Advertisement

QED can explain the non-thermal emission from SGRs and AXPs: variability

  • Jeremy S. HeylEmail author
Conference paper

Abstract

Owing to effects arising from quantum electrodynamics (QED), magnetohydrodynamical fast modes of sufficient strength will break down to form electron-positron pairs while traversing the magnetospheres of strongly magnetised neutron stars. The bulk of the energy of the fast mode fuels the development of an electron-positron fireball. However, a small, but potentially observable, fraction of the energy (∼1033 erg) can generate a non-thermal distribution of electrons and positrons far from the star. This paper examines the cooling and radiative output of these particles. Small-scale waves may produce only the non-thermal emission. The properties of this non-thermal emission in the absence of a fireball match those of the quiescent, non-thermal radiation recently observed non-thermal emission from several anomalous X-ray pulsars and soft-gamma repeaters. Initial estimates of the emission as a function of angle indicate that the non-thermal emission should be beamed and therefore one would expect this emission to be pulsed as well. According to this model the pulsation of the non-thermal emission should be between 90 and 180 degrees out of phase from the thermal emission from the stellar surface.

Keywords

Gamma-rays: observations Pulsars: individual SGR 1806-20, AXP 4U 0142+61, AXP 1E 1841-045 Radiation mechanisms: non-thermal 

PACS

97.60.Jd 98.70.Rz 12.20.Ds 52.35.Tc 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [den Hartog et al., 2004]
    den Hartog, P.R., Kuiper, L., Hermsen, W., et al.: Astron. Telegr. 293, 1 (2004) Google Scholar
  2. [Gavriil et al., 2002]
    Gavriil, F.P., Kaspi, V.M., Woods, P.M.: Nature 419, 142 (2002) ADSCrossRefGoogle Scholar
  3. [Heyl and Hernquist, 1997a]
    Heyl, J.S., Hernquist, L.: Phys. Rev. D 55, 2449 (1997a) ADSCrossRefGoogle Scholar
  4. [Heyl and Hernquist, 1997b]
    Heyl, J.S., Hernquist, L.: J. Phys. A 30, 6485 (1997b) ADSMathSciNetCrossRefGoogle Scholar
  5. [Heyl and Hernquist, 1998a]
    Heyl, J.S., Hernquist, L.: Mon. Not. Roy. Astron. Soc. 300, 599 (1998a) ADSCrossRefGoogle Scholar
  6. [Heyl and Hernquist, 1998b]
    Heyl, J.S., Hernquist, L.: Phys. Rev. D 58, 043005 (1998b) ADSCrossRefGoogle Scholar
  7. [Heyl and Hernquist, 1999]
    Heyl, J.S., Hernquist, L.: Phys. Rev. D 59, 045005 (1999) ADSCrossRefGoogle Scholar
  8. [Heyl and Hernquist, 2005a]
    Heyl, J.S., Hernquist, L.: Astrophys. J. 618, 463 (2005a) (paper I) ADSCrossRefGoogle Scholar
  9. [Heyl and Hernquist, 2005b]
    Heyl, J.S., Hernquist, L.: Mon. Not. Roy. Astron. Soc. 362, 777 (2005b) (paper II) ADSCrossRefGoogle Scholar
  10. [Heyl and Kulkarni, 1998]
    Heyl, J.S., Kulkarni, S.R.: Astrophys. J. Lett. 506, 61 (1998) ADSCrossRefGoogle Scholar
  11. [Hulleman et al., 2000]
    Hulleman, F., van Kerkwijk, M.H., Kulkarni, S.R.: Nature 408, 689 (2000) ADSCrossRefGoogle Scholar
  12. [Hurley et al., 1996]
    Hurley, K., Li, P., Vrba, F., et al.: Astrophys. J. Lett. 463, L13+ (1996) ADSCrossRefGoogle Scholar
  13. [Hurley et al., 1999]
    Hurley, K., Li, P., Kouveliotou, C., et al.: Astrophys. J. Lett. 510, L111 (1999) ADSCrossRefGoogle Scholar
  14. [Jung, 1989]
    Jung, G.V.: Astrophys. J. 338, 972 (1989) ADSCrossRefGoogle Scholar
  15. [Kaspi et al., 2003]
    Kaspi, V.M., Gavriil, F.P., Woods, P.M., et al.: Astrophys. J. Lett. 588, L93 (2003) ADSCrossRefGoogle Scholar
  16. [Kuiper et al., 2004]
    Kuiper, L., Hermsen, W., Mendez, M.: Astrophys. J. 613, 1173 (2004) ADSCrossRefGoogle Scholar
  17. [Kuiper et al., 2006]
    Kuiper, L., Hermsen, W., den Hartog, P.R., et al..: Astrophys. J. 645, 556 (2006) ADSCrossRefGoogle Scholar
  18. [Mereghetti et al., 2005]
    Mereghetti, S., Gotz, D., Mirabel, I.F., et al.: Astron. Astrophys. 433, L9 (2005) ADSCrossRefGoogle Scholar
  19. [Molkov et al., 2005]
    Molkov, S., Hurley, K., Sunyaev, R., et al.: Astron. Astrophys. 433, L13 (2005) ADSCrossRefGoogle Scholar
  20. [Murakami et al., 1994]
    Murakami, T., Tanaka, Y., Kulkarni, S.R., et al.: Nature 368, 127 (1994) ADSCrossRefGoogle Scholar
  21. [Özel, 2004]
    Özel, F.: ArXiv Astrophysics e-prints, astro-ph/0404144 (2004) Google Scholar
  22. [Potekhin et al., 2004]
    Potekhin, A.Y., Lai, D., Chabrier, G., et al..: Astrophys. J. 612, 1034 (2004) ADSCrossRefGoogle Scholar
  23. [Rothschild et al., 1994]
    Rothschild, R.E., Kulkarni, S.R., Lingenfelter, R.E.: Nature 368, 432 (1994) ADSCrossRefGoogle Scholar
  24. [Sanbonmatsu and Helfand, 1992]
    Sanbonmatsu, K.Y., Helfand, D.J.: Astron. J. 104, 2189 (1992) ADSCrossRefGoogle Scholar
  25. [Thompson and Duncan, 1995]
    Thompson, C., Duncan, R.C.: Mon. Not. Roy. Astron. Soc. 275, 255 (1995) ADSCrossRefGoogle Scholar
  26. [Thompson and Duncan, 1996]
    Thompson, C., Duncan, R.C.: Astrophys. J. 473, 322 (1996) ADSCrossRefGoogle Scholar
  27. [Usov and Melrose, 1995]
    Usov, V.V., Melrose, D.B., Aust. J. Phys. 48, 571 (1995) ADSCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  1. 1.University of British ColumbiaVancouverCanada

Personalised recommendations