“Greener Shade of Ruthenium”: New Concepts of Activation, Immobilization, and Recovery of Ruthenium Catalysts For Green Olefin Metathesis

  • Anna Michrowska
  • Lukasz Gulajski
  • Karol Grela
Conference paper
Part of the NATO Science Series book series (NAII, volume 243)

The results described herewith demonstrate that the activity of ruthenium (Ru) metathesis catalysts can be enhanced by introduction of electron-withdrawing groups (EWGs) without detriment to catalysts stability. This principle can be used not only to increase the catalyst activity, but also to alter its physical–chemical properties, such as solubility in given medium or affinity to silica gel. An example of novel immobilisation strategy, based on this concept is presented. The ammonium-tagged Hoveyda-type catalysts can be successfully applied in aqueous media as well as in ionic liquids (IL). Substitution of a benzylidene fragment can be used not only to immobilize the organometallic complex in such media, but also to increase its catalytic activity by electronic activation. The high stability and good application profiles of such modified catalysts in conjunction with their facile removal from organic products can be expected to offer new opportunities in green applications of olefin metathesis.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    General reviews: (a) Schrock, R.R., Hoveyda, A.H., Angew. Chem. Int. Edit. 2003, 42:4592; (b) Trnka, T.M., Grubbs, R.H., Acc. Chem. Res. 2001, 34:18; (c) Fűrstner, A., Angew. Chem. Int. Edit. 2000, 39:3012; (d) Grubbs, R.H., Chang, S., Tetrahedron 1998, 54:4413; (e) Schuster, M., Blechert, S., Angew. Chem. Int. Edit. 1997, 36:2037; (f) Dragutan, V., Dragutan, I., Balaban, A.T., Platinum Met. Rev. 2001, 45:155.Google Scholar
  2. [2]
    Nicola, T., Brenner, M., Donsbach, K., Kreye, P., Org. Process Res. Dev. 2005, 9:513.CrossRefGoogle Scholar
  3. [3]
    (a) Conrad, J.C., Parnas, H.H., Snelgrove, J.L., Fogg, D.E., J. Am. Chem. Soc. 2005, 127:11882; (b) For example, in a crude untreated product of diethyl diallylmalonate RCM catalyzed by 5 mol % of Grubbs I-generation catalyst the theoretical amount of Ru is 90 mg per 5 mg of product (18,000 ppm). After filtration of the crude reaction mixture, the Ru level was reduced to 59.7 ± 0.50 mg per 5mg (12,000 ppm). Further purification of such crude metathesis products usually reduces ruthenium levels below 2000 ppm, see ibid, and McEleney, K., Allen, D.P., Holliday, A.E., Crudden, C.M, Org. Lett. 2006, 8:2663.Google Scholar
  4. [4]
    Another solution to this problem might be based on the immobilization of a metathesis catalysts in a separate liquid or solid phase. For recent reviews, see: (a) Hoveyda, A.H., Gillingham, D.G., Van Veldhuizen, J.J., Kataoka, O., Garber, S.B., Kingsbury, J.S., Harrity, J.P.A., Org. Biomol. Chem. 2004, 2:1; (b) Buchmeiser, R.M., New, J., Chem. 2004, 28:549. For related systems developed in our laboratories, see: (c) Grela, K., Mennecke, K., Kunz, U., Kirschning, A., Synlett 2005, 2948; (d) Grela, K., Tryznowki, M., Bieniek, M., Tetrahedron Lett. 2002, 43:6425.Google Scholar
  5. [5]
    Boehringer Ingelheim International GmbH, World Pat. WO 2004/ 089974 A1, 2004.Google Scholar
  6. [6]
    Paquette, L.A., Schloss, J.D., Efremov, I., Fabris, F., Gallou, F., Mendez-Andino, J., Yang, J., Org. Lett. 2000, 2:1259.CrossRefGoogle Scholar
  7. [7]
    Ahn, Y.M., Yang, K., Georg, G.I., Org. Lett. 2001, 3:1411.CrossRefGoogle Scholar
  8. [8]
    (a) Maynard, H., Grubbs, R.H., Tetrahedron Lett. 1999, 40:4137; (b) Westhus, M., Gonthier, E., Brohm, D., Breinbauer, R., Tetrahedron Lett. 2004, 45:3141.Google Scholar
  9. [9]
    Cho, J.H., Kim, B.M., Org. Lett. 2003, 5:531.CrossRefGoogle Scholar
  10. [10]
    For a technical data sheet on the application of QuadraPure resins, see: Avecia Pharmaceuticals, http://www.quadrapure.com
  11. [11]
    Complex 7, introduced recently by our group, exhibits catalytic activity comparable to the parent Hoveyda-Grubbs carbene 4, but shows much higher affinity for silica gel when CH2Cl2 is used as eluent, which enables its efficient removal. See: Grela, K., Kim, M., Eur. J. Org. Chem. 2003, 963.Google Scholar
  12. [12]
    Michrowska, A., Gulajski, L., Grela, K., Chem. Commun. 2006, 841.Google Scholar
  13. [13]
    Reviews on polymer-bound reagents and catalysts: (a) Solodenko, W., Frenzel, T., Kirschning, A., in: Buchmeiser, M.R., (ed.), Polymeric Materials in Organic Synthesis and Catalysis, Wiley-VCH, Weinheim, 2003, pp. 201; (b) Clapham, B., Reger, T.S., Janda, K.D., Tetrahedron 2001, 57:4637-4662; (c) Baxendale, I.R., Storer, R.I., Ley, S.V., in: Buchmeiser, M.R., (ed.), Polymeric Materials in Organic Synthesis and Catalysis, Wiley-VCH, Weinheim, 2003, pp. 53; (d) Kirschning, A., Monenschein, H., Wittenberg, R., Angew. Chem., Int. Edit. 2001, 40:650; (e) Ley, S.V., Baxendale, I.R., Bream, R.N., Jackson, P.S., Leach, A.G., Longbottom, D.A., Nesi, M., Scott, J.S., Storer, R.I., Taylor, S.J., J. Chem. Soc., Perkin Trans. 2000, 1:3815; (f) Drewry, D.H., Coe, D.M., Poon, S., Med. Res. Rev. 1999, 19:97.Google Scholar
  14. [14]
    Reviews: (a) Kingsbury, J.S., Hoveyda, A.H., in: Buchmeiser, M.R., (ed.), Polymeric Materials in Organic Synthesis and Catalysis, Wiley-VCH, Weinheim, 2003, p. 467; (b) see [Ref. 4b] .Google Scholar
  15. [15]
    (a) Kingsbury, J.S., Harrity, J.P.A., Bonitatebus, P.J., Hoveyda, A.H., J. Am. Chem. Soc. 1999, 121:791; (b) Garber, S.B., Kingsbury, J.S., Gray, B.L., Hoveyda, A.H., J. Am. Chem. Soc. 2000, 122:8168.Google Scholar
  16. [16]
    (a) For a short review, see Hoveyda, A.H., Gillingham, D.G., Van Veldhuizen, J.J., Kataoka, O., Garber, S.B., Kingsbury, J.S., Harrity, J.P.A., Org. Biomol. Chem. 2004, 2:1.Google Scholar
  17. [17]
    For syntheses of supported variants of 3-4, see inter alia: (a) Kingsbury, J.S., Garber, S.B., Giftos, J.M., Gray, B.L., Okamoto, M.M., Farrer, R.A., Fourkas, J.T., Hoveyda, A.H., Angew. Chem., Int. Edit. 2001, 40:4251; (b) see [Ref. 4d] ; (c) Connon, S.J., Dunne, A.M., Blechert, S., Angew. Chem. Int. Edit. 2002, 41:3835; (d) Dowden, J., Savovic, J. Chem. Commun. 2001, 37; (e) Yao, Q., Angew. Chem., Int. Edit. 2000, 39:3896; (f) Yao, Q., Zhang, Y., Angew. Chem., Int. Edit. 2003, 42:3395; (g) Connon, S.J., Blechert, S., Bioorg. Med. Chem. Lett. 2002, 12:1873; (h) Yao, Q., Zhang, Y., J. Am. Chem. Soc. 2004, 12:74; (i) Yao, Q., Motta, A.R., Tetrahedron Lett. 2004, 45:2447; (j) Yang, L., Mayr, M., Wurst, K., Buchmeiser M.R., Chem. Eur. J. 2004, 10:5761; (k) Krause, J.O., Nuyken, O., Wurst, K., Buchmeiser, M.R., Chem. Eur. J. 2004, 10:777; (l) Krause, J.O., Zarka, M.T., Anders, U., Weberskirch, R., Nuyken, O., Buchmeiser, M.R., Angew. Chem. Int. Edit. 2003, 42:5965; (m) Audic, N., Clavier, H., Mauduit, M., Guillemin, J.C., J. Am. Chem. Soc. 2003, 125:9248; (n) Clavier, H., Audic, N., Mauduit, M., Guillemin, J.C.G., Chem. Commun. 2004, 282.Google Scholar
  18. [18]
    (a) Kirschning, A., Jas, G., Top. Curr. Chem. 2004, 242:209. (b) Jas, G., Kirschning, A., Chem. Eur. J. 2003, 9:5708.(c) Fletcher, P.D.I., Haswell, S.J., Pombo-Villar, E., Warrington, B.H., Watts, P., Wong, S.Y., Zhang, X., Tetrahedron 2002, 58:4735; (d) Kirschning, A., Solodenko, W., Mennecke, K., Chem. Eur. J. 2006, 12:5972.Google Scholar
  19. [19]
    Kunz, U., Leue, S., Stuhlmann, F., Sourkouni-Argirusi, G., Wen, H., Jas, G., Kirschning, A., Eur. J. Org. Chem. 2004, 3601.Google Scholar
  20. [20]
    Grela, K., Harutyunyan, S., Michrowska, A., Angew. Chem. Int. Edit. 2002, 41:4038.CrossRefGoogle Scholar
  21. [21]
    Michrowska, A., Bujok, R., Harutyunyan, S., Sashuk, V., Dolgonos, G., Grela, K., J. Am. Chem. Soc.1. 2004, 126:9318.CrossRefGoogle Scholar
  22. [22]
    Grela, K., Harutyunyan, S., Michrowska, A., in: Roberts, S.M., Whittall, J., Mather, P., McCormack, P., (eds), Catalysts for Fine Chemical Synthesis, Vol. 3, Wiley Interscience, New York, 2004, Chap. 9.1, pp. 169.Google Scholar
  23. [23]
    Bujok, R., Bieniek, M., Masnyk, M., Michrowska, A., Sarosiek, A., Stępowska, H., Arlt, D., Grela, K., J. Org. Chem. 2004, 69:6894.CrossRefGoogle Scholar
  24. [24]
    (-)-Securinine: Honda, T., Namiki, H., Kaneda, K., Mizutani, H., Org. Lett. 2004, 6:87.Google Scholar
  25. [25]
    (+)-Viroallosecurinine: Honda, T., Namiki, H., Watanabe, M., Mizutani, H., Tetrahedron Lett. 2004, 45:5211.Google Scholar
  26. [26]
    An artificial photosynthesis model: Ostrowski, S., Mikus, A., Mol. Diversity 2003, 6:315.Google Scholar
  27. [27]
    For a recent application of 6a in synthesis of hepatitis C antiviral agent, BILN 2061, see: WO 2004/089974 A1, Boehringer Ingelheim International GmbH, 2004.Google Scholar
  28. [28]
    Nicola, T., Brenner, M., Donsbach, K., Kreye, P., Org. Proc. Res. Devel. 2005, 9:513.CrossRefGoogle Scholar
  29. [29]
    A sample of 8 was stored in air (+4°C) for 3 years and after that time TLC analysis showed only minute decomposition. Simply passing out this sample through a Pasteur pipette with silica gel afforded 80% of the regenerated catalyst in analytically pure form.Google Scholar
  30. [30]
    Addition of HBF4(0.025 equiv) to the mixture of 8 (0.025 equiv) and 10 (1 equiv) in CH2Cl2 caused instant color change of the solution from bright green to deep purple, however, no RCM reaction was observed. This suggests that very fast decomposition of 8 occurred after addition of such strong Brønsted acid.Google Scholar
  31. [31]
    Michrowska, A., MSc thesis, Department of Organic Chemistry, Warsaw University of Technology, Warsaw, Poland, 2003.Google Scholar
  32. [32]
    For an example of a catalytically active ruthenium allenylidene complex bearing a Me 2 N group, see Fürstner, A., Liebl, M., Lehmann, C., Piquet, M., Kunz, R., Bruneau, C., Touchard, D., Dixneuf, P.H., Chem. Eur. J. 2000, 6:1847.Google Scholar
  33. [33]
    Kingsbury, J.S., Garber, S.B., Giftos, J.M., Gray, B.L., Okamoto, M.M., Farrer, R.A., Fourkas, J.T., Hoveyda, A.H., Angew. Chem. Int. Edit. 2001, 40:4251.CrossRefGoogle Scholar
  34. [34]
    Mayr, M., Wang, D., Kröll, R., Schuler, N., Prühs, S., Fürstner, A., Buchmeiser, M.R., Adv. Synth. Catal. 2005, 347:484.CrossRefGoogle Scholar
  35. [35]
    Michrowska, A., Mennecke, K., Kunz, U., Kirschning, A., Grela, K., J. Am. Chem. Soc. 2006, 128:13261.CrossRefGoogle Scholar
  36. [36]
    For high-throughput experiments the Radleys 12 Place Heated Carousel Reaction Station (www.radleys.com) was used.
  37. [37]
    Interestingly, in the case of Grubbs catalyst immobilized on polyvinyl pyridine, exclusive C-C double bond isomerization instead of CM was observed for this substrate: [Ref. 48] .Google Scholar
  38. [38]
    Chen, G.W., Kirschning, A., Chem. Eur. J. 2002, 8:2717.Google Scholar
  39. [39]
    Love, J.A., Morgan, J.P., Truka, T.M., Grubbs, R.H., Angew. Chem. Int. Edit. 2002, 41:4035.CrossRefGoogle Scholar
  40. [40]
    For selected applications of 5, see inter alia: (a) Kanemitsu, T., Seeberger, P.H., Org. Lett. 2003, 5:4541; (b) Rai, A.N., Basu, A., Org. Lett. 2004, 6:2861; (c) Aggarwal, V.K., Astle, C.J., Rogers-Evans, M., Org. Lett. 2004, 6:1469; (d) Kulkarni, A.A., Diver, S.T., Org. Lett. 2003, 5:3463; (e) Giessert, A.J., Brazis, N.J., Diver, S.T., Org. Lett. 2003, 5:3819; (f) Chen, B., Sleima, H.F., Macromolecules 2004, 37:5866; (g) Rezvani, A., Bazzi, H.S., Chen, B., Rakotondradany, F., Sleiman, H.F., Inorg. Chem. 2004, 43:5112; (h) Schuehler, D.E., Williams, J.E., Sponsler, M.B., Macromolecules 2004, 37:6255; (i) Parrish, B., Emrick, T., Macromolecules 2004, 37:5863; (j) Hansen, E.C., Lee, D., Org. Lett. 2004, 6:2035.Google Scholar
  41. [41]
    Indeed, this idea has been shown to be powerful for the immobilization of enzymes using nickel NTA-linkers on sepharose for coordinatively trapping enzymes tagged with a His-tag.Google Scholar
  42. [42]
    Recently, Grubbs and coworkers were able to isolate a ruthenium-hydrido complex, formed as a thermal degradation product of catalyst 2 which could be made responsible for double bond migration: Hong, S.H., Day, M.W., Grubbs, R.H., J. Am. Chem. Soc. 2004, 126:7414.Google Scholar
  43. [43]
    For Grubbs-type ruthenium alkylidenes bearing a quarternary ammonium group, see: Lynn, D.M., Mohr, B., Grubbs, R.H., Henling, L.M., Day, M.W., J. Am. Chem. Soc. 2000, 122:6601.Google Scholar
  44. [44]
    Michrowska, A., Gułajski, Ł., Kaczmarska, Z., Mennecke, K., Kirschning, A., Grela, K., Green Chem. 2006, 685.Google Scholar
  45. [45]
    For a review on supported variants of 4, see: (a) Garber, S.B., Kingsbury, J.S., Gray, B.L., Hoveyda, A.H., J. Am. Chem. Soc. 2000, 122:8168; (b) See [Ref. 4b] .Google Scholar
  46. [46]
    Wasserscheid, P., Welton, T., Ionic Liquids in Synthesis, 1 edn., Wiley-VHC, Weinheim, 2003.Google Scholar
  47. [47]
    For recent reviews on ionic liquids, see: (a) Welton, T., Chem. Rev. 1999, 99:2071; (b) Holbrey, J.D., Seddon, K.R., Clean Prod. Process. 1999, 1:223; (c) Sheldon, R., Chem. Commun. 2001, 2399; (d) Olivier-Bourgbigou, H., Mogna, L., J. Mol. Catal. A: Chem. 2002, 182-183, 419; (e) Wasserscheid, P., Keim, W., Angew. Chem. Int. Edit. 2000, 39:3772; (f) Dupont, J., De Souza, R.F., Suarez, P.A., Chem. Rev. 2002, 102:3667; (g) Jain, N., Kumar, A., Chauhan, S., Chauban, S.M.S., Tetrahedron 2005, 55:1015.Google Scholar
  48. [48]
    (a) Clavier; H., Audic, N., Mauduit, M., Guillemin, J.C., Chem. Commun. 2004, 2282; (b) Clavier, H., Audic, N., Mauduit, M., Guillemin, J.C., J. Organomet. Chem. 2005, 690:3585; (c) Yao. Q.J., J. Organomet. Chem. 2005, 690:3577.Google Scholar
  49. [49]
    Rix, D., Clavier, H., Coutard, Y., Gulajski, L., Grela, K., Mauduita, M., J. Organomet. Chem., 2006, 691:5397.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Anna Michrowska
    • 1
  • Lukasz Gulajski
    • 1
  • Karol Grela
    • 1
  1. 1.Polish Academy of SciencesInstitute of Organic ChemistryPoland

Personalised recommendations