Spectral-Like Accuracy in Space of a Meshless Vortex Method

  • L. A. Barba
Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS, volume 5)


The convergence of a meshless vortex method is studied numerically. The method uses core spreading for diffusion and radial basis function interpolation for spatial adaption of the Lagrangian particles. Spectral accuracy in space is observed in the absence of convection error, and second order of convergence is obtained it its presence.

Key words

Vortex method radial basis functions convergence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, M. Knepley, L. Curfman-McInnes, B. F. Smith, and H. Zhang. PETSc User’s Manual. Technical Report ANL-95/11 — Revision 2.1.5, Argonne National Laboratory, 2002.Google Scholar
  2. 2.
    L. A. Barba. Vortex method for computing high-Reynolds number flows: Increased accuracy with a fully mesh-less formulation. PhD Thesis, California Institute of Technology, 2004.Google Scholar
  3. 3.
    L. A. Barba. Discussion: Three-dimensional vortex method for gas-particle two-phase compound round jet (Uchiyama, T., and Fukase, A. 2005 ASME J. Fluids Eng., 127, pp. 32–40). J. Fluids Eng., 128:643–645, May 2006.CrossRefGoogle Scholar
  4. 4.
    L. A. Barba and A. Leonard. Emergence and evolution of tripole vortices from non-shielded initial conditions. Submitted, 2006.Google Scholar
  5. 5.
    L. A. Barba, A. Leonard, and C. B. Allen. Numerical investigations on the accuracy of the vortex method with and without remeshing. AIAA #2003-3426, 16th CFD Conference, Orlando FL, June 2003.Google Scholar
  6. 6.
    L. A. Barba, A. Leonard, and C. B. Allen. Advances in viscous vortex methods-Meshless spatial adaption based on radial basis function interpolation. Int. J. Num. Meth. Fluids, 47(5):387–421, 2005.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    G.-H. Cottet and P. Koumoutsakos. Vortex Methods. Theory and Practice. Cambridge University Press, 2000.Google Scholar
  8. 8.
    P. Degond and S. Mas-Gallic. The weighted particle method for convection-diffusion equations. Part 1. The case of an isotropic viscosity. Math. Comp., 53:485–507, 1989.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    C. Greengard. The core spreading vortex method approximates the wrong equation. J. Comp. Phys., 61:345–348, 1985.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J. Comp. Phys., 73:325–348, 1987.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    P. Koumoutsakos. Inviscid axisymmetrization of an elliptical vortex. J. Comp. Phys., 138:821–857, 1997.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    A. Leonard. Vortex methods for flow simulation. J. Comp. Phys., 37:289–335, 1980.zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    P. J. Roache. Quantification of uncertainty in computational fluid dynamics. Ann. Rev. Fluid Mech., 29:123–160, 1997.CrossRefMathSciNetGoogle Scholar
  14. 14.
    L. Rosenhead. The formation of vortices from a surface of discontinuity. Proc. R. Soc. Lond. A, 134:170–192, 1931.zbMATHCrossRefGoogle Scholar
  15. 15.
    L. F. Rossi. Resurrecting core spreading vortex methods: A new scheme that is both deterministic and convergent. SIAM J. Sci. Comput., 17:370–397, 1996.zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    L. F. Rossi. Achieving high-order convergence rates with deforming basis functions. SIAM J. Sci. Comput., 26(3):885–906, 2005.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    L. F. Rossi, J. F. Lingevitch, and A. J. Bernoff. Quasi-steady monopole and tripole attractors for relaxing vortices. Phys. Fluids, 9:2329–2338, 1997.zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    T. Sarpkaya. Computational methods with vortices. J. Fluids Eng., 11:5–52, 1989.Google Scholar
  19. 19.
    R. Schaback. Improved error bounds for scattered data interpolation by radial basis functions. Math. Comp., 68(225):201–216, 1999.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • L. A. Barba
    • 1
  1. 1.Department of MathematicsUniversity of BristolClifton, BristolUK

Personalised recommendations