A Review of Resurgence and Replacement Causing Pest Outbreaks in IPM
- 35 Citations
- 30 Mentions
- 1.9k Downloads
Abstract
Insect and mite pest resurgence occurs when an insecticide or acaricide treatment destroys the pest population and kills, repels, irritates or otherwise deters the natural enemies of the pest. The residual activity of the insecticide then expires and the pest population is able to increase more rapidly and to a higher abundance when natural enemies are absent or in low abundance. Replacement of a primary pest with a secondary pest occurs when an insecticide or acaricide treatment controls the primary pest and also destroys natural enemies of an injurious insect or mite that was regulated below an economic injury level by the natural enemies, thus, elevating the secondary pest to primary pest status. Disruption of natural controls is not always the cause of resurgence or replacement events. A dose-response phenomenon called hormesis can occur in pest populations exposed to sublethal doses of pesticides. This can cause an increase in fecundity (physiological hormoligosis) or oviposition behaviour (behavioural hormoligosis of the pest leading to a significant increase in its abundance. Selective insecticides and acaricides coupled with natural enemies and host plant resistance have become the alternative methods more commonly used by growers that encounter these problems. The purpose of this chapter is to review pesticide-induced resurgence and replacement in modern cropping systems and methods for measuring and resolving these problems.
Keywords
Natural Enemy Spider Mite Predatory Mite Pest Population Green Peach AphidPreview
Unable to display preview. Download preview PDF.
References
- Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18, 265-267.Google Scholar
- Abdullah, N. M. M., Singh, J., & Sohal, B. S. (2006). Behavioral hormoligsis in oviposition preferences of Bemisia tabaci on cotton. Pesticide Biochemistry and Physiology, 84, 10-16.CrossRefGoogle Scholar
- Albers, C. E. (2002). Laboratory evaluation of the toxicity of four fungicides used to control Uncinula necator on the spider mite predator Metaseiulus occidentalis. PhD dissertation. Horticulture and Crop Science Department, California Polytechnic State University, 42 pp.Google Scholar
- Alonso, R. J. C. (2005). Contributions toward the integrated pest management of diamondback moth, Plutella xylostella (L.), on collards in Virginia. PhD dissertation. Entomology Department., Virginia Polytechnic Institute and State University, Blackburg, VA, USA, 93 pp.Google Scholar
- Bagwell, R. D. (2005). Louisiana cotton insect report. Louisiana State Univ. AgCenter Report, 10, 2.Google Scholar
- Ball, H. J., & Su, P. P. (1979). Effect of sublethal dosages of carbofuran and carbaryl on fecundity and longevity of female western corn rootworm. Journal of Economic Entomology, 72, 873-876.Google Scholar
- Barbosa, P., & Schultz, J. C. (1987). Insect outbreaks. Academic Press. NY. 578 pp.Google Scholar
- Barbosa, P. (1997). Conservation biological control. Academic Press. NY 396 pp.Google Scholar
- Berry, R. E. (1998). Insects and Mites of Economic Importance in the Northwestern. 2nd Ed. Oregon State University Book Stores, Inc., Corvalis, OR, USA.Google Scholar
- Braun, A. R., Bellotti, A. C., Guerrero, J. M. & Wilson, L. T. (1989). Effect of predator exclusion on cassava infested with tetranychid mites (Acari: Tetranychidae). Environmental Entomology, 18, 711-714.Google Scholar
- Breth, D., & Nyrop, J. P. (1998). A Guide for Integrated Mite Control in Apples in the Northeast. Cornell University IPM Publication. No. 215.Google Scholar
- Calabrese, E. J., & Baldwin, L. A. (2003). Hormesis: the dose-response revolution. Annual Reviews of Pharmocology and Toxicology, 43, 175-197.CrossRefGoogle Scholar
- Calabrese, E. J., Baldwin, L. A., & Holland C. D. (1999). Hormesis: a highly generalizable and reproducible phenomenon with important implications for risk assessment. Risk Analysis, 19, 261-281.PubMedGoogle Scholar
- Carroll, D. P., & Hoyt, S. C. (1984). Natural enemies and their effects on apple aphid, Aphis pomi DeGeer (Homoptera: Aphididae), colonies on young apple trees in central Washington. Environmental Entomology, 13, 469-481.Google Scholar
- Chelliah, S., Fabellar., L. T., & Heinrichs, E. A. (1980). Effect of sub-lethal doses of three insecticidesd on the reproductive rates of the brown planthopper, Nilaparvata lugens, on rice. Environmental Entomology, 9, 778-780.Google Scholar
- Chelliah, S., & Heinrichs, E. A. (1980). Factors affecting insecticide-induced resurgence of the brown planthopper Nilparvata lugens, on rice. Environmental Entomology, 9, 773-777.Google Scholar
- Croft, B. A. (1990). Arthropod Biological Control Agents and Pesticides. John Wiley and Sons, New York, New York, USA.Google Scholar
- Cuthbertson, A. G. S., Bell, A. C., & Murchie, A. K. (2003). Impact of the predatory mite Anystis baccarum (Prostigmata: Anystidae) on apple rust mite Aculus schlechtendali (Prostigmata: Eriophyidae) populations in Northern Ireland Bramley orchards. Annals of Applied Biology, 142, 107-114.CrossRefGoogle Scholar
- Dempster, J. P. (1983). The natural control of populations of butterflies and moths. Biological Reviews, 58, 461-481.CrossRefGoogle Scholar
- Denmark, H. A. (2000). Cyclamen mite, Phytonemus pallidus (Banks). Florida Department of Agriculture and Consumer Services, Division of Plant Industry, Florida Department of Agriculture, Entomology Circular 25, 177 and 306. Available online: http://creatures.ifas.ufl.eduGoogle Scholar
- Dittrich, V., Streibert, P., & Bathe, P. A. (1974). An old case reopened: mite stimulation by insecticide residues. Environmental Entomology, 3, 534-540.Google Scholar
- Dufour, R. (2001). Biointensive integrated pest management. National Centre Appropriate Technology. University of Arkansas. Available online: http://www.attra.ncat.org/attra-pub/ipm.html .Google Scholar
- Dutcher, J. D. (1983). Carbaryl and aphid resurgence in pecan orchards. Journal of the Georgia Entomological Society, 18, 492-495.Google Scholar
- Dutcher, J. D. (1993). Recent examples of conservation of arthropod natural enemies in agriculture. In Lumsden, R. D., & Vaughan, J. L. (Eds). Pest management: biologically based technologies. American Chemical Society Conference Proceedings Series, 18, 101-108.Google Scholar
- Dutcher, J. D. (2004). Habitiat manipulation for enhancement of aphidophagous insects in pecan orchards. International Journal of Ecology and Environmental Science, 30, 13-22.Google Scholar
- Dutcher, J. D. (2007). Impact of predatory mite releases on the abundance of pecan leaf scorch mite. Journal of Entomological Sciences, 42 (in press).Google Scholar
- Dutcher, J. D., & Heyerdahl, R. (1988). Parasitic hymenoptera of four species of lepidopteran leafminers of pecan. In: Gupta, V. K. (Ed.). Advances in Parasitic Hymernoptera. E. J. Brill New York, New York, USA, 445-458.Google Scholar
- Dutcher, J. D., Worley, R. E., Daniell, J. W., Moss, R. B., & Harrison, K. F. (1984). Impact of six insecticide-based arthropod pest management strategies on pecan yield, quality, and return bloom under four irrigation/soil-fertility regimes. Environmental Entomology, 13, 1644-1653.Google Scholar
- Ferguson, K. I., & Stiling, P. (1996). Non-additive effects of multiple natural enemies on aphid populations. Oecologia, 108, 375-379.Google Scholar
- Gerson, U., & Cohen, E. (1989). Resurgence of spider mites (Acari: Tetranychidae) induced by synthetic pyrethroids. Experimental and Applied Acarology, 6, 29-46.CrossRefGoogle Scholar
- Grafton-Cardwell, E. E., Godfret, L. D., Chaney, W. E., & Bentley, W. J. (2005). Various novel insecticides are less toxic to humans, more specific to key pests. California Agriculture, 59, 29-34CrossRefGoogle Scholar
- Hajek, A. E. (2004). Natural enemies: an introduction to biological control. Cambridge University Press. Cambridge, UK.CrossRefGoogle Scholar
- Hardin, M. R., Benrey, B., Coli, M., Lamp, W. O., Roderick, G. K., & Barbosa, P. (1995). Arthropod pest resurgence: an overview of potential mechanisms. Crop Protection, 14, 3-18.CrossRefGoogle Scholar
- Hardman, J. M., Herbert, H. J., Sanford, K. H, & Hamilton, D. (1985). Effects of populations of the European red mite, Panonychus ulmi, on the apple variety Red Delicious in Nova Scotia. Canadian Entomologist, 117, 1257-1265.CrossRefGoogle Scholar
- Henderson, C. F., & Tilton, E. W. (1955). Tests with acaricides against wheat mites. Journal of Economic Entomology, 48, 157-161.Google Scholar
- Heyerdahl, R., & Dutcher, J. D. (1985). Management of the pecan serpentine leafminer. Journal of Economic Entomology, 78, 1121-1124.Google Scholar
- Holland, J. M., Chapman, R. B., & Penman, D. R. (1994). Effects of fluvalinate on two-spotted spider mite dispersal, fecundity and feeding. Entomologia Experimenta Applicata, 71, 145-153.CrossRefGoogle Scholar
- Holt, K. M., Opit, G. P., Nechols, J. R. & Margolies, D. C. (2006). Testing for non-target effects of spinosad twospotted spider mite and their predator, Phytoseiulus persimilis, under greenhouse conditions. Experimental and Applied Acarology, 38, 141-149.PubMedCrossRefGoogle Scholar
- Horton, D., Bellinger, B., Pettis, G. V., Brannen, P. M., & Mitchum, W. E.. (2005). Pest management strategic plan for eastern peaches. USDA-ARS/CSREES, 75 pp. Available online: www.ipmcenters.orgGoogle Scholar
- Howitt, A. J. (1993). Common Tree Fruit Pests. Michigan State University Extension Service. East Lansing, MI, USAGoogle Scholar
- Hudson, W. G. & Pettis, G. V. (2005). Pest management strategic plan for pecan in the southeastern United States. USDA-ARS/CSREES, 39 pp. Available online: www.ipmcenters.orgGoogle Scholar
- Hueck, H. J. (1953). The Population Dynamics of the Fruit Tree Red Spider. Proeschr. Rijksuniv., Leiden, The Netherlands, 148 pp.Google Scholar
- Hueck, H. J., Kuenen, D. J., Den Boer, P. J., & Jaeger-Draafsel, E. (1952). The increase of egg production of the fruit tree red spider mite (Metatetranychus ulmi Koch) under influence of DDT. Physiologia Comparata et Oecologia, 2, 371-377.Google Scholar
- Hurej, M., & Dutcher, J. D. (1994a). Effect of esfenvalerate and disulfoton on the behavior of the blackmargined aphid, black pecan aphid, and yellow pecan aphid (Homoptera: Aphididae). Journal of Economic Entomology, 87, 187-192.Google Scholar
- Hurej, M.., & Dutcher, J. D. (1994b). Indirect effect of insecticides on convergent lady beetle (Coleoptera: Coccinellidae) in pecan orchards. Journal of Economic Entomology, 87, 1632-1635.Google Scholar
- James, D. G., & Price T. S. (2002). Imidacloprid boosts TSSM egg production. Agricultural and Environmental News,189, 1-11. Available online: http://aenews.wsu.eduGoogle Scholar
- Johnson, E. F., Laing J. E., & Trottier, R. (1976). The seasonal occurrence of Lithocolletis blancardella (Gracillariidae) and its major natural enemies enemies in Ontario apple orchards. Proceedings of the Entomological Society of Canada, 107, 31-45.Google Scholar
- Kaakeh, W., & Dutcher, J. D. (1992). Estimation of life parameters of Monelliopsis pecanis, Monellia caryella, and Melanocallis caryaefoliae (Homoptera: Aphididae) on single pecan leaflets. Environmental Entomology, 21, 632-639.Google Scholar
- Kerns, D. L., & Stewart, S. D. (1999). Sublethal effects of insecticides on the intrinsic rate of increase of cotton aphid. Entomologia Experimentalis et Applicata, 94, 41-49.CrossRefGoogle Scholar
- Koch, R. L. (2003). The multicoloured Asian lady beetle Harmonia axyridis: A review of its biology, uses in biological control, and non-target impacts. Journal of Insect Science, 3, 32PubMedCentralPubMedGoogle Scholar
- Kuenen, D. J. (1958). Influence of sublethal doses of DDT upon multiplication rate of Sitophilus granarius (Coleoptera: Curculionidae). Entomologia Experimentalis et Applicata, 1, 147-152.CrossRefGoogle Scholar
- Lim, G. S., Sivapragasam, A., & Ruwaida, M. (1986). Impact assessment of Apanteles plutellae on diamondback moth using an insecticide-check method. Paper 19, in: Talekar, N. S. (Ed.). Diamondback Moth Management: Proceedings 1st International Workshop. AVRDC, Taiwan, 194-204.Google Scholar
- Lowery, D. T., & Sears, M. K. (1986a). Effect of exposure to the insecticide azinphomethyl on reproduction of green peach aphid (Homoptera: Aphididae). Journal of Economic Entomology, 79, 1534-1538.Google Scholar
- Lowery, D. T., & Sears, M. K. (1986b). Stimulation of reproduction of the green peach aphid (Homoptera: Aphididae) by azinphosmethyl applied to potatoes. Journal of Economic Entomology,9, 1530-1533.Google Scholar
- Luck, R. F., Van den Bosch, R. & Garcia, R. (1977). Chemical insect control - a troubled pest management strategy. BioScience 27, 606-611.CrossRefGoogle Scholar
- Luck, R. F., Shepard, B. M., & Kenmore, P. E. (1988). Experimental methods for evaluating arthropod natural enemies. Annual Reviews of Entomology, 33, 367-389.CrossRefGoogle Scholar
- Luckey, T. D. (1968). Insect hormoligosis. Journal of Economic Entomology, 61, 7-12.PubMedGoogle Scholar
- Margolies, D. C., & Kennedy, G. G. (1988). Fenvalerate-induced aerial dispersal by the twospotted spider mite. Entomologia Experimentalis et Applicata, 46, 233-240.CrossRefGoogle Scholar
- Messing, R. H., & AliNiazee, M. T. (1985). Natural enemies of Myzocallis coryli (Homoptera: Aphididae) in Oregon hazelnut orchards. Journal of the Entomological Society of British Columbia, 82, 14-18.Google Scholar
- Mitchell, E. R., Hu, G. Y., & Okine, J. S. (1997). Diamondback moth (Lepidoptera: Plutellidae) infestation and parasitism by Diadegma insulare (Hymenoptera: Ichneumonide) in collards and adjacent cabbage fields. Florida Entomologist, 80, 54-63.CrossRefGoogle Scholar
- Morse, J. G., & Zareh., N. (1991). Pesticide-induced hormoligosis of citrus thrips (Thysanoptera: Thripidae) fecundity. Journal of Economic Entomology 84, 1169-1174.Google Scholar
- Muckenfuss, A. E., Shepard, B. M. & Ferrer, E. R. (1992). Natural mortality of diamondback moth in coastal South Carolina. Paper 2. p 28-37 In:Talekar, N. S. (Ed.). Diamondback Moth Management: Proc. 2nd Inernational Workshop. AVRDC, Taiwan.Google Scholar
- Norris, R. F., Caswell-Chen, E. P., & Kogan, M. (2002). Concepts in Integrated Pest Management. Prentice Hall, Upper Saddle River, NJ.Google Scholar
- Ooi, P. A. C. (1992). Role of parasitoids in managing diamondback moth in the Cameroon Highlands, Malaysia. Paper 28: p. 255-262 In: Talekar, N. S. (Ed.) Diamondback Moth Management: Proceedings 2nd International Workshop, AVRDC, Taiwan.Google Scholar
- Pedigo, L. P., & Rice M. E. (2006). Entomology and Pest Management. 5th Ed. Pearson, Prentice Hall, Upper Saddle River, NJ.Google Scholar
- Peña, J. E., Mohyuddin, A. I., & Wysoki, M. (1998). A review of the pest management situation in mango agroecosystems. Phytoparasitica, 26, 1-20.CrossRefGoogle Scholar
- Penman, D. R., & Chapman, R. B.. (1988). Pesticide-induced mite outbreaks: pyrethroids and spider mites. Experimental and Applied Acarology, 4, 265-276.CrossRefGoogle Scholar
- Penman, D. R., Chapman, R. B., & Jesson, K. E. (1981). Effects of fenvalerate and azinphosmethyl on two-spotted spider mite and phytoseiid mites. Entomologia Experimentia Applicata, 30, 91-97.CrossRefGoogle Scholar
- Perkins, J. H. (1982). Insects, Experts and the Insecticide Crisis: The Quest for New Pest Management Strategies. Plenum Press. New York, New York.CrossRefGoogle Scholar
- Pickering, J., Dutcher, J. D., & Ekbom, B. A. (1990). The effect of a fungicide on fungal-induced mortality of pecan aphids (Homoptera: Aphididae) in the field. Journal of Economic Entomology, 83, 1801-1805Google Scholar
- Pickett, C. H., & Bugg, R. L. (1998). Enhancing Biological Control: Habitat Management to Promote Natural Enemies of Agricultural Pests. University of California Press.Google Scholar
- Pottinger, R. P., & LeRoux, E. J. (1971). The biology and dynamics of Lithocolletis blancardella (Lepidoptera: Gracillariidae) on apple in Quebec. Memoirs of the Entomological Society of Canada, 77, 437.Google Scholar
- Rebek, E. J., & Sadof, C. S. (2003). Effects of pesticide applications on the euonymus scale (Homoptera: Diaspididae) and its parasitoid, Encarsia citrina (Hymenoptera: Aphelinidae). Journal of Economic Entomology, 96, 446-452.PubMedCrossRefGoogle Scholar
- Ripper, W. E. 1956. Effect of pesticides on the balance of arthropod populations. Annual Reviews of Entomology, 1, 403-438.CrossRefGoogle Scholar
- Rocha-Peña, M. A., Lee, R. F., Lastra, R., Niblett, C. L., Ochoa-orona, F. M, Garnsey S. M., et al. (1995). Citrus tristeza virus and its aphid vector Toxoptera citricida: threats to citrus production in the caribbean and central and North America. Plant Disease, 79, 437-445CrossRefGoogle Scholar
- Rosenheim, J. A., Limburg, D. D., & Colfer, R. G. (1999). Impact of generalist predators on a biological control agent, Chrysoperla carnea: direct observations. Ecological Applications, 9, 409-417.CrossRefGoogle Scholar
- Ruberson, J. R., & Knutson, A. (2006). Assessment of environmental toxicology to arthropod natural enemies. Chpt. 13 pp. 106-108. In All, J. N. & Treacy, M. F. (Eds). Use and Management of Insecticides, Acaricides, and Transgenic Crops. Entomological Society of America Handbook Series.Saito, T. (2004). Insecticide susceptibility of the leafminer, Chromatomyia hoticola (Goureau) (Diptera: Agromyzidae). Applied Entomology and Zoology, 39, 203-208.Google Scholar
- Saito, T. (2004). Insecticide susceptibility of the leafminer, Chromatomyia hoticola (Goureau) (Diptera: Agromyzidae). Applied Entomology and Zoology, 39, 203-208.CrossRefGoogle Scholar
- Sandhu, S. S., Chander, P., Sigh, J., & Sidhu, A. S. (1989). Effect of insecticidal sprays on the plant and secondary pest inductions in hirsutum cotton in Punjab. Agriculture, Ecosystems and Environment, 19, 169-76.CrossRefGoogle Scholar
- Settle, W. H., Ariawan, H., Astuti, E. T., Cahyana, W., Hakim, A. L., Hindayana, D., et al. (1996). Managing tropical rice pests through conservation of generalist natural enemies and alternate prey. Ecology, 77, 1975-1988.CrossRefGoogle Scholar
- Skirvin, D. J. & Fenlon, J. S. (2003). The effect of temperature on the functional response of Phytoseiulus persimilis (Acari: Phytoseiidae). Experimental Applied Acarology, 31, 37-49.PubMedCrossRefGoogle Scholar
- Stevensson, D. E. & M. A. Matocha. 2005. A pest management strategic plan for cotton production in Texas. USDA-ARS/CSREES, 131 pp. Available online: www.ipmcenters.org Thistlewood, H. M. A. (1991). A survey of predatory mites in Ontario apple orchards with diverse pesticide programs. Canadian Entomologist, 123, 1163-1174.Google Scholar
- Thomas, M. P. (1999). Ecological Approaches and the Development of "Truly Integrated’’ Pest Management. Colloquim Paper, National Academy of Sciences.Google Scholar
- Thomas, M. B., & Waage, J. K. (1996). Integration of Biological Control and Host Plant Resistance Breeding: A Scientific and Literature Review. Technology Centre for Agricultural and Rural Cooperation. European Union, Wageningen, The Netherlands.Google Scholar
- Trichilo, P. J., & Wilson, L. T.. (1993). An ecosystem analysis of spider mite outbreaks: physiological stimulation or natural enemy suppression. Entomologia Experimentia Applicata, 17, 291-314.Google Scholar
- Trumper, E. V., & Holt, J. (1998). Modelling pest population resurgence due to recolonization of fields following an insecticide application. Journal of Applied Ecology, 35, 273-285CrossRefGoogle Scholar
- USDA-ARS/CSREES. (2000). Pest management in the future - a strategic plan for the Michigan carrot industry, 69 pp. Available online: www.ipmcenters.orgGoogle Scholar
- USDA-ARS/CSREES. (2002a). New Jersey peach pest management strategic plan. 50 p. Available online: www.ipmcenters.orgGoogle Scholar
- USDA-ARS/CSREES. (2002b). Pest management strategic plan for North Carolina / Virginia peanuts. 69 p. Available online: www.ipmcenters.orgGoogle Scholar
- USDA-ARS/CSREES. (2002c). Cranberry pest management strategic plan. 57 pp. Available online: www.ipmcenters.org.Google Scholar
- USDA-ARS/CSREES. (2003a). A pest management strategic plan for avocado in California. 45 p. Available online: www.ipmcenters.org.Google Scholar
- USDA-ARS/CSREES. (2003b). Sweet corn pest management strategic plan (north central states). 81 p. Available online: www.ipmcenters.org.Google Scholar
- USDA-ARS/CSREES. (2003c). Field corn pest management strategic plan north central region. USDA-ARS/CSREES 84 pp. Available online: www.ipmcenters.org.Google Scholar
- Van den Bosch, R., Hom, R., Matteson, P., Frazier, B. D., Messenger, P. S., & Davis, C. S. (1979). Biological control of walnut aphid in California: impact of the parasite, Trioxys pallidus. Hilgardia, 47, 1-13.Google Scholar
- Villanueva-Jiménez, J. A., Hoy, M. A. & Davies, F. S. (1998). Field evaluation of integrated pest management-compatible pesticides for the citrus leafminer Phyllocnistis citrella (Lepidoptera: Gracillariidae) and its parasitoid Ageniaspis citricola (Hymenoptera: Encyrtidae). Journal of Economic Entomology, 91, 401-409Google Scholar
- Weintraub, P. G., & Horowitz, A.R. (1995). The newest leafminer pest in Israel, Liriomyza huidobrensis. Phytoparasitica, 23, 177-184.CrossRefGoogle Scholar
- Widiarta, I. N., Matsumura, M., Suzuki, Y. & Nakasuji, F. (2001). Effects of sublethal doses of imidacloprid on the fecundity of green leafhoppers, Nephotettix spp. (Hemiptera: Cicadellidae) and their natural enemies. Applied Entomology and Zoology, 36, 501-507.CrossRefGoogle Scholar
- Wong, S. W., & Chapman, R. B. (1979). Toxicity of synthetic pyrethroids to predaceous mites and their prey. Australian Journal of Agricultural Research, 30, 487-501.CrossRefGoogle Scholar
- Zalom, F. G., Phillips, P. A., Toscano, N. C., & Boldsa, M. (2005). Cyclamen mite. University of California Agriculture and Natural Resources, Publication 3468.Google Scholar