Subcellular Proteomics pp 99-131

Part of the Subcellular Biochemistry book series (SCBI, volume 43)

Proteomic Analysis of Secreted Exosomes

  • Christine Olver
  • Michel Vidal

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aebersold, R. and Mann, M. (2003) Mass spectrometry-based proteomics. Nature 422, 198–207.PubMedCrossRefGoogle Scholar
  2. Andre, F., Chaput, N., Schartz, N.E., Flament, C., Aubert, N., Bernard, J., Lemonnier, F., Raposo, G., Escudier, B., Hsu, D.H., Tursz, T., Amigorena, S., Angevin, E. and Zitvogel, L. (2004) Exosomes as potent cell-free peptide-based vaccine. I. Dendritic cell-derived exosomes transfer functional MHC class I/peptide complexes to dendritic cells. J. Immunol. 172, 2126–2136.PubMedGoogle Scholar
  3. Andre, F., Schartz, N.E.C., Movassagh, M., Flament, C., Pautier, P., Morice, P., Pomel, C., Lhomme, C., Escudier, B., Le Chevalier, T., Tursz, T., Amigorena, S., Raposo, G., Angevin, E. and Zitvogel, L. (2002) Malignant effusions and immunogenic tumour-derived exosomes. Lancet 360, 295–305.PubMedCrossRefGoogle Scholar
  4. Andreola, G., Rivoltini, L., Castelli, C., Huber, V., Perego, P., Deho, P., Squarcina, P., Accornero, P., Lozupone, F., Lugini, L., Stringaro, A., Molinari, A., Arancia, G., Gentile, M., Parmiani, G. and Fais, S. (2002) Induction of lymphocyte apoptosis by tumor cell secretion of FasL-bearing microvesicles. J. Exp. Med. 195, 1303–1316.PubMedCrossRefGoogle Scholar
  5. Apweiler, R., Bairoch, A. and Wu, C.H. (2004) Protein sequence databases. Curr. Opin. Chem. Biol. 8, 76–80.PubMedCrossRefGoogle Scholar
  6. Bard, M.P., Hegmans, J.P., Hemmes, A., Luider, T.M., Willemsen, R., Severijnen, L.A., van Meer-beeck, J.P., Burgers, S.A., Hoogsteden, H.C. and Lambrecht, B.N. (2004) Proteomic analysis of exosomes isolated from human malignant pleural effusions. Am. J. Respir. Cell Mol. Biol. 31, 114–121.PubMedCrossRefGoogle Scholar
  7. Barile, M., Pisitkun, T., Yu, M.J., Chou, C.L., Verbalis, M.J., Shen, R.F. and Knepper, M.A. (2005) Large scale protein identification in intracellular aquaporin-2 vesicles from renal inner medullary collecting duct. Mol. Cell Proteomics 4, 1095–1106.PubMedCrossRefGoogle Scholar
  8. Bjellqvist, B., Sanchez, J.C., Pasquali, C., Ravier, F., Paquet, N., Frutiger, S., Hughes, G.J. and Hochstrasser, D. (1993) Micropreparative two-dimensional electrophoresis allowing the separation of samples containing milligram amounts of proteins. Electrophoresis 14, 1375–1378.PubMedCrossRefGoogle Scholar
  9. Blanchard, N., Lankar, D., Faure, F., Regnault, A., Dumont, C., Raposo, G. and Hivroz, C. (2002) TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/zeta complex. J. immunol. 168, 3235–3241.PubMedGoogle Scholar
  10. Booth, A.M., Fang, Y., Fallon, J.K., Yang, J.M., Hildreth, J.E. and Gould, S.J. (2006) Exosomes and HIV Gag bud from endosome-like domains of the T cell plasma membrane. J. Cell Biol. 172, 923–935.PubMedCrossRefGoogle Scholar
  11. Buschow, S.I., Liefhebber, J.M., Wubbolts, R. and Stoorvogel, W. (2005) Exosomes contain ubiquitinated proteins. Blood Cells Mol. Dis. 35, 398–403.PubMedCrossRefGoogle Scholar
  12. Cabezas, A., Bache, K.G., Brech, A. and Stenmark, H. (2005) Alix regulates cortical actin and the spatial distribution of endosomes. J. Cell Sci. 118, 2625–2635.PubMedCrossRefGoogle Scholar
  13. Caby, M.P., Lankar, D., Vincendeau-Scherrer, C., Raposo, G. and Bonnerot, C. (2005) Exosomal-like vesicles are present in human blood plasma. Int. Immunol. 17, 879–887.PubMedCrossRefGoogle Scholar
  14. Cantin, R., Methot, S. and Tremblay, M.J. (2005) Plunder and stowaways: incorporation of cellular proteins by enveloped viruses. J. Virol. 79, 6577–6587.PubMedCrossRefGoogle Scholar
  15. Carloni, V., Mazzocca, A. and Ravichandran, K.S. (2004) Tetraspanin CD81 is linked to ERK/MAPKinase signaling by She in liver tumor cells. Oncogene 23, 1566–1574.PubMedCrossRefGoogle Scholar
  16. Chevallet, M., Santoni, V., Poinas, A., Rouquie, D., Fuchs, A., Kieffer, S., Rossignol, M., Lunardi, J., Garin, J. and Rabilloud, T. (1998) New zwitterionic detergents improve the analysis of membrane proteins by two-dimensional electrophoresis. Electrophoresis 19, 1901–1909.PubMedCrossRefGoogle Scholar
  17. Cho, J.W., Kim, J.J., Park, S.G., Lee do, H., Lee, S.C., Kim, H.J., Park, B.C. and Cho, S. (2004) Identification of B-cell translocation gene 1 as a biomarker for monitoring the remission of acute myeloid leukemia. Proteomics 4, 3456–3463.PubMedCrossRefGoogle Scholar
  18. Clayton, A., Harris, C.L., Court, J., Mason, M.D. and Morgan, B.P. (2003) Antigen-presenting cell exosomes are protected from complement-mediated lysis by expression of CD55 and CD59. Eur. J. Immunol. 33, 522–531.PubMedCrossRefGoogle Scholar
  19. Cooper, C., Sears, W. and Bienzle, D. (2005) Reticulocyte changes after experimental anemia and erythropoietin treatment of horses. J. Appl. Physiol. 99, 915–921.PubMedCrossRefGoogle Scholar
  20. Cristea, I.M., Gaskell, S.J. and Whetton, A.D. (2004) Proteomics techniques and their application to hematology. Blood 103, 3624–3634.PubMedCrossRefGoogle Scholar
  21. De Gassart, A., Géminard, C., Février, B., Raposo, G. and Vidal, M. (2003) Lipid raft-associated proteins sorting in exosomes. Blood 102, 4336–4344.PubMedCrossRefGoogle Scholar
  22. Delcayre, A., Estelles, A., Sperinde, J., Roulon, T., Paz, P., Aguilar, B., Villanueva, J., Khine, S. and Le Pecq, J.B. (2005) Exosome Display technology: applications to the development of new diagnostics and therapeutics. Blood Cells Mol. Dis. 35, 158–168.PubMedCrossRefGoogle Scholar
  23. Denzer, K., van Eijk, M., Kleijmeer, M.J., Jakobson, E., de Groot, C. and Geuze, H.J. (2000) Follicular dendritic cells carry MHC class II-expressing microvesicles at their surface. J. Immunol. 165, 1259–1265.PubMedGoogle Scholar
  24. Domon, B. and Aebersold, R. (2006) Mass spectrometry and protein analysis. Science 312, 212–217.PubMedCrossRefGoogle Scholar
  25. Emans, N., Gorvel, J.P., Walter, C., Gerke, V., Kellner, R., Griffiths, G. and Gruenberg, J. (1993) Annexin II is a major component of fusogenic endosomal vesicles. J. Cell Biol. 120, 1357–1369.PubMedCrossRefGoogle Scholar
  26. Escola, J.M., Kleijmeer, M.J., Stoorvogel, W., Griffith, J.M., Yoshie, O. and Geuze, H.J. (1998) Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. J. Biol. Chem. 273, 20121–20127.PubMedCrossRefGoogle Scholar
  27. Escudier, B., Dorval, T., Chaput, N., Andre, F., Caby, M.P., Novault, S., Flament, C., Leboulaire, C., Borg, C., Amigorena, S., Boccaccio, C., Bonnerot, C., Dhellin, O., Movassagh, M., Piperno, S., Robert, C., Serra, V., Valente, N., Le Pecq, J.B., Spatz, A., Lantz, O., Tursz, T., Angevin, E. and Zitvogel, L. (2005) Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of the first phase I clinical trial. J. Transl. Med. 3, 10.PubMedCrossRefGoogle Scholar
  28. Faure, J., Lachenal, G., Court, M., Hirrlinger, J., Chatellard-Causse, C., Blot, B., Grange, J., Schoehn, G., Goldberg, Y., Boyer, V., Kirchhoff, F., Raposo, G., Garin, J. and Sadoul, R. (2006) Exosomes are released by cultured cortical neurones. Mol. Cell Neurosci. 31, 642–648.PubMedCrossRefGoogle Scholar
  29. Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F. and Whitehouse, C.M. (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246, 64–71.PubMedCrossRefGoogle Scholar
  30. Fevrier, B., Vilette, D., Archer, F., Loew, D., Faigle, W., Vidal, M., Laude, H. and Raposo, G. (2004) Cells release prions in association with exosomes. Proc. Natl Acad. Sci. U.S.A. 101, 9683–9688.PubMedCrossRefGoogle Scholar
  31. Freed, E.O. (2002) Viral late domains. J. Virol. 76, 4679–4687.PubMedCrossRefGoogle Scholar
  32. Futter, C.E., Felder, S., Schlessinger, J., Ullrich, A. and Hopkins, C.R. (1993) Annexin I is phosphorylated in the multivesicular body during the processing of the epidermal growth factor receptor. J. Cell Biol. 120, 77–83.PubMedCrossRefGoogle Scholar
  33. Gatti, J.L., Metayer, S., Belghazi, M., Dacheux, F. and Dacheux, J.L. (2005) Identification, proteomic profiling, and origin of ram epididymal fluid exosome-like vesicles. Biol. Reprod. 72, 1452–1465.PubMedCrossRefGoogle Scholar
  34. Géminard, C., de Gassart, A., Blanc, L. and Vidal, M. (2004) Degradation of AP2 during reticulocyte maturation enhances binding of hsc70 and Alix to a common site on TfR for sorting into exosomes. Traffic 5, 183–195.CrossRefGoogle Scholar
  35. Géminard, C., Nault, F., Johnstone, R. and Vidal, M. (2001) Characteristics of the interaction between hsc70 and the transferrin receptor in exosomes released during reticulocyte maturation. J. Biol. Chem. 276, 9910–9916.PubMedCrossRefGoogle Scholar
  36. Ghiselli, G. and Iozzo, R.V. (2000) Overexpression of bamacan/SMC3 causes transformation. J. Biol. Chem. 275, 20235–20238.PubMedCrossRefGoogle Scholar
  37. Gottlinger, H.G., Dorfman, T., Sodroski, J.G. and Haseltine, W.A. (1991) Effect of mutations affecting the p6 gag protein on human immunodeficiency virus particle release. Proc. Natl Acad. Sci. U.S.A. 88, 3195–3199.PubMedCrossRefGoogle Scholar
  38. Gould, S.J., Booth, A.M. and Hildreth, J.E. (2003) The Trojan exosome hypothesis. Proc. Natl Acad. Sci. U.S.A. 100, 10592–10597.PubMedCrossRefGoogle Scholar
  39. Grewal, T., Heeren, J., Mewawala, D., Schnitgerhans, T., Wendt, D., Salomon, G., Enrich, C., Beisiegel, U. and Jackie, S. (2000) Annexin VI stimulates endocytosis and is involved in the trafficking of low density lipoprotein to the prelysosomal compartment. J. Biol. Chem. 275, 33806–33813.PubMedCrossRefGoogle Scholar
  40. Hamm-Alvarez, S.F. (1998) Molecular motors and their role in membrane traffic. Adv. Drug Deliv. Rev. 29, 229–242.PubMedCrossRefGoogle Scholar
  41. Hanayama, R., Tanaka, M., Miwa, K., Shinohara, A., Iwamatsu, A. and Nagata, S. (2002) Identification of a factor that links apoptotic cells to phagocytes. Nature 417, 182–187.PubMedCrossRefGoogle Scholar
  42. Harder, T., Kellner, R., Parton, R.G. and Gruenberg, J. (1997) Specific release of membrane-bound annexin II and cortical cytoskeletal elements by sequestration of membrane cholesterol. Mol. Biol. Cell 8, 533–545.PubMedGoogle Scholar
  43. Harder, T., Scheiffele, P., Verkade, P. and Simons, K. (1998) Lipid domain structure of the plasma membrane revealed by patching of membrane components. J. Cell Biol. 141, 929–942.PubMedCrossRefGoogle Scholar
  44. Harding, C., Heuser, J. and Stahl, P. (1983) Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J. Cell Biol. 97, 329–339.PubMedCrossRefGoogle Scholar
  45. Hawari, F.I., Rouhani, F.N., Cui, X., Yu, Z.X., Buckley, C., Kaler, M. and Levine, S.J. (2004) Release of full-length 55-kDa TNF receptor 1 in exosome-like vesicles: a mechanism for generation of soluble cytokine receptors. Proc. Natl Acad. Sci. U.S.A. 101, 1297–1302.PubMedCrossRefGoogle Scholar
  46. Hayes, M.J., Merrifield, C.J., Shao, D., Ayala-Sanmartin, J., Schorey, C.D., Levine, T.P., Proust, J., Curran, J., Bailly, M. and Moss, S.E. (2004) Annexin 2 binding to phosphatidylinositol 4,5-bisphosphate on endocytic vesicles is regulated by the stress response pathway. J. Biol. Chem. 279, 14157–14164.PubMedCrossRefGoogle Scholar
  47. Heijnen, H.F., Schiel, A.E., Fijnheer, R., Geuze, H.J. and Sixma, J.J. (1999) Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 94, 3791–3794.PubMedGoogle Scholar
  48. Hemler, M.E. (1998) Integrin associated proteins. Curr. Opin. Cell Biol. 10, 578–585.PubMedCrossRefGoogle Scholar
  49. Hess, C., Sadallah, S., Hefti, A., Landmann, R. and Schifferli, J.A. (1999) Ectosomes released by human neutrophils are specialized functional units. J. Immunol. 163, 4564–4573.PubMedGoogle Scholar
  50. Hiltbold, E.M., Poloso, N.J. and Roche, P.A. (2003) MHC class II-peptide complexes and APC lipid rafts accumulate at the immunological synapse. J. Immunol. 170, 1329–1338.PubMedGoogle Scholar
  51. Huang, M., Orenstein, J.M., Martin, M.A. and Freed, E.O. (1995) p6Gag is required for particle production from full-length human immunodeficiency virus type 1 molecular clones expressing protease. J. Virol. 69, 6810–6818.PubMedGoogle Scholar
  52. Huebers, H.A., Beguin, Y., Pootrakul, P., Einspahr, D. and Finch, C.A. (1990) Intact transferrin receptors in human plasma and their relation to erythropoiesis. Blood 75, 102–107.PubMedGoogle Scholar
  53. Iwai, K., Hirata, K., Ishida, T., Takeuchi, S., Hirase, T., Rikitake, Y., Kojima, Y., Inoue, N., Kawashima, S. and Yokoyama, M. (2004) An anti-proliferative gene BTG1 regulates angiogenesis in vitro. Biochem. Biophys. Res. Commun. 316, 628–635.PubMedCrossRefGoogle Scholar
  54. Jiang, J., Ballinger, C.A., Wu, Y., Dai, Q., Cyr, D.M., Hohfeld, J. and Patterson, C. (2001) CHIP is a U-box-dependent E3 ubiquitin ligase: identification of Hsc70 as a target for ubiquitylation. J. Biol. Chem. 276, 42938–42944.PubMedCrossRefGoogle Scholar
  55. Johnstone, R.M. (1996) Cleavage of the transferrin receptor by human granulocytes: preferential proteolysis of the exosome-bound TfR. J. Cell Physiol. 168, 333–345.PubMedCrossRefGoogle Scholar
  56. Johnstone, R.M., Adam, M., Hammond, J.R., Orr, L. and Turbide, C. (1987) Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes) J. Biol. Chem. 262, 9412–9420.PubMedGoogle Scholar
  57. Karas, M. and Hillenkamp, F. (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 60, 2299–2301.PubMedCrossRefGoogle Scholar
  58. Karlsson, M., Lundin, S., Dahlgren, U., Kahu, H., Pettersson, I. and Telemo, E. (2001) “Tolerosomes” are produced by intestinal epithelial cells. Eur. J. Immunol. 31, 2892–2900.PubMedCrossRefGoogle Scholar
  59. Katoh, K., Shibata, H., Suzuki, H., Nara, A., Ishidoh, K., Kominami, E., Yoshimori, T. and Maki, M. (2003) The ALG-2-interacting protein Alix associates with CHMP4b, a human homologue of yeast Snf7 that is involved in multivesicular body sorting. J. Biol. Chem. 278, 39104–39113.PubMedCrossRefGoogle Scholar
  60. Katzmann, D.J., Odorizzi, G. and Emr, S.D. (2002) Receptor downregulation and multivesicular-body sorting. Nat. Rev. Mol. Cell Biol. 3, 893–905.PubMedCrossRefGoogle Scholar
  61. Kim, J.W., Wieckowski, E., Taylor, D.D., Reichert, T.E., Watkins, S. and Whiteside, T.L. (2005) Fas ligand-positive membranous vesicles isolated from sera of patients with oral cancer induce apoptosis of activated T lymphocytes. Clin. Cancer Res. 11, 1010–1020.PubMedGoogle Scholar
  62. Kleijmeer, M., Ramm, G., Schuurhuis, D., Griffith, J., Rescigno, M., Ricciardi-Castagnoli, P., Rudensky, A.Y., Ossendorp, F., Melief, C.J., Stoorvogel, W. and Geuze, H.J. (2001) Reorganization of multivesicular bodies regulates MHC class II antigen presentation by dendritic cells. J. Cell Biol. 155, 53–63.PubMedCrossRefGoogle Scholar
  63. Kohgo, Y., Nishisato, T., Kondo, H., Tsushima, N., Niitsu, Y. and Urushizaki, I. (1986) Circulating transferrin receptor in human serum. Br. J. Haematol. 64, 277–281.PubMedGoogle Scholar
  64. Kooyman, D.L., Byrne, G.W., McClellan, S., Nielsen, D., Tone, M., Waldmann, H., Coffman, T.M., McCurry, K.R., Platt, J.L. and Logan, J.S. (1995) In vivo transfer of GPI-linked complement restriction factors from erythrocytes to the endothelium. Science 269, 89–92.PubMedCrossRefGoogle Scholar
  65. Larance, M., Ramm, G., Stockli, J., van Dam, E.M., Winata, S., Wasinger, V., Simpson, F., Graham, M., Junutula,. J.R., Guilhaus, M. and James, D.E. (2005) Characterization of the role of the Rab GTPase-activating protein AS160 in insulin-regulated GLUT4 trafficking. J. Biol. Chem. 280, 37803–37813.PubMedCrossRefGoogle Scholar
  66. Lin, D., Tabb, D.L. and Yates, J.R. 3rd (2003) Large-scale protein identification using mass spectrometry. Biochim. Biophys. Acta. 1646, 1–10.PubMedGoogle Scholar
  67. Low, T.Y., Seow, T.K. and Chung, M.C. (2002) Separation of human erythrocyte membrane associated proteins with one-dimensional and two-dimensional gel electrophoresis followed by identification with matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Proteomics 2, 1229–1239.PubMedCrossRefGoogle Scholar
  68. Luhtala, N. and Odorizzi, G. (2004) Brol coordinates deubiquitination in the multivesicular body pathway by recruiting Doa4 to endosomes. J. Cell Biol. 166, 717–729.PubMedCrossRefGoogle Scholar
  69. Mangeat, P., Roy, C. and Martin, M. (1999) ERM proteins in cell adhesion and membrane dynamics. Trends Cell Biol. 9, 187–192.PubMedCrossRefGoogle Scholar
  70. Mann, M., Hendrickson, R.C. and Pandey, A. (2001) Analysis of proteins and proteomes by mass spectrometry. Annu. Rev. Biochem. 70, 437–473.PubMedCrossRefGoogle Scholar
  71. Martin-Serrano, J., Zang, T. and Bieniasz, P.D. (2001) HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress. Nat. Med. 7, 1313–1319.PubMedCrossRefGoogle Scholar
  72. Marzesco, A.M., Janich, P., Wilsch-Brauninger, M., Dubreuil, V., Langenfeld, K., Corbeil, D. and Huttner, W.B. (2005) Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells. J. Cell Sci. 118, 2849–2858.PubMedCrossRefGoogle Scholar
  73. Mathew, A., Bell, A. and Johnstone, R.M. (1995) Hsp-70 is closely associated with the transferrin receptor in exosomes from maturing reticulocytes. Biochem. J. 308, 823–830.PubMedGoogle Scholar
  74. Mayran, N., Parton, R.G. and Gruenberg, J. (2003) Annexin II regulates multivesicular endosome biogenesis in the degradation pathway of animal cells. Embo. J. 22, 3242–3253.PubMedCrossRefGoogle Scholar
  75. Medof, M.E., Kinoshita, T., Silber, R. and Nussenzweig, V. (1985) Amelioration of lytic abnormalities of paroxysmal nocturnal hemoglobinuria with decay-accelerating factor. Proc. Natl Acad. Sci. U.S.A. 82, 2980–2984.PubMedCrossRefGoogle Scholar
  76. Minogue, S., Waugh, M.G., De Matteis, M.A., Stephens, D.J., Berditchevski, F. and Hsuan, J.J. (2006) Phosphatidylinositol 4-kinase is required for endosomal trafficking and degradation of the EGF receptor. J. Cell. Sci. 119, 571–581.PubMedCrossRefGoogle Scholar
  77. Möbius, W., Ohno-Iwashita, Y., van Donselaar, E.G., Oorschot, V.M., Shimada, Y., Fujimoto, T., Heijnen, H.F., Geuze, H.J. and Slot, J.W. (2002) Immunoelectron microscopic localization of cholesterol using biotinylated and non-cytolytic perfringolysin O. J. Histochem. Cytochem. 50, 43–55.PubMedGoogle Scholar
  78. Morelli, A.E., Larregina, A.T., Shufesky, W.J., Sullivan, M.L., Stolz, D.B., Papworth, G.D., Zahorchak, A.F., Logar, A.J., Wang, Z., Watkins, S.C., Falo, L.D. Jr. and Thomson, A.W. (2004) Endocytosis, Intracellular Sorting and Processing of Exosomes by Dendritic Cells. Blood 104, 3257–3266.PubMedCrossRefGoogle Scholar
  79. Morita, E. and Sundquist, W.I. (2004) Retrovirus budding. Annu. Rev. Cell. Dev. Biol. 20, 395–425.PubMedCrossRefGoogle Scholar
  80. Morse, M.A., Garst, J., Osada, T., Khan, S., Hobeika, A., Clay, T.M., Valente, N., Shreeniwas, R., Sutton, M.A., Delcayre, A., Hsu, D.H., Le Pecq, J.B. and Lyerly, H.K. (2005) A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J. Transl. Med. 3(9), 1–8.Google Scholar
  81. Nydegger. S., Foti, M., Derdowski, A., Spearman, P. and Thali, M. (2003) HIV-1 egress is gated through late endosomal membranes. Traffic 4, 902–910.PubMedCrossRefGoogle Scholar
  82. Ott, D.E. (2002) Potential roles of cellular proteins in HIV-1. Rev. Med. Virol. 12, 359–374.PubMedCrossRefGoogle Scholar
  83. Pan, B.T. and Johnstone, R. (1984) Selective externalization of the transferrin receptor by sheep reticulocytes in vitro. Response to ligands and inhibitors of endocytosis. J. Biol. Chem. 259, 9776–9782.PubMedGoogle Scholar
  84. Pan, B.T. and Johnstone, R.M. (1983) Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 33, 967–977.PubMedCrossRefGoogle Scholar
  85. Paquette, J.S., Fortin, J.F., Blanchard, L. and Tremblay, M.J. (1998) Level of ICAM-1 surface expression on virus producer cells influences both the amount of virion-bound host ICAM-1 and human immunodeficiency virus type 1 infectivity. J. Virol. 72, 9329–9336.PubMedGoogle Scholar
  86. Parolini, I., Sargiacomo, M., Lisanti, M.P. and Peschle, C. (1996) Signal transduction and glycophosphatidylinositol-linked proteins (LYN, LCK, CD4, CD45, G proteins and CD55) selectively localize in triton-insoluble plasma membrane domains of human leukemic cell lines and normal granulocytes. Blood 87, 3783–3794.PubMedGoogle Scholar
  87. Patnaik, A., Chau, V., Li, F., Montelaro, R.C. and Wills, J.W. (2002) Budding of equine infectious anemia virus is insensitive to proteasome inhibitors. J. Virol. 76, 2641–2647.PubMedCrossRefGoogle Scholar
  88. Pelchen-Matthews, A., Kramer, B. and Marsh, M. (2003) Infectious HIV-1 assembles in late endosomes in primary macrophages. J. Cell Biol. 162, 443–455.PubMedCrossRefGoogle Scholar
  89. Pisitkun, T., Shen, R.F. and Knepper, M.A. (2004) Identification and proteomic profiling of exosomes in human urine. Proc. Natl Acad. Sci. U.S.A. 101, 13368–13373.PubMedCrossRefGoogle Scholar
  90. Potolicchio, I., Carven, G.J., Xu, X., Stipp, C., Riese, R.J., Stern, L.J. and Santambrogio, L. (2005) Proteomic analysis of microglia-derived exosomes: metabolic role of the aminopeptidase CD13 in neuropeptide catabolism. J. Immunol. 175, 2237–2243.PubMedGoogle Scholar
  91. Poupon, V., Stewart, A., Gray, S.R., Piper, R.C. and Luzio, J.P. (2003) The role of mVps18p in clustering, fusion, and intracellular localization of late endocytic organelles. Mol. Biol. Cell 14, 4015–4027.PubMedCrossRefGoogle Scholar
  92. Rabesandratana, H., Toutant, J.P., Reggio, H. and Vidal, M. (1998) Decay-accelerating factor (CD55) and membrane inhibitor of reactive lysis (CD59) are released within exosomes during in vitro maturation of reticulocyte. Blood 91, 2573–2580.PubMedGoogle Scholar
  93. Rabilloud, T., Blisnick, T., Heller, M., Luche, S., Aebersold, R., Lunardi, J. and Braun-Breton, C. (1999) Analysis of membrane proteins by two-dimensional electrophoresis: comparison of the proteins extracted from normal or Plasmodium falciparum-infected erythrocyte ghosts. Electrophoresis 20, 3603–3610.PubMedCrossRefGoogle Scholar
  94. Raiborg, C,. Bache, K.G., Gillooly, D.J., Madshus, I.H., Stang, E. and Stenmark, H. (2002) Hrs sorts ubiquitinated proteins into clathrin-coated microdomains of early endosomes. Nat. Cell Biol. 4, 394–398.PubMedCrossRefGoogle Scholar
  95. Raiborg, C., Rusten, T.E. and Stenmark, H. (2003) Protein sorting into multivesicular endosomes. Curr. Opin. Cell Biol. 15, 446–455.PubMedCrossRefGoogle Scholar
  96. Raposo, G., Moore, M., Innes, D., Leijendekker, R., Leigh-Brown, A., Benaroch, P. and Geuze, H. (2002) Human macrophages accumulate HIV-1 particles in MHC II compartments. Traffic 3, 718–729.PubMedCrossRefGoogle Scholar
  97. Raposo, G., Nijman, H.W., Stoorvogel, W., Leidendekker, R., Harding, C.V., Meleif, C.J.M. and Geuze, H. (1996) B lymphocytes secrete antigen-presenting vesicles. J. Exp. Med. 183, 1161–1172.PubMedCrossRefGoogle Scholar
  98. Raposo, G., Tenza, D., Murphy, D.M., Berson, J.F. and Marks, M.S. (2001) Distinct protein sorting and localization to premelanosomes, melanosomes, and lysosomes in pigmented melanocytic cells. J. Cell Biol. 152, 809–824.PubMedCrossRefGoogle Scholar
  99. Rege, T.A., Fears, C.Y. and Gladson, C.L. (2005) Endogenous inhibitors of angiogenesis in malignant gliomas: nature’s antiangiogenic therapy. Neuro-oncol. 7, 106–121.PubMedCrossRefGoogle Scholar
  100. Rieu, S., Géminard, C., Rabesandratana, H., Sainte-Marie, J. and Vidal, M. (2000) Exosomes released during reticulocyte maturation bind to fibronectin via integrin α4β1. Eur. J. Biochem. 267, 583–590.PubMedCrossRefGoogle Scholar
  101. Rubinstein, E. (2001) Tetraspanins. Cell Mol. Life Sci. 58, 1189–1205.PubMedCrossRefGoogle Scholar
  102. Rubinstein, E., Ziyyat, A., Wolf, J.P., Le Naour, F. and Boucheix, C. (2006) The molecular players of sperm-egg fusion in mammals. Semin. Cell Dev. Biol. 17, 254–263.PubMedCrossRefGoogle Scholar
  103. Ryzhova, E.V., Vos, R.M., Albright, A.V., Harrist, A.V., Harvey, T. and Gonzalez-Scarano, F. (2006) Annexin 2: a novel human immunodeficiency virus type 1 Gag binding protein involved in replication in monocyte-derived macrophages. J. Virol. 80, 2694–2704.PubMedCrossRefGoogle Scholar
  104. Sachse, M., Urbe, S., Oorschot, V., Strous, G.J. and Klumperman, J. (2002) Bilayered clathrin coats on endosomal vacuoles are involved in protein sorting toward lysosomes. Mol. Biol. Cell 13, 1313–1328.PubMedCrossRefGoogle Scholar
  105. Seeman, J., Weber, K., Osborn, M., Parton, R.G. and Gerke, V. (1996) The association of annexin I with early endosomes is regulated by Ca2+ and requires an intact N-terminal domain. Mol. Biol. Cell 7, 1359–1374.Google Scholar
  106. Segura, E., Nicco, C., Lombard, B., Veron, P., Raposo, G., Batteux, F., Amigorena, S. and Thery, C. (2005) ICAM-1 on exosomes from mature dendritic cells is critical for efficient naive T cell priming. Blood 106, 216–223.PubMedCrossRefGoogle Scholar
  107. Simpson, R. (2004) Strategies for purifying proteins. In: Purifying Proteins for Proteomics: A Laboratory Manual. R. Simpson, ed. (Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press), pp. 17–40.Google Scholar
  108. Stoeck, A., Keller, S., Riedle, S., Sanderson, M.P., Runz, S., Le Naour, F., Gutwein, P., Ludwig, A., Rubinstein, E. and Altevogt, P. (2006) A role for exosomes in the constitutive and stimulus-induced ectodomain cleavage of L1 and CD44. Biochem. J. 393, 609–618.PubMedCrossRefGoogle Scholar
  109. Streit, M., Riccardi, L., Velasco, P., Brown, L.F., Hawighorst, T., Bornstein, P. and Detmar, M. (1999) Thrombospondin-2: a potent endogenous inhibitor of tumor growth and angiogenesis. Proc. Natl Acad. Sci. U.S.A. 96, 14888–14893.PubMedCrossRefGoogle Scholar
  110. Tamma, G., Klussmann, E., Oehlke, J., Krause, E., Rosenthal, W., Svelto, M. and Valenti, G. (2005) Actin remodeling requires ERM function to facilitate AQP2 apical targeting. J. Cell Sci. 118, 3623–3630.PubMedCrossRefGoogle Scholar
  111. Tardif, M.R. and Tremblay, M.J. (2003) Presence of host ICAM-1 in human immunodeficiency virus type 1 virions increases productive infection of CD4+ T lymphocytes by favoring cytosolic delivery of viral material. J. Virol. 77, 12299–12309.PubMedCrossRefGoogle Scholar
  112. Taunton, J., Rowning, B.A., Coughlin, M.L., Wu, M., Moon, R.T., Mitchison, T.J. and Larabell, C.A. (2000) Actin-dependent propulsion of endosomes and lysosomes by recruitment of N-WASP. J. Cell Biol. 148, 519–530.PubMedCrossRefGoogle Scholar
  113. Taylor, D.D. and Gercel-Taylor, C. (2005) Tumour-derived exosomes and their role in cancer-associated T-cell signalling defects. Br. J. Cancer 92, 305–311.PubMedGoogle Scholar
  114. Taylor, D.D., Taylor, C.G., Jiang, C.G. and Black, P.H. (1988) Characterization of plasma membrane shedding from murine melanoma cells. Int. J. Cancer 41, 629–635.PubMedCrossRefGoogle Scholar
  115. Thery, C., Boussac, M., Veron, P., Ricciardi-Castagnoli, P., Raposo, G., Garin, J. and Amigorena, S. (2001) Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J. Immunol. 166, 7309–7318.PubMedGoogle Scholar
  116. Thery, C., Regnault, A., Garin, J., Wolfers, J., Zitvogel, L., Ricciardi-Castagnoli, P., Raposo, G. and Amigorena, S. (1999) Molecular characterization of dendritic cell-derived exosomes: selective accumulation of the heat shock protein hsc73. J. Cell Biol. 147, 599–610.PubMedCrossRefGoogle Scholar
  117. Timsit, Y.E., Miller, S.L., Mohney, R.P. and O’Bryan, J.P. (2005) The U-box ligase carboxyl-terminus of Hsc 70-interacting protein ubiquitylates Epsin. Biochem. Biophys. Res. Commun. 328, 550–559.PubMedCrossRefGoogle Scholar
  118. Trams, E.G., Lauter, C.J., Salem, N. Jr. and Heine, U. (1981) Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim. Biophys. Acta 645, 63–70.PubMedCrossRefGoogle Scholar
  119. Ullrich, O., Reinsch, S., Urbé, S., Zerial, M. and Parton, R.G. (1996) Rab11 regulates recycling through the pericentriolar recycling endosome. J. Cell Biol. 135, 913–924.PubMedCrossRefGoogle Scholar
  120. Utleg, A.G., Yi, E.C., Xie, T., Shannon, P., White, J.T., Goodlett, D.R., Hood, L. and Lin, B. (2003) Proteomic analysis of human prostasomes. Prostate 56, 150–161.PubMedCrossRefGoogle Scholar
  121. van Niel, G., Mallegol, J., Bevilacqua, C., Candalh, C., Brugiere, S., Tomaskovic-Crook, E., Heath, J.K., Cerf-Bensussan, N. and Heyman, M. (2003) Intestinal epithelial exosomes carry MHC class II/peptides able to inform the immune system in mice. Gut 52, 1690–1697.PubMedCrossRefGoogle Scholar
  122. van Niel, G., Raposo, G., Candalh, C., Boussac, M., Hershberg, R., Cerf-Bensussan, N. and Heyman, M. (2001) Intestinal epithelial cells secrete exosome-like vesicles. Gastroenterology 121, 337–349.PubMedCrossRefGoogle Scholar
  123. Vincent-Schneider, H., Stumptner-Cuvette, P., Lankar D, Pain S., Raposo, G., Benaroch, P. and Bonnerot, C. (2002) Exosomes bearing HLA-DR1 molecules need dendritic cells to efficiently stimulate specific T cells. Int. Immunol. 14, 713–722.PubMedCrossRefGoogle Scholar
  124. Vincent, O., Rainbow, L., Tilburn, J., Arst, H.N. Jr. and Penalva, M.A. (2003) YPXL/I is a protein interaction motif recognized by aspergillus PalA and its human homologue, AIP1/Alix. Mol. Cell Biol. 23, 1647–1655.PubMedCrossRefGoogle Scholar
  125. von Schwedler, U.K., Stuchell, M., Muller, B., Ward, D.M., Chung, H.Y., Morita, E., Wang, H.E., Davis, T., He, G.P., Cimbora, D.M., Scott, A., Krausslich, H.G., Kaplan, J., Morham, S.G. and Sundquist, W.I. (2003) The protein network of HIV budding. Cell 114, 701–713.PubMedCrossRefGoogle Scholar
  126. Vuillet-Gaugler, M.H., Breton-Gorius, J., Vainchencker, W., Guichard, J., Leroy, C., Tchernia, G. and Coulombel, L. (1990) Loss of attachment to fibronectin with terminal human erythroid differentiation. Blood 76, 865–873.Google Scholar
  127. Ward, E.S., Martinez, C., Vaccaro, C., Zhou, J., Tang, Q. and Ober, R.J. (2005) From sorting endosomes to exocytosis: association of Rab4 and Rab11 GTPases with the Fc receptor, FcRn, during recycling. Mol. Biol. Cell 16, 2028–2038.PubMedCrossRefGoogle Scholar
  128. Ware, R.E., Rosse, W.F. and Hall, S.E. (1995) Immunophenotypic analysis of reticulocytes in paroxysmal nocturnal hemoglobinuria. Blood 86, 1586–1589.PubMedGoogle Scholar
  129. Westermeier, R. and Naven, T. (2002) Proteomics in practice: a laboratory manual of proteome analysis. Weinheim: Wiley-VCH Verlag-GmbH.Google Scholar
  130. White, I.J., Bailey, L.M., Aghakhani, M.R., Moss, S.E. and Futter, C.E. (2006) EGF stimulates annexin 1-dependent inward vesiculation in a multivesicular endosome subpopulation. EMBO J. 25, 1–12.PubMedCrossRefGoogle Scholar
  131. Wolfers, J., Lozier, A., Raposo, G., Regnault, A., Thery, C., Masurier, C., Flament, C., Pouzieux, S., Faure, F., Tursz, T., Angevin, E., Amigorena, S. and Zitvogel, L. (2001) Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat. Med. 7, 297–303.PubMedCrossRefGoogle Scholar
  132. Wubbolts, R.W., Leckie, R.S., Veenhuizen, P.T., Schwartzmann, G., Moebius, W., Hoernschemeyer, J., Slot, J.W., Geuze, H.J. and Stoorvogel, W. (2003) Proteomic and biochemical analyses of human B cell-derived exosomes: potential implications for their function and multivesicular body formation. J. Biol. Chem. 7, 10963–10972.CrossRefGoogle Scholar
  133. Yarar, D., Waterman-Storer, C.M. and Schmid, S.L. (2005) A dynamic actin cytoskeleton functions at multiple stages of clathrin-mediated endocytosis. Mol. Biol. Cell 16, 964–975.PubMedCrossRefGoogle Scholar
  134. Yates, J.R., 3rd, Gilchrist. A., Howell, K.E. and Bergeron, J.J. (2005) Proteomics of organelles and large cellular structures. Nat. Rev. Mol. Cell Biol. 6, 702–714.PubMedCrossRefGoogle Scholar
  135. Yin, L., Braaten, D. and Luban, J. (1998) Human immunodeficiency virus type 1 replication is modulated by host cyclophilin A expression levels. J. Virol. 72, 6430–6436.PubMedGoogle Scholar
  136. Zerial, M. and McBride, H. (2001) Rab proteins as membrane organizers. Nat. Rev. Mol. Cell Biol. 2, 107–117.PubMedCrossRefGoogle Scholar
  137. Zeuschner, D., Stoorvogel, W. and Gerke, V. (2001) Association of annexin 2 with recycling endosomes requires either calcium- or cholesterol-stabilized membrane domains. Eur. J. Cell Biol. 80, 499–507.PubMedCrossRefGoogle Scholar
  138. Zhang, X.A., Bontrager, A.L. and Hemler, M.E. (2001) Transmembrane-4 superfamily proteins associate with activated protein kinase C (PKC) and link PKC to specific beta(1) integrins. J. Biol. Chem. 276, 25005–25013.PubMedCrossRefGoogle Scholar
  139. Zhou, P., Fernandes, N., Dodge, I.L., Reddi, A.L., Rao, N., Safran, H., DiPetrillo, T.A., Wazer, D.E., Band, V. and Band, H. (2003) ErbB2 degradation mediated by the co-chaperone protein CHIP. J. Biol. Chem. 278, 13829–13837.PubMedCrossRefGoogle Scholar
  140. Zitvogel, L., Regnault, A., Lozier, A., Wolfers, J., Flament, C., Tenza, D., Ricciardi-Castagnoli, P., Raposo, G. and Amigorena, S. (1998) Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat. Med. 4, 594–600.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Christine Olver
    • 1
  • Michel Vidal
    • 2
  1. 1.Colorado State UniversityUSA
  2. 2.University Montpellier IIFrance

Personalised recommendations