The Peroxiredoxin Repair Proteins

  • Thomas J. Jönsson
  • W. Todd Lowther
Part of the Subcellular Biochemistry book series (SCBI, volume 44)


Sulfiredoxin and sestrin are cysteine sulfinic acid reductases that selectively reduce or repair the hyperoxidized forms of typical 2-Cys peroxiredoxins within eukaryotes. As such these enzymes play key roles in the modulation of peroxide-mediated cell signaling and cellular defense mechanisms. The unique structure of sulfiredoxin facilitates access to the peroxiredoxin active site and novel sulfur chemistry


Cysteine sulfinic acid Retroreduction Sulfiredoxin Sestrin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Apel, K., and Hirt, H., 2004, Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55: 373–399.CrossRefPubMedGoogle Scholar
  2. Baker, L. M., Raudonikiene, A., Hoffman, P. S., and Poole, L. B., 2001, Essential thioredoxin-dependent peroxiredoxin system from Helicobacter pylori: genetic and kinetic characterization. J. Bacteriol. 183: 1961–1973.CrossRefPubMedGoogle Scholar
  3. Basu, M. K., and Koonin, E. V., 2005, Evolution of eukaryotic cysteine sulfinic acid reductase, sulfiredoxin (Srx), from bacterial chromosome partitioning protein ParB. Cell Cycle. 4: 947–952.PubMedGoogle Scholar
  4. Biteau, B., Labarre, J., and Toledano, M. B., 2003, ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature. 425: 980–984.CrossRefPubMedGoogle Scholar
  5. Bozonet, S. M., Findlay, V. J., Day, A. M., Cameron, J., Veal, E. A., and Morgan, B. A., 2005, Oxidation of a eukaryotic 2-Cys peroxiredoxin is a molecular switch controlling the transcriptional response to increasing levels of hydrogen peroxide. J. Biol. Chem. 280: 23319–23327.CrossRefPubMedGoogle Scholar
  6. Budanov, A. V., Sablina, A. A., Feinstein, E., Koonin, E. V., and Chumakov, P. M., 2004, Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science. 304: 596–600.CrossRefPubMedGoogle Scholar
  7. Budanov, A. V., Shoshani, T., Faerman, A., Zelin, E., Kamer, I., Kalinski, H., Gorodin, S., Fishman, A., Chajut, A., Einat, P., Skaliter, R., Gudkov, A. V., Chumakov, P. M., and Feinstein, E., 2002, Identification of a novel stress-responsive gene Hi95 involved in regulation of cell viability. Oncogene. 21: 6017–6031.CrossRefPubMedGoogle Scholar
  8. Budde, H., Flohé, L., Hecht, H. J., Hofmann, B., Stehr, M., Wissing, J., and Lünsdorf, H., 2003, Kinetics and redox-sensitive oligomerisation reveal negative subunit cooperativity in tryparedoxin peroxidase of Trypanosoma brucei. Biol. Chem. 384: 619–633.CrossRefPubMedGoogle Scholar
  9. Castillo, E. A., Ayte, J., Chiva, C., Moldon, A., Carrascal, M., Abian, J., Jones, N., and Hidalgo, E., 2002, Diethylmaleate activates the transcription factor Pap1 by covalent modification of critical cysteine residues. Mol. Microbiol. 45: 243–254.CrossRefPubMedGoogle Scholar
  10. Castro, H., Budde, H., Flohé, L., Hofmann, B., Lünsdorf, H., Wissing, J., and Tomas, A. M., 2002, Specificity and kinetics of a mitochondrial peroxiredoxin of Leishmania infantum. Free Radic. Biol. Med. 33: 1563–1574.CrossRefPubMedGoogle Scholar
  11. Cesaratto, L., Vascotto, C., D’Ambrosio, C., Scaloni, A., Baccarani, U., Paron, I., Damante, G., Calligaris, S., Quadrifoglio, F., Tiribelli, C., and Tell, G., 2005, Overoxidation of peroxiredoxins as an immediate and sensitive marker of oxidative stress in HepG2 cells and its application to the redox effects induced by ischemia/reperfusion in human liver. Free Radic. Res. 39: 255–268.CrossRefPubMedGoogle Scholar
  12. Chae, H. J., Kim, K., and Kim, I. H., 1999, Redox Regulation of cell signaling and its clinical application, Marcel Dekker, Inc., New York, pp. 85–92.Google Scholar
  13. Chae, H. Z., Chung, S. J., and Rhee, S. G., 1994, Thioredoxin-dependent peroxide reductase from yeast. J. Biol. Chem. 269: 27670–27678.PubMedGoogle Scholar
  14. Chae, H. Z., Kang, S. W., and Rhee, S. G., 1999,. Isoforms of mammalian peroxiredoxin that reduce peroxides in presence of thioredoxin. Methods Enzymol. 300: 219–226.CrossRefPubMedGoogle Scholar
  15. Chae, H. Z., Kim, H. J., Kang, S. W., and Rhee, S. G., 1999, Characterization of three isoforms of mammalian peroxiredoxin that reduce peroxides in the presence of thioredoxin. Diabetes Res. Clin. Pract. 45: 101–112.CrossRefPubMedGoogle Scholar
  16. Chae, H. Z., Robison, K., Poole, L. B., Church, G., Storz, G., and Rhee, S. G., 1994, Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Proc. Natl. Acad. Sci. U.S.A. 91: 7017–7021.CrossRefPubMedGoogle Scholar
  17. Chang, T. S., Jeong, W., Choi, S. Y., Yu, S., Kang, S. W., and Rhee, S. G., 2002, Regulation of peroxiredoxin I activity by Cdc2-mediated phosphorylation. J. Biol. Chem. 277: 25370–25376.CrossRefPubMedGoogle Scholar
  18. Chang, T. S., Jeong, W., Woo, H. A., Lee, S. M., Park, S., and Rhee, S. G., 2004, Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine. J. Biol. Chem. 279: 50994–51001.CrossRefPubMedGoogle Scholar
  19. Chevallet, M., Wagner, E., Luche, S., van Dorsselaer, A., Leize-Wagner, E., and Rabilloud, T., 2003, Regeneration of peroxiredoxins during recovery after oxidative stress: only some overoxidized peroxiredoxins can be reduced during recovery after oxidative stress. J. Biol. Chem. 278: 37146–37153.CrossRefPubMedGoogle Scholar
  20. Christman, M. F., Morgan, R. W., Jacobson, F. S., and Ames, B. N., 1985, Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins in Salmonella typhimurium. Cell. 41: 753–762.CrossRefPubMedGoogle Scholar
  21. Chuang, M. H., Wu, M. S., Lo, W. L., Lin, J. T., Wong, C. H., and Chiou, S. H., 2006, The antioxidant protein alkylhydroperoxide reductase of Helicobacter pylori switches from a peroxide reductase to a molecular chaperone function. Proc. Natl. Acad. Sci. U.S.A. 103: 2552–2557.CrossRefPubMedGoogle Scholar
  22. Claiborne, A., Yeh, J. I., Mallett, T. C., Luba, J., Crane, E. J., 3rd, Charrier, V., and Parsonage, D., 1999, Protein-sulfenic acids: diverse roles for an unlikely player in enzyme catalysis and redox regulation. Biochemistry. 38: 15407–15416.CrossRefPubMedGoogle Scholar
  23. Degols, G., Shiozaki, K., and Russell, P., 1996, Activation and regulation of the Spc1 stress-activated protein kinase in Schizosaccharomyces pombe. Mol. Cell Biol. 16: 2870–2877.Google Scholar
  24. Dietz, K. J., Horling, F., König, J., and Baier, M., 2002, The function of the chloroplast 2-cysteine peroxiredoxin in peroxide detoxification and its regulation. J. Exp. Bot. 53: 1321–1329.CrossRefPubMedGoogle Scholar
  25. Dietz, K. J., Jacob, S., Oelze, M. L., Laxa, M., Tognetti, V., de Miranda, S. M., Baier, M., and Finkemeier, I., 2006, The function of peroxiredoxins in plant organelle redox metabolism. J. Exp. Bot. 57: 1697–1709.CrossRefPubMedGoogle Scholar
  26. Eichhorn, E., van der Ploeg, J. R., and Leisinger, T., 1999, Characterization of a two-component alkanesulfonate monooxygenase from Escherichia coli. J. Biol. Chem. 274: 26639–26646.CrossRefPubMedGoogle Scholar
  27. Findlay, V. J., Tapiero, H., and Townsend, D. M., 2005, Sulfiredoxin: a potential therapeutic agent? Biomed. Pharmacother. 59: 374–379.CrossRefPubMedGoogle Scholar
  28. Findlay, V. J., Townsend, D. M., Morris, T. E., Fraser, J. P., He, L., and Tew, K. D., 2006, A novel role for human sulfiredoxin in the reversal of glutathionylation. Cancer Res. 66: 6800–6806.CrossRefPubMedGoogle Scholar
  29. Finlayson, A. J., MacKenzie, S. L., and Finley, F. W., 1979, Reaction of alanine-3-sulfinic acid with 2-mercaptoethanol. Can. J. Chem. 57: 2073–2077.CrossRefGoogle Scholar
  30. Flohé, L., Budde, H., Bruns, K., Castro, H., Clos, J., Hofmann, B., Kansal-Kalavar, S., Krumme, D., Menge, U., Plank-Schumacher, K., Sztajer, H., Wissing, J., Wylegalla, C., and Hecht, H. J., 2002, Tryparedoxin peroxidase of Leishmania donovani: molecular cloning, heterologous expression, specificity, and catalytic mechanism. Arch. Biochem. Biophys. 397: 324–335.CrossRefPubMedGoogle Scholar
  31. Hamann, M., Zhang, T., Hendrich, S., and Thomas, J. A., 2002, Quantitation of protein sulfinic and sulfonic acid, irreversibly oxidized protein cysteine sites in cellular proteins. Methods Enzymol. 348: 146–156.CrossRefPubMedGoogle Scholar
  32. Hofmann, B., Hecht, H.-J., and Flohé, L., 2002, Peroxiredoxins. Biol. Chem. 383: 347–364.CrossRefPubMedGoogle Scholar
  33. Isermann, K., Liebau, E., Roeder, T., and Bruchhaus, I., 2004, A peroxiredoxin specifically expressed in two types of pharyngeal neurons is required for normal growth and egg production in Caenorhabditis elegans. J. Mol. Biol. 338: 745–755.CrossRefPubMedGoogle Scholar
  34. Jacob, C., Holme, A. L., and Fry, F. H., 2004, The sulfinic acid switch in proteins. Org. Biomol. Chem. 2: 1953–1956.CrossRefPubMedGoogle Scholar
  35. Jang, H. H., Kim, S. Y., Park, S. K., Jeon, H. S., Lee, Y. M., Jung, J. H., Lee, S. Y., Chae, H. B., Jung, Y. J., Lee, K. O., Lim, C. O., Chung, W. S., Bahk, J. D., Yun, D. J., and Cho, M. J., 2006, Phosphorylation and concomitant structural changes in human 2-Cys peroxiredoxin isotype I differentially regulate its peroxidase and molecular chaperone functions. FEBS Lett. 580: 351–355.CrossRefPubMedGoogle Scholar
  36. Jang, H. H., Lee, K. O., Chi, Y. H., Jung, B. G., Park, S. K., Park, J. H., Lee, J. R., Lee, S. S., Moon, J. C., Yun, J. W., Choi, Y. O., Kim, W. Y., Kang, J. S., Cheong, G. W., Yun, D. J., Rhee, S. G., Cho, M. J., and Lee, S. Y., 2004, Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell. 117: 625–635.CrossRefPubMedGoogle Scholar
  37. Jeong, W., Park, S. J., Chang, T. S., Lee, D. Y., and Rhee, S. G., 2006, Molecular mechanism of the reduction of cysteine sulfinic acid of peroxiredoxin to cysteine by mammalian sulfiredoxin. J. Biol. Chem. 281: 14400–14407.CrossRefPubMedGoogle Scholar
  38. Jönsson, T. J., Murray, M. S., Johnson, L. C., Poole, L. B., and Lowther, W. T., 2005, Structural basis for the retroreduction of inactivated peroxiredoxins by human sulfiredoxin. Biochemistry. 44: 8634–8642.CrossRefPubMedGoogle Scholar
  39. Kim, K., Rhee, S. G., and Stadtman, E. R., 1985, Nonenzymatic cleavage of proteins by reactive oxygen species generated by dithiothreitol and iron. J. Biol. Chem. 260: 15394–15397.PubMedGoogle Scholar
  40. König, J., Baier, M., Horling, F., Kahmann, U., Harris, G., Schürmann, P., and Dietz, K. J., 2002, The plant-specific function of 2-Cys peroxiredoxin-mediated detoxification of peroxides in the redox-hierarchy of photosynthetic electron flux. Proc. Natl. Acad. Sci. U.S.A. 99: 5738–5743.CrossRefPubMedGoogle Scholar
  41. Koo, K. H., Lee, S., Jeong, S. Y., Kim, E. T., Kim, H. J., Kim, K., Song, K., and Chae, H. Z., 2002, Regulation of thioredoxin peroxidase activity by C-terminal truncation. Arch. Biochem. Biophys. 397: 312–318.CrossRefPubMedGoogle Scholar
  42. Kudo, N., Taoka, H., Yoshida, M., and Horinouchi, S., 1999, Identification of a novel nuclear export signal sensitive to oxidative stress in yeast AP-1-like transcription factor. Ann. N. Y. Acad. Sci. 886: 204–207.CrossRefPubMedGoogle Scholar
  43. Lee, D. Y., Rhee, S. G., Ferretti, J., and Gruschus, J. M., 2005, 1H, 15N, 13C chemical shift assignments of the human Sulfiredoxin (hSrx). J. Biomol. NMR. 32: 339.CrossRefPubMedGoogle Scholar
  44. Liu, X. P., Liu, X. Y., Zhang, J., Xia, Z. L., Liu, X., Qin, H. J., and Wang, D. W., 2006, Molecular and functional characterization of sulfiredoxin homologs from higher plants. Cell Res. 16: 287–296.CrossRefPubMedGoogle Scholar
  45. Martin, I. V., and MacNeill, S. A., 2002, ATP-dependent DNA ligases. Genome Biol. 3: REVIEWS3005.Google Scholar
  46. Mitsumoto, A., Nakagawa, Y., Takeuchi, A., Okawa, K., Iwamatsu, A., and Takanezawa, Y., 2001, Oxidized forms of peroxiredoxins and DJ-1 on two-dimensional gels increased in response to sublethal levels of paraquat. Free Radic. Res. 35: 301–310.CrossRefPubMedGoogle Scholar
  47. Mitsumoto, A., Takanezawa, Y., Okawa, K., Iwamatsu, A., and Nakagawa, Y. (2001). Variants of peroxiredoxins expression in response to hydroperoxide stress. Free Radic. Biol. Med. 30: 625–635.CrossRefPubMedGoogle Scholar
  48. Moon, J. C., Hah, Y. S., Kim, W. Y., Jung, B. G., Jang, H. H., Lee, J. R., Kim, S. Y., Lee, Y. M., Jeon, M. G., Kim, C. W., Cho, M. J., and Lee, S. Y. (2005). Oxidative stress-dependent structural and functional switching of a human 2-Cys peroxiredoxin isotype II that enhances HeLa cell resistance to H2O2-induced cell death. J. Biol. Chem. 280: 28775–28784.CrossRefPubMedGoogle Scholar
  49. Moore, R. B., Mankad, M. V., Shriver, S. K., Mankad, V. N., and Plishker, G. A. (1991). Reconstitution of Ca(2+)-dependent K+transport in erythrocyte membrane vesicles requires a cytoplasmic protein. J. Biol. Chem. 266: 18964–18968.PubMedGoogle Scholar
  50. Morgan, R. W., Christman, M. F., Jacobson, F. S., Storz, G., and Ames, B. N., 1986, Hydrogen peroxide-inducible proteins in Salmonella typhimurium overlap with heat shock and other stress proteins. Proc. Natl. Acad. Sci. U.S.A. 83: 8059–8063.CrossRefPubMedGoogle Scholar
  51. Niimura, Y., Poole, L. B., and Massey, V., 1995, Amphibacillus xylanus NADH oxidase and Salmonella typhimurium alkyl-hydroperoxide reductase flavoprotein components show extremely high scavenging activity for both alkyl hydroperoxide and hydrogen peroxide in the presence of S. typhimurium alkyl-hydroperoxide reductase 22-kDa protein component. J. Biol. Chem. 270: 25645–25650.CrossRefPubMedGoogle Scholar
  52. Nogoceke, E., Gommel, D. U., Kiess, M., Kalisz, H. M., and Flohé, L., 1997, A unique cascade of oxidoreductases catalyses trypanothione-mediated peroxide metabolism in Crithidia fasciculata. Biol. Chem. 378: 827–836.CrossRefPubMedGoogle Scholar
  53. Pannifer, A. D., Flint, A. J., Tonks, N. K., and Barford, D., 1998, Visualization of the cysteinyl-phosphate intermediate of a protein-tyrosine phosphatase by x-ray crystallography. J. Biol. Chem. 273: 10454–10462.CrossRefPubMedGoogle Scholar
  54. Poole, L. B., 1996, Flavin-dependent alkyl hydroperoxide reductase from Salmonella typhimurium. 2. Cystine disulfides involved in catalysis of peroxide reduction. Biochemistry. 35: 65–75.CrossRefPubMedGoogle Scholar
  55. Quinn, J., Findlay, V. J., Dawson, K., Millar, J. B., Jones, N., Morgan, B. A., and Toone, W. M., 2002, Distinct regulatory proteins control the graded transcriptional response to increasing H(2)O(2) levels in fission yeast Schizosaccharomyces pombe. Mol. Biol. Cell. 13: 805–816.CrossRefPubMedGoogle Scholar
  56. Rhee, S. G., 2006, Cell signaling. H2O2, a necessary evil for cell signaling. Science. 312: 1882–1883.CrossRefPubMedGoogle Scholar
  57. Schröder, E., Littlechild, J. A., Lebedev, A. A., Errington, N., Vagin, A. A., and Isupov, M. N., 2000, Crystal structure of decameric 2-Cys peroxiredoxin from human erythrocytes at 1.7Å resolution. Structure Fold Des. 8: 605–615.CrossRefPubMedGoogle Scholar
  58. Seaver, L. C., and Imlay, J. A., 2001, Hydrogen peroxide fluxes and compartmentalization inside growing Escherichia coli. J. Bacteriol. 183: 7182–7189.CrossRefPubMedGoogle Scholar
  59. Shiozaki, K., and Russell, P., 1995, Cell-cycle control linked to extracellular environment by MAP kinase pathway in fission yeast. Nature. 378: 739–743.CrossRefPubMedGoogle Scholar
  60. Shiozaki, K., and Russell, P., 1996, Conjugation, meiosis, and the osmotic stress response are regulated by Spc1 kinase through Atf1 transcription factor in fission yeast. Genes Dev. 10: 2276–2288.CrossRefPubMedGoogle Scholar
  61. Timson, D. J., Singleton, M. R., and Wigley, D. B., 2000, DNA ligases in the repair and replication of DNA. Mutat. Res. 460: 301–318.PubMedGoogle Scholar
  62. Toone, W. M., Kuge, S., Samuels, M., Morgan, B. A., Toda, T., and Jones, N., 1998, Regulation of the fission yeast transcription factor Pap1 by oxidative stress: requirement for the nuclear export factor Crm1 (Exportin) and the stress-activated MAP kinase Sty1/Spc1. Genes Dev. 12: 1453–1463.CrossRefPubMedGoogle Scholar
  63. Traut, T. W., 1994, The functions and consensus motifs of nine types of peptide segments that form different types of nucleotide-binding sites. Eur. J. Biochem. 222: 9–19.CrossRefPubMedGoogle Scholar
  64. Veal, E. A., Findlay, V. J., Day, A. M., Bozonet, S. M., Evans, J. M., Quinn, J., and Morgan, B. A., 2004, A 2-Cys peroxiredoxin regulates peroxide-induced oxidation and activation of a stress-activated MAP kinase. Mol. Cell. 15: 129–139.CrossRefPubMedGoogle Scholar
  65. Velasco-Miguel, S., Buckbinder, L., Jean, P., Gelbert, L., Talbott, R., Laidlaw, J., Seizinger, B., and Kley, N., 1999, PA26, a novel target of the p53 tumor suppressor and member of the GADD family of DNA damage and growth arrest inducible genes. Oncogene. 18: 127–137.CrossRefPubMedGoogle Scholar
  66. Vivancos, A. P., Castillo, E. A., Biteau, B., Nicot, C., Ayte, J., Toledano, M. B., and Hidalgo, E., 2005, A cysteine-sulfinic acid in peroxiredoxin regulates H2O2-sensing by the antioxidant Pap1 pathway. Proc. Natl. Acad. Sci U.S.A. 102: 8875–8880.CrossRefPubMedGoogle Scholar
  67. Vivancos, A. P., Castillo, E. A., Jones, N., Ayte, J., and Hidalgo, E., 2004, Activation of the redox sensor Pap1 by hydrogen peroxide requires modulation of the intracellular oxidant concentration. Mol. Microbiol. 52: 1427–1435.CrossRefPubMedGoogle Scholar
  68. Wilkinson, M. G., Samuels, M., Takeda, T., Toone, W. M., Shieh, J. C., Toda, T., Millar, J. B., and Jones, N., 1996, The Atf1 transcription factor is a target for the Sty1 stress-activated MAP kinase pathway in fission yeast. Genes Dev. 10: 2289–2301.CrossRefPubMedGoogle Scholar
  69. Woo, H. A., Chae, H. Z., Hwang, S. C., Yang, K. S., Kang, S. W., Kim, K., and Rhee, S. G., 2003, Reversing the inactivation of peroxiredoxins caused by cysteine sulfinic acid formation. Science. 300: 653–656.CrossRefPubMedGoogle Scholar
  70. Woo, H. A., Jeong, W., Chang, T. S., Park, K. J., Park, S. J., Yang, J. S., and Rhee, S. G., 2005, Reduction of cysteine sulfinic acid by sulfiredoxin is specific to 2-Cys peroxiredoxins. J. Biol. Chem. 280: 3125–3128.CrossRefPubMedGoogle Scholar
  71. Woo, H. A., Kang, S. W., Kim, H. K., Yang, K. S., Chae, H. Z., and Rhee, S. G., 2003, Reversible oxidation of the active site cysteine of peroxiredoxins to cysteine sulfinic acid. Immunoblot detection with antibodies specific for the hyperoxidized cysteine-containing sequence. J. Biol. Chem. 278: 47361–47364.CrossRefPubMedGoogle Scholar
  72. Wood, Z. A., Poole, L. B., and Karplus, P. A., 2003, Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science. 300: 650–653.CrossRefPubMedGoogle Scholar
  73. Wood, Z. A., Schröder, E., Harris, R. J., and Poole, L. B., 2003, Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci. 28: 32–40.CrossRefPubMedGoogle Scholar
  74. Yang, K. S., Kang, S. W., Woo, H. A., Hwang, S. C., Chae, H. Z., Kim, K., and Rhee, S. G., 2002, Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid. J. Biol. Chem. 277: 38029–38036.CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Thomas J. Jönsson
    • 1
  • W. Todd Lowther
    • 1
  1. 1.Center for Structural Biology, Department of BiochemistryWake Forest University School of MedicineWinston-SalemUSA

Personalised recommendations