Advertisement

Functions of Typical 2-Cys Peroxiredoxins in Yeast

  • Brian A. Morgan
  • Elizabeth A. Veal
Part of the Subcellular Biochemistry book series (SCBI, volume 44)

Abstract

Peroxiredoxins are ubiquitous proteins that are found from bacteria to humans. Until recently they were thought to solely act as antioxidants catalysing the reduction of peroxides through their associated thioredoxin peroxidase activity. However, recent work has begun to uncover hitherto unsuspected roles for one group of these proteins, the typical 2-Cys peroxiredoxins (2-Cys Prx). For example, typical 2-Cys Prxs have been found to have roles in the model organisms Schizosaccharomyces pombe and Saccharomyces cerevisiae in regulating signal transduction, in DNA damage responses and as molecular chaperones. There is increasing evidence that rm H2O2 is utilised as a signalling molecule to regulate a range of important cellular processes. As abundant and ubiquitous peroxidase enzymes the peroxidase activity of typical 2-Cys Prxs is important in the regulation of these functions. Significantly, studies in yeast suggest that the regulation of the thioredoxin peroxidase and chaperone activities of these multi-function enzymes is an important aspect of H2O2–mediated signal transduction and consequently have provided important insight into the roles of these proteins in higher eukaryotes

Keywords

AP-1-like transcription factors SAPK pathway Peroxiredoxin Sulphiredoxin Protein oxidation Signal transduction Gene expression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biteau, B., Labarre, J., Toledano, M.B., 2003, ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 425: 980–984.CrossRefPubMedGoogle Scholar
  2. Bozonet, S.M., Findlay, V.J., Day, A.M., Cameron, J., Veal, E.A., Morgan, B.A., 2005, Oxidation of a eukaryotic 2-Cys peroxiredoxin is a molecular switch controlling the transcriptional response to increasing levels of hydrogen peroxide. J. Biol. Chem. 280: 23319–23327.CrossRefPubMedGoogle Scholar
  3. Buck, V., Quinn, J., Soto Pino, T., Martin, H., Saldanha, J., Makino, K., Morgan, B.A., Millar, J.B., 2001, Peroxide sensors for the fission yeast stress-activated mitogen-activated protein kinase pathway. Mol. Biol. Cell 12: 407–419.PubMedGoogle Scholar
  4. Budanov, A.V., Sablina, A.A., Feinstein, E., Koonin, E.V., Chumakov, P.M., 2004, Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science 304: 596–600.CrossRefPubMedGoogle Scholar
  5. Castillo, E.A., Ayte, J., Chiva, C., Moldon, A., Carrascal, M., Abian, J., Jones, N., Hidalgo, E., 2002, Diethylmaleate activates the transcription factor Pap1 by covalent modification of critical cysteine residues. Mol. Microbiol. 45: 243–254.CrossRefPubMedGoogle Scholar
  6. Chang, T.S., Jeong, W., Woo, H.A., Lee, S.M., Park, S., Rhee, S.G., 2004, Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine. J. Biol. Chem. 279: 50994–51001.CrossRefPubMedGoogle Scholar
  7. Choi, M.H., Lee, I.K., Kim, G.W., Kim, B.U., Han, Y.H., Yu, D.Y., Park, H.S., Kim, K.Y., Lee, J.S., Choi, C., Bae, Y.S., Lee, B.I., Rhee, S.G., Kang, S.W., 2005, Regulation of PDGF signalling and vascular remodelling by peroxiredoxin II. Nature 435: 347–353.CrossRefPubMedGoogle Scholar
  8. Choi, W., Yoo, Y.J., Kim, M., Shin, D., Jeon, H.B., Choi, W., 2003, Identification of proteins highly expressed in the hyphae of Candida albicans by two-dimensional electrophoresis. Yeast 20: 1053–1060.CrossRefPubMedGoogle Scholar
  9. Conway, J.P., Kinter, M., 2006, Dual role of peroxiredoxin I in macrophage-derived foam cells. J. Biol. Chem. 281: 27991–28001.CrossRefPubMedGoogle Scholar
  10. Delaunay, A., Isnard, A.D., Toledano, M.B., 2000, H2O2 sensing through oxidation of the Yap1 transcription factor. EMBO J. 19: 5157–5166.CrossRefPubMedGoogle Scholar
  11. Delaunay, A., Pflieger, D., Barrault, M.B., Vinh, J., Toledano, M.B., 2002, A thiol peroxidase is an H2O2 receptor and redox-transducer in gene activation. Cell 111: 471–481.CrossRefPubMedGoogle Scholar
  12. Enjalbert, B., Nantel, A., Whiteway, M., 2003, Stress-induced gene expression in Candida albicans: absence of a general stress response. Mol. Biol. Cell 14: 1460–1467.CrossRefPubMedGoogle Scholar
  13. Enjalbert, B., Smith, D.A., Cornell, M.J., Alam, I., Nicholls, S., Brown, A.J.P., Quinn, J., 2006, Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans. Mol. Biol. Cell 17: 1018–1032.CrossRefPubMedGoogle Scholar
  14. Huang, M.E., Kolodner, R.D., 2005, A biological network in Saccharomyces cerevisiae prevents the deleterious effects of endogenous oxidative DNA damage. Mol. Cell 17: 709–720.CrossRefPubMedGoogle Scholar
  15. Huang, M.E., Rio, A.G., Nicolas, A., Kolodner, R.D., 2003, A genomewide screen in Saccharomyces cerevisiae for genes that suppress the accumulation of mutations. Proc. Natl. Acad. Sci. USA 100: 11529–11534.CrossRefPubMedGoogle Scholar
  16. Ikner, A., Shiozaki, K., 2005, Yeast signaling pathways in the oxidative stress response. Mutat. Res. 569: 13–27.PubMedGoogle Scholar
  17. Jang, H.H., Lee, K.O., Chi, Y.H., Jung, B.G., Park, S.K., Park, J.H., Lee, J.R., Lee, S.S., Moon, J.C., Yun, J.W., Choi, Y.O., Kim, W.Y., Kang, J.S., Cheong, G.W., Yun, D.J., Rhee, S.G., Cho, M.J., Lee, S.Y., 2004, Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell 117: 625–635.CrossRefPubMedGoogle Scholar
  18. Koo, K.H., Lee, S., Jeong, S.Y., Kim, E.T., Kim, H.J., Kim, K., Song, K., Chae, H.Z., 2002, Regulation of thioredoxin peroxidase activity by C-terminal truncation. Arch. Biochem. Biophys. 397: 312–318.CrossRefPubMedGoogle Scholar
  19. Kuge, S., Arita, M., Murayama, A., Maeta, K., Izawa, S., Inoue, Y., Nomoto, A., 2001, Regulation of the yeast Yap1p nuclear export signal is mediated by redox signal-induced reversible disulfide bond formation. Mol. Cell. Biol. 21: 6139–6150.CrossRefPubMedGoogle Scholar
  20. Missall, T.A., Moran, J.M., Corbett, J.A., Lodge, J.K., 2005, Distinct stress responses of two functional laccases in Cryptococcus neoformans are revealed in the absence of the thiol-specific antioxidant Tsa1. Eukaryot. Cell 4: 202–208.CrossRefPubMedGoogle Scholar
  21. Missall, T.A., Pusateri, M.E., Donlin, M.J., Chambers, K.T., Corbett, J.A., Lodge, J.K., 2006, Posttranslational, translational, and transcriptional responses to nitric oxide stress in Cryptococcus neoformans: implications for virulence. Eukaryot. Cell 5: 518–529.CrossRefPubMedGoogle Scholar
  22. Missall, T.A., Pusateri, M.E., Lodge, J.K., 2004, Thiol peroxidase is critical for virulence and resistance to nitric oxide and peroxide in the fungal pathogen, Cryptococcus neoformans. Mol. Microbiol. 51: 1447–1458.CrossRefPubMedGoogle Scholar
  23. Neumann, C.A., Krause, D.S., Carman, C.V., Das, S., Dubey, D.P., Abraham, J.L., Bronson, R.T., Fujiwara, Y., Orkin, S.H., Van Etten, R.A., 2003, Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression. Nature 424: 561–565.CrossRefPubMedGoogle Scholar
  24. Nguyen, A.N., Lee, A., Place, W., Shiozaki, K., 2000, Multistep phosphorelay proteins transmit oxidative stress signals to the fission yeast stress-activated protein kinase. Mol. Biol. Cell 11: 1169–1181.PubMedGoogle Scholar
  25. Okazaki, S., Naganuma, A., Kuge, S., 2005, Peroxiredoxin-mediated redox regulation of the nuclear localization of Yap1, a transcription factor in budding yeast. Antioxid. Redox Signal. 7: 327–334.CrossRefPubMedGoogle Scholar
  26. Quinn, J., Findlay, V.J., Dawson, K., Jones, N., Morgan, B.A., Toone, W.M., 2002, Distinct regulatory proteins control the adaptive and acute responses to H2O2 in Schizosaccharomyces pombe. Mol. Biol. Cell 13: 805–816.CrossRefPubMedGoogle Scholar
  27. Rand, J.D., Grant, C.M., 2006, The thioredoxin system protects ribosomes against stress-induced aggregation. Mol. Biol. Cell 17: 387–401.CrossRefPubMedGoogle Scholar
  28. Ross, S.J., Findlay, V.J., Malakasi, P., Morgan, B.A., 2000, Thioredoxin peroxidase is required for the transcriptional response to oxidative stress in budding yeast. Mol. Biol. Cell 11: 2631–2642.PubMedGoogle Scholar
  29. Shin, D.H., Jung, S., Park, S.J., Kim, Y.J., Ahn, J.M., Kim, W., Choi, W., 2005, Characterization of thiol-specific antioxidant 1 (TSA1) of Candida albicans. Yeast 22: 907–918.CrossRefPubMedGoogle Scholar
  30. Smith, S., Hwang, J.Y., Banerjee, S., Majeed, A., Gupta, A., and Myung, K., 2004, Mutator genes for suppression of gross chromosomal rearrangements identified by a genome-wide screening in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 101: 9039–9044.CrossRefPubMedGoogle Scholar
  31. Toone, W.M., Jones, N., 1998, Stress-activated signalling pathways in yeast. Genes Cells 3: 485–498.CrossRefPubMedGoogle Scholar
  32. Toone, W.M., Kuge, S., Samuels, M., Morgan, B.A., Toda, T., Jones, N., 1998, Regulation of the fission yeast transcription factor Pap1 by oxidative stress: requirement for the nuclear export factor Crm1 (Exportin) and the stress-activated MAP kinase Sty1/Spc1. Genes Dev. 12: 1453–1463.CrossRefPubMedGoogle Scholar
  33. Toone, W.M., Morgan, B.A., Jones, N., 2001, Redox control of AP-1-like factors in yeast and beyond. Oncogene 20: 2336–2346.CrossRefPubMedGoogle Scholar
  34. Urban, C., Sohn, K., Lottspeich, F., Brunner, H., Rupp, S., 2003, Identification of cell surface determinants in Candida albicans reveals Tsa1p, a protein differentially localized in the cell. FEBS Lett. 544: 228–235.CrossRefPubMedGoogle Scholar
  35. Urban, C., Xiong, X., Sohn, K., Schroppel, K., Brunner, H., Rupp, S., 2005, The moonlighting protein Tsa1p is implicated in oxidative stress response and in cell wall biogenesis in Candida albicans. Mol. Microbiol. 57: 1318–1341.CrossRefPubMedGoogle Scholar
  36. Veal, E.A., Findlay, V.J., Day, A.M., Bozonet, S.M., Evans, J.M., Quinn, J., Morgan, B.A., 2004, A 2-Cys peroxiredoxin regulates peroxide-induced oxidation and activation of a stress-activated MAP kinase. Mol. Cell 15: 129–139.CrossRefPubMedGoogle Scholar
  37. Veal, E.A., Ross, S.J., Malakasi, P., Peacock, E., Morgan, B.A., 2003, Ybp1 is required for the hydrogen peroxide-induced oxidation of the Yap1 transcription factor. J. Biol. Chem. 278: 30896–30904.CrossRefPubMedGoogle Scholar
  38. Vivancos, A.P., Castillo, E.A., Biteau, B., Nicot, C., Ayte, J., Toledano, M.B., Hidalgo, E., 2005, A cysteine-sulfinic acid in peroxiredoxin regulates H2O2-sensing by the antioxidant Pap1 pathway. Proc. Natl. Acad. Sci. USA 102: 8875–8880.CrossRefPubMedGoogle Scholar
  39. Vivancos, A.P., Castillo, E.A., Jones, N., Ayte, J., Hidalgo, E., 2004, Activation of the redox sensor Pap1 by hydrogen peroxide requires modulation of the intracellular oxidant concentration. Mol. Microbiol. 52: 1427–1435.CrossRefPubMedGoogle Scholar
  40. Wagner, E., Luche, S., Penna, L., Chevallet, M., Van Dorsselaer, A., Leize-Wagner, E., Rabilloud, T., 2002, A method for detection of overoxidation of cysteines: peroxiredoxins are oxidized in vivo at the active-site cysteine during oxidative stress. Biochem. J. 366: 777–785.PubMedGoogle Scholar
  41. Wong, C.M., Siu, K.L., Jin, D.Y., 2004, Peroxiredoxin-null yeast cells are hypersensitive to oxidative stress and are genomically unstable. J. Biol. Chem. 279: 23207–23213.CrossRefPubMedGoogle Scholar
  42. Wood, Z.A., Poole, L.B., Hantgan, R.R., Karplus, P.A., 2002, Dimers to doughnuts: redox-sensitive oligomerization of 2-cysteine peroxiredoxins. Biochemistry 41: 5493–5504.CrossRefPubMedGoogle Scholar
  43. Wood, Z.A., Poole, L.B., Karplus, P.A., 2003, Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300: 650–653.CrossRefPubMedGoogle Scholar
  44. Yang, K.S., Kang, S.W., Woo, H.A., Hwang, S.C., Chae, H.Z., Kim, K., Rhee, S.G., 2002, Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid. J. Biol. Chem. 277: 38029–38036.CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Brian A. Morgan
    • 1
  • Elizabeth A. Veal
    • 1
  1. 1.Institute of Cell and Molecular Biosciences, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK

Personalised recommendations