Distributed Estimation of Actual Evapotranspiration Through Remote Sensing Techniques

  • G. Calcagno
  • G. Mendicino
  • G. Monacelli
  • A. Senatore
  • P. Versace
Part of the Water Science and Technology Library book series (WSTL, volume 62)


Evapotranspiration (ET) is one of the main water balance components, and its actual value appears to be the most difficult to measure directly. Therefore, the choice of reliable models capable of predicting spatially distributed actual ET represents a drought monitoring fundamental aspect. This chapter presents a brief introduction to the main remote sensing methods for ET estimate and, by means of ground ET measurements carried out through eddy covariance systems at three different sites in southern Italy, analyzes the performance given by the Surface Energy Balance Algorithm for Land (SEBAL) model using images of the Moderate Resolution Imaging Spectroradiometer (MODIS) on areas characterized by different physiographic and vegetative conditions (sparse vegetation, crop canopy and high mountain vegetation). The distributed results obtained for different days from summer 2004 to summer 2006 on a wide southern Italian area pointed out generally good ET predictions in the eddy covariance sites, also if some differences arose depending on the type and density of vegetation


Evapotranspiration energy balance remote sensing SEBAL eddy covariance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, R., Pereira, L.S., Raes, D. and Smith, M. (1998) Crop Evapotranspiration – Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper 56, FAO, Rome.Google Scholar
  2. Allen, R., Tasumi, M., Morse, A. and Trezza, R. (2005) A Landsat-based energy balance and evapo-transpiration model in Western US water rights regulation and planning. Irrigation and Drainage Systems 19: 251–268.CrossRefGoogle Scholar
  3. Anderson, M., Norman, J., Diak, G., Kustas,W. and Mecikalski, J. (1997) A two-source time-integrated model for estimating surface fluxes from thermal infrared satellite observations. Remote Sensing of Environment 60: 195–216.CrossRefGoogle Scholar
  4. Baldocchi, D.D. and Meyers, T.D. (1988) A Spectral and Lag-correlation Analysis of Turbulence in a Deciduous Forest Canopy. Boundary-Layer Meteorology 45: 31–58.CrossRefGoogle Scholar
  5. Baldocchi, D.D. and Wilson, K.B. (2001) Modeling CO2 and water vapor exchange of a temperate broadleaved forest across hourly to decadal time scales. Ecological Modelling 142: 155–184.CrossRefGoogle Scholar
  6. Baldocchi, D.D., Valentini, R., Running, S., Oechel, W., and Dahlman, R. (1996) Strategies for measuring and modelling carbon dioxide and water vapour fluxes over terrestrial ecosystem. Global Change Biology 2: 159–168.CrossRefGoogle Scholar
  7. Bastiaanssen, W.G.M. and Chandrapala, L. (2003) Water balance variability across Sri Lanka for assessing agricultural and environmental water use. Agricultural Water Management 58 (2): 171–192.CrossRefGoogle Scholar
  8. Bastiaanssen, W.G.M. (2000) SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. Journal of Hydrology 229: 87–100.CrossRefGoogle Scholar
  9. Bastiaanssen, W.G.M., Menenti, M., Feddes, R.A. and Holtslag, A.A.M. (1998) A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. Journal of Hydrology 212–213: 198–212.Google Scholar
  10. Bausch,W.C. (1995) Remote sensing of crop coefficients for improving the irrigation scheduling of corn. Agricultural Water Management 27: 55–68.CrossRefGoogle Scholar
  11. Braud, I., Dantas-Antonino, A.C., Vauclin, M., Thoony, J.L. and Ruelle, P. (1995) A simple soil-plant-atmosphere transfer model (SiSPAT) development and field verification. Journal of Hydrology 166: 213–250.CrossRefGoogle Scholar
  12. Brunetti, M., Buffoni, L., Mangianti, F., Maugeri, M. and Nanni, T. (2004) Temperature, precipitation and extreme events during the last century in Italy. Global and Planetary Change 40: 141–149.CrossRefGoogle Scholar
  13. Brutsaert, W. (1982) Evaporation into the atmosphere: Theory, history, and applications, D. Reidel Publishing Company, Dordrecht, Holland, 299 pp.Google Scholar
  14. Carlson, T.N., Gillies, R.R. and Schmugge, T.J. (1995) An interpretation of methodologies for indirect measurement of soil water content. Agricultural and Forest Meteorology 77: 191–205.CrossRefGoogle Scholar
  15. Choudhury, B.J., Ahmed, N.U., Idso, S.B., Reginato, R.J. and Daughtry, C.S.T. (1994) Relations between evaporation coefficients and vegetation indices studies by model simulations. Remote Sensing of Environment 50: 1–17.CrossRefGoogle Scholar
  16. Consoli, S., D’Urso, G. and Toscano, A. (2006) Remote sensing to estimate ET-fluxes and the performance of an irrigation district in southern Italy. Agricultural Water Management 81: 295–314.CrossRefGoogle Scholar
  17. Courault, D., Clastre, P., Guinot, J.P. and Seguin, B. (1994) Analyse des sécheresses de 1988 à 1990 en France à partir de l’analyse combine de données satellitaires NOAA-AVHRR et d’un modéle agrométéorologique. Agronomie 14: 41–56.Google Scholar
  18. Courault, D., Seguin, B. and Olioso, A. (2005) Review on estimation of evapotranspiration from remote sensing data: from empirical to numerical modeling approaches. Irrigation and Drainage Systems 19(3/4): 223–249.CrossRefGoogle Scholar
  19. Crago, R.D. (1996) Conservation and variability of the evaporative fraction during the daytime. Journal of Hydrology 180: 173–194.CrossRefGoogle Scholar
  20. Deardorff, J.W. (1978) Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. Journal of Geophysical Research 83(C4): 1889–1903.Google Scholar
  21. Demarty, J., Ottlé, C., Braud, I., Olioso, A., Frangi, J.P., Bastidas, L.A. and Gupta, H.V. (2004) Using a multiobjective approach to retrieve information on surface properties used in a SVAT model. Journal of Hydrology 287: 214–236.CrossRefGoogle Scholar
  22. Dracup, J.A., Lee, K.S. and Paulson, E.G. (1980) On the definition of droughts. Water Resources Research 16(2): 297–302.Google Scholar
  23. French, A.N., Jacob, F., Anderson, M.C., Kustas, W.P., Timmermans, W., Gieske, A., Su, Z., Su, H., McCabe, M.F., Li, F., Prueger, J. and Brunsell, N. (2005) Surface energy fluxes with the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) at the Iowa 2002 SMACEX site (USA). Remote Sensing of Environment 99(1–2):55–65.CrossRefGoogle Scholar
  24. Garatuza-Payan, J., Shuttleworth, W.J., Encinas, D., McNeil, D.D., Stewart, J.B., deBruin, H. and Watts, C. (1998) Measurement and modelling evaporation for irrigated crops in Northwest Mexico. Hydrological Processes 12: 1397–1418.CrossRefGoogle Scholar
  25. Garratt, J.R. (1992) The atmospheric boundary layer, Cambridge University Press, Cambridge, UK.Google Scholar
  26. Gupta, H.V., Sorooshian, S. and Yapo, P.O. (1998) Toward improved calibration of hydrologic models: multiple and non-commensurable measures of information. Water Resources Research 34(3): 751–763.CrossRefGoogle Scholar
  27. Heilman, J.L., Heilman, W.E. and Moore, D.G. (1982). Evaluating the crop coefficient using spectral reflectance. Agronomy Journal 74: 967–971.CrossRefGoogle Scholar
  28. Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., Van der Linden, P.J. and Xiaosu, D. (2001) Climate change 2001: the scientific basis, Contribution of Working Group 1 to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge, 944 pp.Google Scholar
  29. Jackson, R.D., Reginato, R.J. and Idso, S.B. (1977) Wheat canopy temperature: a practical tool for evaluating water requirements. Water Resources Research 13: 651–656.Google Scholar
  30. Jacob, F., Olioso, A., Gu, X.F., Su and Seguin, B. (2002) Mapping surface fluxes using airborne visible, near infrared, thermal infrared remote sensing data and a spatialized surface energy balance model. Agronomie 22(5): 669–680.CrossRefGoogle Scholar
  31. Kanda, M., Inagaki, A., Letzel, M.O., Raasch, S. and Watanabe, T. (2004) LES study of the energy imbalance problem with eddy covariance fluxes. Boundary-Layer Meteorology 110: 381–404.CrossRefGoogle Scholar
  32. Keyantash, J. and Dracup, J.A. (2002) The Quantification of Drought: an Evaluation of Drought Indices. Bulletin of the American Meteorological Society 83(8), August: 1167–1180.Google Scholar
  33. Kustas, W.P., Jackson, R.D. and Asrar, G. (1989) Estimating surface energy-balance components from remotely sensed data. In: G. Asrar (Ed.) Theory and Applications of Optical Remote Sensing, John Wiley, New York, 743 pp.Google Scholar
  34. Kustas, W.P., Norman, J., Anderson, M.C. and French, A.N. (2003) Estimating subpixel surface temperatures and energy fluxes from the vegetation index radiometric temperature relationship. Remote Sensing of Environment 85: 429–440.CrossRefGoogle Scholar
  35. Kustas, W.P., Norman, J.M., Schmugge, T.J. and Anderson, M. (2004) Mapping surface energy fluxes with radiometric temperature. In: D.A. Quattrochi and J.C. Luvall (Eds.) Thermal Remote Sensing in Land Surface Processes, CRC Press, Boca Raton, Florida, pp. 205–253.Google Scholar
  36. Kustas, W.P and Norman, J.M. (1996) Use of remote sensing for evapotranspiration monitoring over land surfaces. Hydrological Sciences Journal 41(3): 495–516.CrossRefGoogle Scholar
  37. Lagouarde, J.P. (1991) Use of NOAA-AVHRR data combined with an agrometeorological model for evaporation mapping. International Journal of Remote Sensing 12: 1853–1864.Google Scholar
  38. Marino, C., Manca, G., Matteucci, G. and Scarascia Mugnozza, G. (2005) Cambiamenti climatici nel mediterraneo: un caso di studio sul ciclo del carbonio in una pineta della Sila, Calabria. Forest@ 2(1): 52–65.CrossRefGoogle Scholar
  39. Mecikalski, J., Diak, G., Anderson, M. and Norman, J. (1999) Estimating fluxes on continental scales using remotely sensed data in an atmospheric land exchange model. Journal of Applied Meteorology 38(8): 1352–1369.CrossRefGoogle Scholar
  40. Melesse, A.M. and Nangia, V. (2005) Estimation of spatially distributed surface energy fluxes using remotely-sensed data for agricultural fields. Hydrological processes 19: 2653–2670.CrossRefGoogle Scholar
  41. Mendicino, G. and Senatore, A. (2005) Analysis of mass and energy fluxes in southern Italy. ICID 21st Europ. Reg. Conf. 15–19 May 2005, Frankfurt (Oder) and Slubice-Germany and Poland.Google Scholar
  42. Mendicino, G., Senatore, A. and Versace, P. (2006) Un modello per la stima dei processi di trasferimento di energia e massa tra suolo, vegetazione ed atmosfera. XXX Convegno di Idraulica e Costruzioni Idrauliche, Rome, 10–15 September, 2006.Google Scholar
  43. Menenti, M. and Choudhury, B.J. (1993) Parameterization of land surface evapotranspiration using a location dependent potential evapotranspiration and surface temperature range. In: H.J. Bolle et al. (Eds.), Exchange Processes at the Land Surface for a Range of Space and Time Scales, IAHS Publication 212, Wallingford, UK, 561–568.Google Scholar
  44. Mohamed, Y.A., Bastiaanssen, W.G.M. and Savenije, H.H.G. (2004) Spatial variability of evaporation and moisture storage in the swamps of the upper Nile studied by remote sensing techniques. Journal of Hydrology 289 (1–4): 145–164.CrossRefGoogle Scholar
  45. Monteith, J.L. (1965) Evaporation and environment. In: G.E. Fogg (Ed.) The State and Movement of Water in Living Organisms. Proceedings of the XIX Symposium of the Society of Experimental Biology. Cambridge University Press, Cambridge, pp. 205–234.Google Scholar
  46. Moran, M.S., Clarke, T.R., Inoue, Y. and Vidal, A. (1994) Estimating crop water management using the relation between surface-air temperature and spectral vegetation index. Remote Sensing of Environment 49: 246–263.CrossRefGoogle Scholar
  47. Neale, C., Jayanthi, H. and Wright, J.L. (2005) Irrigation water management using high resolution airborne remote sensing. Irrigation and Drainage Systems 19(3/4): 321–336.CrossRefGoogle Scholar
  48. Neale, C., Bausch, W.C. and Heerman, D.F. (1989) Development of reflectance-based crop coefficients for corn. Transactions of ASAE 32(5): 1891–1899.Google Scholar
  49. Noilhan, J. and Mahfouf, J.-F. (1996) The ISBA land surface parameterisation scheme. Global and Planetary Change 13(1–4): 145–159.CrossRefGoogle Scholar
  50. Norman, J., Kustas, W. and Humes, K. (1995) A two-source approach for estimating soil and vegetation energy fluxes from observations of directional radiometric surface temperature. Agricultural and Forest Meteorology 77: 263–293.CrossRefGoogle Scholar
  51. Olioso, A., Inoue, Y., Ortega-Farias, S., Demarty, J., Wigneron, J.-P., Braud, I., Jacob, F., Lecharpentier, P., Ottlé, C., Calvet, J.-C. and Brisson, N. (2005) Future directions for advanced evapotranspiration modeling: assimilation of remote sensing data into crop simulation models and SVAT models. Irrigation and Drainage Systems 19: 377–412.CrossRefGoogle Scholar
  52. Patel, N.R., Rakhesh, D. and Mohammed, A.J. (2006) Mapping of regional evapotranspiration in wheat using Terra/MODIS satellite data. Hydrological Science Journal 51(2): 325–335.CrossRefGoogle Scholar
  53. Priestley, C. and Taylor, R. (1972) On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review 100: 81–92.CrossRefGoogle Scholar
  54. Raupach, M.R. and Finnigan, J.J. (1986) Single-layer models of evaporation from plant canopy are incorrect but useful, whereas multilayer models are correct but useless: discuss. Australian Journal of Plant Physiology 15: 705–716.CrossRefGoogle Scholar
  55. Roerink, G.J., Su, B. and Menenti, M. (2000) S-SEBI A simple remote sensing algorithm to estimate the surface energy balance. Physics and Chemistry of the Earth (B) 25(2): 147–157.Google Scholar
  56. Scott, C.A., Bastiaanssen, W.G.M. and Ahmad, M. (2003) Mapping root zone soil moisture using remotely sensed optical imagery. Journal of Irrigation and Drainage Engineering 129(4): 326–335.CrossRefGoogle Scholar
  57. Seguin, B., Baelz, S., Monget, J.M. and Petit, V. (1982) Utilisation de la thermographie IR pour l’estimation de l’évaporation régionale. II: Résultats obtenus á partir de données satellites. Agronomie 2(2): 113–118.CrossRefGoogle Scholar
  58. Sellers, P.J., Randall, D.A., Collatz, G.J., Berry, J.A., Field, C.B., Dazlich, D.A., Zhang, C., Collelo, G.D. and Bounoua, L. (1996) A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I. Model formulation. Journal of Climate 9: 676–705.CrossRefGoogle Scholar
  59. Shuttleworth, W.J. and Wallace, J.S. (1985) Evaporation from sparse crops – an energy combination theory. Quarterly Journal of the Royal Meteorological Society 111: 839–855.CrossRefGoogle Scholar
  60. Su, Z. (2002) The surface energy balance system (SEBS) for estimation of turbulent heat fluxes. Hydrology and Earth System Sciences 6(1): 85–99.CrossRefGoogle Scholar
  61. Su, Z., Yacob, A., Wen, J., Roerink, G., He, Y., Gao, B., Boogaard, H. and van Diepen, C. (2003) Assessing relative soil moisture with remote sensing data: theory, experimental validation, and application to drought monitoring over the North China Plain. Physics and Chemistry of the Earth (B) 28(1–3): 89–101.Google Scholar
  62. Swinbank, W.C. (1951) Measurement of Vertical Transfer of Heat and Water Vapour by Eddies in the Lower Atmosphere. Journal of Meteorology 8: 135–145.Google Scholar
  63. Swinbank, W.C. (1955) Eddy Transports in the Lower Atmosphere, Tech. Paper No. 2, Division of Meteorological Physics, Commonwealth Scientific and Industrial Research Organization, Melbourne, Australia, 30 pp.Google Scholar
  64. Timmermans, W.J., van der Kwast, J., Gieske, A.S.M., Su, Z., Olioso, A., Jia, L. and Elbers, J. (2005) Intercomparison of energy flux models using ASTER imagery at the SPARC 2004 site (Barrax, Spain). SPARC final Workshop, Enschede, The Netherlands, 4–5 July, 2005.Google Scholar
  65. Valentini, R. (2003), Ed. Fluxes of Carbon, Water and Energy of European Forests, Ecological Studies 163, Springer-Verlag, Berlin Heidelberg, 450 pp.Google Scholar
  66. Wilhite, D.A. and Glantz, M.H. (1985) Understanding the drought phenomenon: the role of definitions. Water International 10(3): 111–120.CrossRefGoogle Scholar
  67. Wilson, K., Goldstein, A., Falge, E., Aubinet, M., Baldocchi, D., Berbigier, P., Bernhofer, C., Ceulemans, R., Dolman, H., Field, C., Grelle, A., Ibrom, A., Law, B.E., Kowalski, A., Meyers, T., Moncrieff, J., Monson, R., Oechel, W., Tenhunen, J., Valentini, R. and Verma, S. (2002) Energy balance closure at FLUXNET sites. Agricultural and Forest Meteorology 113: 223–243.CrossRefGoogle Scholar
  68. Xie, P., Janowiak, J.E., Arkin, P.A., Adler, R., Gruber, A., Ferraro, R., Huffman, G.J. and Curtis, S. (2003) GPCP pentad precipitation analyses: an experimental dataset based on gauge observations and satellite estimates. Journal of Climate 16: 2197–2214.CrossRefGoogle Scholar
  69. Yapo, P.O., Gupta, H.V. and Sorooshian, S. (1998) Multiobjective global optimization for hydrologic models. Journal of Hydrology 204: 83–97.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • G. Calcagno
    • 1
  • G. Mendicino
    • 1
  • G. Monacelli
    • 2
  • A. Senatore
    • 1
  • P. Versace
    • 1
  1. 1.Department of Soil ConservationUniversity of CalabriaCosenza
  2. 2.APAT – Agency for Environmental Protection and Technical ServicesRome

Personalised recommendations