the lipid dynamics of liposomal membranes induced by poly(ethylene glycol): free volume alterations revealed by inter- and intramolecular excimer-forming phospholipid analogs. Biophys. J., 66:1981–1990.PubMedCrossRefGoogle Scholar
  69. 69.
    Lennarz, W.J., 1966, Lipid metabolism in the bacteria. Adv. Lipid Res., 4:175–225.PubMedGoogle Scholar
  70. 70.
    Liaw, S.J., Lai, H.C., and Wang, W.B., 2004, Modulation of swarming and virulence by fatty acids through the RsbA protein in Proteus mirabilis. Infect. Immun., 72:6836–6845.PubMedCrossRefGoogle Scholar
  71. 71.
    Lin, J., Huang, S., and Zhang, Q., 2002, Outer membrane proteins: key players for bacterial adaptation in host niches. Microbes Infect., 4:325–331.PubMedCrossRefGoogle Scholar
  72. 72.
    Loewen, P.C., and Hengge-Aronis, R., 1994, The role of the sigma factor sigma S (KatF) in bacterial global regulation. Annu. Rev. Microbiol., 48:53–80.PubMedCrossRefGoogle Scholar
  73. 73.
    Loffeld, B., and Keweloh, H., 1996, cis/trans isomerization of unsaturated fatty acids as possible control mechanism of membrane fluidity in Pseudomonas putida P8. Lipids, 31:811–815.PubMedCrossRefGoogle Scholar
  74. 74.
    Loffhagen, N., Hartig, C., and Babel, W., 2004, Pseudomonas putida NCTC 10936 balances membrane fluidity in response to physical and chemical stress by changing the saturation degree and the trans/cis ratio of fatty acids. Biosci. Biotechnol. Biochem., 68:317–323.PubMedCrossRefGoogle Scholar
  75. 75.
    Lopez-Lara, I.M., and Geiger, O., 2001, Novel pathway for phosphatidylcholine biosynthesis in bacteria associated with eukaryotes. J. Biotechnol., 91:211–221.PubMedCrossRefGoogle Scholar
  76. 76.
    Los, D.A., and Murata, N., 2004, Membrane fluidity and its roles in the perception of environmental signals. Biochim. Biophys. Acta 1666:142–157.PubMedGoogle Scholar
  77. 77.
    Los, D.A., and Murata, N., 1998, Structure and expression of fatty acid desaturases. Biochim. Biophys. Acta, 1394:3–15.PubMedGoogle Scholar
  78. 78.
    Macdonald, A.G., 1984, The effects of pressure on the molecular structure and physiological functions of cell membranes. Philos. Trans. R. Soc. Lond., B., Biol. Sci., 304:47–68.PubMedCrossRefGoogle Scholar
  79. 79.
    Mandersloot, J.G., Gerritsen, W.J., Leunissen-Bijvelt, J., van Echteld, C. J., Noordam, P.C., and de Gier, J., 1981, Ca2+-induced changes in the barrier properties of cardiolipin/phosphatidylcholine bilayers. Biochim. Biophys. Acta, 640:106–113.PubMedCrossRefGoogle Scholar
  80. 80.
    Martinez-Bueno, M.A., Tobes, R., Rey, M., and Ramos, J.L., 2002, Detection of multiple extracytoplasmic function (ECF) sigma factors in the genome of Pseudomonas putida KT2440 and their counterparts in Pseudomonas aeruginosa PAO1. Environ. Microbiol., 4:842–855.PubMedCrossRefGoogle Scholar
  81. 81.
    Mazzella, N., Molinet, J., Syakti, A.D., Dodi, A., Bertrand, J.C., and Doumenq, P., 2005, Use of electrospray ionization mass spectrometry for profiling of crude oil effects on the phospholipid molecular species of two marine bacteria. Rapid Commun. Mass Spectrom., 19:3579–3588.PubMedCrossRefGoogle Scholar
  82. 82.
    Miche, L., Belkin, S., Rozen, R., and Balandreau, J., 2003, Rice seedling whole exudates and extracted alkylresorcinols induce stress-response in Escherichia coli biosensors. Environ. Microbiol., 5:403–411.PubMedCrossRefGoogle Scholar
  83. 83.
    Mikami, K., Kanesaki, Y., Suzuki, I., and Murata, N., 2002, The histidine kinase Hik33 perceives osmotic stress and cold stress in Synechocystis sp PCC 6803. Mol. Microbiol., 46:905–915.PubMedCrossRefGoogle Scholar
  84. 84.
    Mikhaleva, N.I., Golovastov, V.V., Zolov, S.N., Bogdanov, M.V., Dowhan, W., and Nesmeyanova, M.A., 2001, Depletion of phosphatidylethanolamine affects secretion of Escherichia coli akaline phosphatase and its transcriptional expression. FEBS Lett., 493:85–90.PubMedCrossRefGoogle Scholar
  85. 85.
    Mileykovskaya, E., and Dowhan, W., 1997, The Cpx two-component signal transduction pathway is activated in Escherichia coli mutant strains lacking phosphatidylethanolamine. J. Bacteriol., 179:1029–1034.PubMedGoogle Scholar
  86. 86.
    Minnikin, D.E., and Abdolrahimzadeh, H., 1974, The replacement of phosphatidylethanolamine and acidic phospholipids by an ornithine-amide lipid and a minor phosphorus-free lipid in Pseudomonas fluorescens NCMB 129. FEBS Lett., 43:257–260.PubMedCrossRefGoogle Scholar
  87. 87.
    Morita, N., Shibahara, A., Yamamoto, K., Shinkai, K., Kajimoto, G., and Okuyama, H., 1993, Evidence for cis-trans isomerization of a double bond in the fatty acids of the psychrophilic bacterium Vibrio sp. strain ABE-1. J. Bacteriol., 175:916–918.PubMedGoogle Scholar
  88. 88.
    Mrozik, A., Piotrowska-Seget, Z., and Labuzek, S., 2004, Changes in whole cell-derived fatty acids induced by naphthalene in bacteria from genus Pseudomonas. Microbiol. Res., 159:87–95.PubMedCrossRefGoogle Scholar
  89. 89.
    Munoz-Rojas, J., Bernal, P., Duque, E., Godoy, P., Segura, A., and Ramos, J.L., 2006, Involvement of cyclopropane fatty acids in the response of Pseudomonas putida KT2440 to freeze-drying. Appl. Environ. Microbiol., 72:472–477.PubMedCrossRefGoogle Scholar
  90. 90.
    Okuyama, H., Sasaki, S., Higashi, S., and Murata, N., 1990, A trans-unsaturated fatty acid in a psychrophilic bacterium, Vibrio sp. strain ABE-1. J. Bacteriol., 172:3515–3518.PubMedGoogle Scholar
  91. 91.
    Paithoonrangsarid, K., Shoumskaya, M.A., Kanesaki, Y., Satoh, S., Tabata, S., Los, D.A., Zinchenko, V.V., Hayashi, H., Tanticharoen, M., Suzuki, I., and Murata, N., 2004, Five histidine kinases perceive osmotic stress and regulate distinct sets of genes in Synechocystis. J. Biol. Chem., 279:53078–53086.PubMedCrossRefGoogle Scholar
  92. 92.
    Park, S.-H., Oh, K.-H., and Kim, C.-K., 2001, Adaptive and cross-protective responses of Pseudomonas sp. DJ-12 to several aromatics and other stress shocks. Curr. Microbiol., 43:176–181.PubMedCrossRefGoogle Scholar
  93. 93.
    Paulsen, I.T., Press, C.M., Ravel, J., Kobayashi, D.Y., Myers, G.S., Mavrodi, D.V., DeBoy, R.T., Seshadri, R., Ren, Q., Madupu, R., Dodson, R.J., Durkin, A.S., Brinkac, L.M., Daugherty, S.C., Sullivan, S.A., Rosovitz, M.J., Gwinn, M.L., Zhou, L., Schneider, D.J., Cartinhour, S.W., Nelson, W.C., Weidman, J., Watkins, K., Tran, K., Khouri, H., Pierson, E.A., Pierson, L.S., III, Thomashow, L.S., and Loper, J.E., 2005, Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat. Biotechnol., 23:873–878.PubMedCrossRefGoogle Scholar
  94. 94.
    Pessi, G., Williams, F., Hindle, Z., Heurlier, K., Holden, M.T., Camara, M., Haas, D., and Williams, P., 2001, The global posttranscriptional regulator RsmA modulates production of virulence determinants and N-acylhomoserine lactones in Pseudomonas aeruginosa. J. Bacteriol., 183:6676–6683.PubMedCrossRefGoogle Scholar
  95. 95.
    Phetsuksiri, B., Jackson, M., Scherman, H., McNeil, M., Besra, G.S., Baulard, A.R., Slayden, R.A., DeBarber, A.E., Barry, C.E., III, Baird, M.S., Crick, D.C., and Brennan, P.J., 2003, Unique mechanism of action of the thiourea drug isoxyl on Mycobacterium tuberculosis. J. Biol. Chem., 278:53123–53130.PubMedCrossRefGoogle Scholar
  96. 96.
    Pinkart, H.C., and White, D.C., 1997, Phospholipid biosynthesis and solvent tolerance in Pseudomonas putida strains. J. Bacteriol., 179:4219–4226.PubMedGoogle Scholar
  97. 97.
    Raetz, C.R., and Dowhan, W., 1990, Biosynthesis and function of phospholipids in Escherichia coli. J. Biol. Chem., 265:1235–1238.PubMedGoogle Scholar
  98. 98.
    Raivio, T.L., 2005, Envelope stress responses and Gram-negative bacterial pathogenesis. Mol. Microbiol., 56:1119–1128.PubMedCrossRefGoogle Scholar
  99. 99.
    Ramos, J.L., Duque, E., Gallegos, M.T., Godoy, P., Ramos-Gonzalez, M.I., Rojas, A., Teran, W., and Segura, A., 2002, Mechanisms of solvent tolerance in gram-negative bacteria. Annu. Rev. Microbiol., 56:743–768.PubMedCrossRefGoogle Scholar
  100. 100.
    Ramos, J.L., Duque, E., Rodriguez-Herva, J.J., Godoy, P., Haidour, A., Reyes, F., and Fernandez-Barrero, A., 1997, Mechanisms for solvent tolerance in bacteria. J. Biol. Chem., 272:3887–3890.PubMedCrossRefGoogle Scholar
  101. 101.
    Ramos, J.L., Gallegos, M.T., Marques, S., Ramos-Gonzalez, M.I., Espinosa-Urgel, M., and Segura, A., 2001, Responses of Gram-negative bacteria to certain environmental stressors. Curr. Opin. Microbiol., 4:166–171.PubMedCrossRefGoogle Scholar
  102. 102.
    Rilfors, L., Lindblom, G., Wieslander, A., and Christiansson, A., 1984, Lipid bilayer stability in biological membranes, pp. 205–245. In M. Kates, and L.A. Manson (eds.), Membrane Fluidity Biomembranes. Plenum Press, New York.Google Scholar
  103. 103.
    Rock, C.O. and Jackowski, S., 1985, Pathways for the incorporation of exogenous fatty acids into phosphatidylethanolamine in Escherichia coli. J. Biol. Chem., 260:12720–12724.PubMedGoogle Scholar
  104. 104.
    Rodrigue, A., Quentin, Y., Lazdunski, A., Mejean, V., and Foglino, M., 2000, Two-component systems in Pseudomonas aeruginosa: why so many? Trends Microbiol., 8:498–504.PubMedCrossRefGoogle Scholar
  105. 105.
    Romling, U., and Amikam, D., 2006, Cyclic di-GMP as a second messenger. Curr. Opin. Microbiol., 9:218–228.PubMedCrossRefGoogle Scholar
  106. 106.
    Rowley, G., Spector, M., Kormanec, J., and Roberts, M., 2006, Pushing the envelope: extracytoplasmic stress responses in bacterial pathogens. Nat. Rev. Microbiol., 4:383–394.PubMedCrossRefGoogle Scholar
  107. 107.
    Ruiz, N., and Silhavy, T.J., 2005, Sensing external stress: watchdogs of the Escherichia coli cell envelope. Curr. Opin. Microbiol., 8:122–126.PubMedCrossRefGoogle Scholar
  108. 108.
    Russel, N.J., 1989, Functions of lipids: structural role in membrane function, pp. 279–365. In C. Ratledge, and S.G. Wilkinson (eds), Microbial lipids. Academic Press, Toronto.Google Scholar
  109. 109.
    Russel, N.J., Evans, R.I., ter Steeg, P.F., Hellemons, J., Verheul, A., and Abee, T., 1995, Membranes as a target for stress adaptation. Int. J. Food Microbiol., 28:255–261.Google Scholar
  110. 110.
    Santos, P.M., Benndorf, D., and Sa-Correia, I., 2004, Insights into Pseudomonas putida KT2440 response to phenol-induced stress by quantitative proteomics. Proteomics, 4:2640–2652.PubMedCrossRefGoogle Scholar
  111. 111.
    Shaw, J.E., Alattia, J.R., Verity, J.E., Prive, G.G., and Yip, C.M., 2006, Mechanisms of antimicrobial peptide action: studies of indolicidin assembly at model membrane interfaces by in situ atomic force microscopy. J. Struct. Biol., 154:42–58.PubMedCrossRefGoogle Scholar
  112. 112.
    Shi, W., Bogdanov, M., Dowhan, W., and Zusman, D.R., 1993, The pss and psd genes are required for motility and chemotaxis in Escherichia coli. J. Bacteriol., 175:7711–7714.PubMedGoogle Scholar
  113. 113.
    Shih, G.C., Kahler, C.M., Swartley, J.S., Rahman, M.M., Coleman, J., Carlson, R. W., and Stephens, D.S., 1999, Multiple lysophosphatidic acid acyltransferases in Neisseria meningitidis. Mol. Microbiol., 32:942–952.PubMedCrossRefGoogle Scholar
  114. 114.
    Sikkema, J., de Bont, J.A., and Poolman, B., 1995, Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Rev., 59:201–222.PubMedGoogle Scholar
  115. 115.
    Sinensky, M., 1974, Homeoviscous adaptation—a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A., 71:522–525.Google Scholar
  116. 116.
    Sohlenkamp, C., Lopez-Lara, I.M., and Geiger, O., 2003, Biosynthesis of phosphatidylcholine in bacteria. Prog. Lipid Res., 42:115–162.PubMedCrossRefGoogle Scholar
  117. 117.
    Soltani, M., Metzger, P., and Largeau, C., 2005, Fatty acid and hydroxy acid adaptation in three gram-negative hydrocarbon-degrading bacteria in relation to carbon source. Lipids, 40:1263–1272.PubMedCrossRefGoogle Scholar
  118. 118.
    Souzu, H., 1986, Fluorescence polarization studies on Escherichia coli membrane stability and its relation to the resistance of the cell to freeze-thawing. I. Membrane stability in cells of differing growth phase. Biochim. Biophys. Acta, 861:353–360.PubMedCrossRefGoogle Scholar
  119. 119.
    Stephen, J.R., Chang, Y.J., Gan, Y.D., Peacock, A., Pfiffner, S.M., Barcelona, M.J., White, D.C., and Macnaughton, S.J., 1999, Microbial characterization of a JP-4 fuel-contaminated site using a combined lipid biomarker/polymerase chain reaction–denaturing gradient gel electrophoresis (PCR-DGGE)-based approach. Environ. Microbiol., 1:231–241.PubMedCrossRefGoogle Scholar
  120. 120.
    Swartley, J.S., Balthazar, J.T., Coleman, J., Shafer, W.M., and Stephens, D.S., 1995, Membrane glycerophospholipid biosynthesis in Neisseria meningitidis and Neisseria gonorrhoeae: identification, characterization, and mutagenesis of a lysophosphatidic acid acyltransferase. Mol. Microbiol., 18:401–412.PubMedCrossRefGoogle Scholar
  121. 121.
    Szalontai, B., Nishiyama, Y., Gombos, Z., and Murata, N., 2000, Membrane dynamics as seen by fourier transform infrared spectroscopy in a cyanobacterium, Synechocystis PCC 6803. The effects of lipid unsaturation and the protein-to-lipid ratio. Biochim. Biophys. Acta, 1509:409–419.PubMedCrossRefGoogle Scholar
  122. 122.
    Taylor, F.R., and Cronan, J.E., Jr., 1979, Cyclopropane fatty acid synthase of Escherichia coli. Stabilization, purification, and interaction with phospholipid vesicles. Biochemistry, 18:3292–3300.PubMedCrossRefGoogle Scholar
  123. 123.
    Timmis, K.N., Steffan, R.J., and Unterman, R., 1994, Designing microorganisms for the treatment of toxic wastes. Annu. Rev. Microbiol., 48:525–557.PubMedCrossRefGoogle Scholar
  124. 124.
    Trevors, J.T., 1983, Effect of pentachlorophenol on the membrane fluidity of Pseudomonas fluorescens. FEMS Microbiol. Lett., 16:331–334.CrossRefGoogle Scholar
  125. 125.
    Trevors, J.T., 2003, Fluorescent probes for bacterial cytoplasmic membrane research. J. Biochem. Biophys. Methods, 57:87–103.PubMedCrossRefGoogle Scholar
  126. 126.
    van de Vossenberg, J.L., Driessen, A.J., Grant, W.D., and Konings, W.N., 1999, Lipid membranes from halophilic and alkali-halophilic Archaea have a low H+ and Na+ permeability at high salt concentration. Extremophiles, 3:253–257.PubMedCrossRefGoogle Scholar
  127. 127.
    Vanounou, S., Pines, D., Pines, E., Parola, A.H., and Fishov, I., 2002, Coexistence of domains with distinct order and polarity in fluid bacterial membranes. Photochem. Photobiol., 76:1–11.PubMedCrossRefGoogle Scholar
  128. 128.
    Venturi, V., 2006, Regulation of quorum sensing in Pseudomonas. FEMS Microbiol. Rev., 30:274–291.PubMedCrossRefGoogle Scholar
  129. 129.
    Villanueva, L., Navarrete, A., Urmeneta, J., White, D.C., and Guerrero, R., 2004, Combined phospholipid biomarker-16S rRNA gene denaturing gradient gel electrophoresis analysis of bacterial diversity and physiological status in an intertidal microbial mat. Appl. Environ. Microbiol., 70:6920–6926.PubMedCrossRefGoogle Scholar
  130. 130.
    Vincent, M., England, L.S., and Trevors, J.T., 2004, Cytoplasmic membrane polarization in Gram-positive and Gram-negative bacteria grown in the absence and presence of tetracycline. Biochim. Biophys. Acta, 1672:131–134.PubMedGoogle Scholar
  131. 131.
    von Wallbrunn, A., Heipieper, H.J. and Meinhardt, F., 2002, Cis/trans isomerisation of unsaturated fatty acids in a cardiolipin synthase knock-out mutant of Pseudomonas putida P8. Appl. Microbiol. Biotechnol., 60:179–185.CrossRefGoogle Scholar
  132. 132.
    von Wallbrunn, A., Richnow, H.H., Neumann, G., Meinhardt, F., and Heipieper, H.J., 2003, Mechanism of cis-trans isomerization of unsaturated fatty acids in Pseudomonas putida. J. Bacteriol., 185:1730–1733.CrossRefGoogle Scholar
  133. 133.
    Waechter-Kristensen, B., Khalil, S., Sundin, P., Englund, J.E., Gertsson, U.E., and Jensen, P., 1996, Study of the microbial dynamics in the root environment of closed, hydroponic cultivation systems for tomato using phospholipid fatty acid profiles. Acta Hortic., 440:193–198.PubMedGoogle Scholar
  134. 134.
    Wang, A.Y., and Cronan, J.E., Jr., 1994, The growth phase-dependent synthesis of cyclopropane fatty acids in Escherichia coli is the result of an RpoS(KatF)-dependent promoter plus enzyme instability. Mol. Microbiol., 11:1009–1017.PubMedCrossRefGoogle Scholar
  135. 135.
    Weber, F.J., and de Bont, J.A., 1996, Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochim. Biophys. Acta, 1286:225–245.PubMedGoogle Scholar
  136. 136.
    Wilderman, P.J., Vasil, A.I., Martin, W.E., Murphy, R.C., and Vasil, M.L., 2002, Pseudomonas aeruginosa synthesizes phosphatidylcholine by use of the phosphatidylcholine synthase pathway. J. Bacteriol., 184:4792–4799.PubMedCrossRefGoogle Scholar
  137. 137.
    Willumeit, R., Kumpugdee, M., Funari, S.S., Lohner, K., Navas, B.P., Brandenburg, K., Linser, S., and Andra, J., 2005, Structural rearrangement of model membranes by the peptide antibiotic NK-2. Biochim. Biophys. Acta, 1669:125–134.PubMedCrossRefGoogle Scholar
  138. 138.
    Zaritsky, A., Parola, A.H., Abdah, M., and Masalha, H., 1985, Homeoviscous adaptation, growth rate, and morphogenesis in bacteria. Biophys. J., 48:337–339.PubMedCrossRefGoogle Scholar
  139. 139.
    Zhang, Y.M., Marrakchi, H., and Rock, C.O., 2002, The FabR (YijC) transcription factor regulates unsaturated fatty acid biosynthesis in Escherichia coli. J. Biol. Chem., 277:15558–15565.PubMedCrossRefGoogle Scholar
  140. 140.
    Zhu, K., Choi, K.H., Schweizer, H.P., Rock, C.O., and Zhang, Y M., 2006, Two aerobic pathways for the formation of unsaturated fatty acids in Pseudomonas aeruginosa. Mol. Microbiol., 60:260–273.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Christine Baysse
    • 1
  • Fergal O'Gara
    • 1
  1. 1.BIOMERIT Research Centre, Microbiology DepartmentNational University of IrelandIreland

Personalised recommendations