He Conductivity in Cool White Dwarf Atmospheres

  • S. Mazevet
  • M. Challacombe
  • D. Saumon
  • P. M. Kowalski
Conference paper


We investigate the conductivity of warm dense helium under conditions found in the atmospheres of cool white dwarfs using ab initio simulations. The calculations performed consist of quantum molecular dynamics simulations where the electronic wavefunction at each time step is obtained using density functional theory, while the ion trajectories are calculated using the resulting quantum mechanical forces. We use both conventional DFT (PW91) and hybrid (PBE0) functionals to calculate the conductivities that provide an estimate of the ionization fraction. While the calculations are in good agreement with the measurements for the equation of state, a significant discrepancy exists with the recently measured conductivity.


Atomic processes Dense matter Equation of state Plasmas Radiation mechanisms: general 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blochl, P.E.: Phys. Rev. B 50, 17953 (1994); Kresse, G., Joubert, J.: Phys. Rev. B 59, 1758 (1999)CrossRefADSGoogle Scholar
  2. Cellier, P., Loubeyre, P.: Private CommunicationGoogle Scholar
  3. Challacombe, M., Tymczak, C.J., Nemeth, K., Weber, V., Gan, C.K., Schwegler, E., Henkelman, G., Niklasson, A.: Los Alamos National Laboratory, LA-CC-04-086Google Scholar
  4. Callaway, J.: Quantum theory of the solid state. Academic Press New York (1974)Google Scholar
  5. Desjarlais, M.P.: Phys. Rev. B 68, 064204 (2003)CrossRefADSGoogle Scholar
  6. Fontaine, G., Brassard, P., Bergeron, P.: PASP 113, 409 (2001)CrossRefADSGoogle Scholar
  7. Fontaine, G., Graboske, H.C., Van Horn, H.M.: ApJS 35 (1977)Google Scholar
  8. Fortov, V. et al.: JETP 97, 259 (2003)CrossRefADSGoogle Scholar
  9. Harrison, W.A.: Solid state theory. Mc Graw-Hill (1970)Google Scholar
  10. Hedin, L.: Phys. Rev. 139, A796 (1965)CrossRefADSGoogle Scholar
  11. Iglesias, C.A., Rogers, F.J., Saumon, D.: Astrophysical Journal Letter, 569, L111 (2002)CrossRefADSGoogle Scholar
  12. Kresse, G., Hafner, J.: Phys. Rev. B 47, RC558 (1993); Kresse, G., Furthmüller, J.: Comput. Mat. Sci. 6, 15–50 (1996); Kresse, G., Furthmüller, J.: Phys. Rev. B 54, 111CrossRefADSGoogle Scholar
  13. Kress, J.D., Mazevet, S., Collins, L.A., Wood, W.W.: Phys. Rev. B 63, 024203 (2001)CrossRefADSGoogle Scholar
  14. Mermin, N.D.: Phys. Rev. 137A, 1441 (1965)CrossRefMathSciNetADSGoogle Scholar
  15. Mazevet, S., Kress, J., Collins, L.A.: Atomic Processes in Plasmas, AIP 730, 139 (2004)Google Scholar
  16. Martin, R.M.: Electronic structure. Cambridge University Press, (2004)Google Scholar
  17. Nellis, W.J.: et al., Phys. Rev. Lett. 53, 1248 (1984)CrossRefADSGoogle Scholar
  18. Onida, G., Reining, L., Rubio, A.: Rev. Mod. Phys. 74, 601 (2002)CrossRefADSGoogle Scholar
  19. Perdew, J.P., Wang, Y.: Phys. Rev. B 46, 12947 (1992)CrossRefADSGoogle Scholar
  20. Perdew, J.P., Burke, K., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865 (1996)CrossRefADSGoogle Scholar
  21. Perdew, J.P., Ernzerhof, M., Burke, K.: J. Chem. Phys. 105, 9982 (1996)CrossRefADSGoogle Scholar
  22. Saumon, D., Chabrier, G., Van Horn, H.M.: Astrophysical Journal Supplement Series, 99, 713–41 (1995)CrossRefADSGoogle Scholar
  23. Young, D.A., McMahan, A.K., Ross, M.: Phys. Rev. B 24, 5119 (1981)CrossRefADSGoogle Scholar
  24. Zeldovich, Ya., Raizer, Yu.: Physics of shock waves and high-temperature hydrodynamic phenomena (Academic Press, New York, 1966)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • S. Mazevet
    • 1
  • M. Challacombe
    • 1
  • D. Saumon
    • 1
    • 2
  • P. M. Kowalski
    • 2
  1. 1.Theoretical DivisionLos Alamos National LaboratoryLos AlamosUSA
  2. 2.Applied Physics DivisionLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations